JPH04356392A - Optical processor - Google Patents

Optical processor

Info

Publication number
JPH04356392A
JPH04356392A JP3004817A JP481791A JPH04356392A JP H04356392 A JPH04356392 A JP H04356392A JP 3004817 A JP3004817 A JP 3004817A JP 481791 A JP481791 A JP 481791A JP H04356392 A JPH04356392 A JP H04356392A
Authority
JP
Japan
Prior art keywords
light
mask
fresnel
condensing
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004817A
Other languages
Japanese (ja)
Inventor
Nobuyuki Zumoto
信行 頭本
Toshinori Yagi
俊憲 八木
Masao Izumo
正雄 出雲
Yasuto Nai
名井 康人
Teruo Miyamoto
照雄 宮本
Masaaki Tanaka
正明 田中
Toshie Uchiyama
内山 淑恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3004817A priority Critical patent/JPH04356392A/en
Priority to US07/659,691 priority patent/US5223693A/en
Priority to DE4106423A priority patent/DE4106423C2/en
Priority to CA002037063A priority patent/CA2037063C/en
Publication of JPH04356392A publication Critical patent/JPH04356392A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process

Abstract

PURPOSE:To improve the utilization efficiency of light, in the optical processor for executing viahole working, etc., to, for instance, a copper polyimide base plate by a laser light by using a mask for a transfer. CONSTITUTION:Working is executed by providing a Fresnel band plate 12 as a condensing means on four pieces of circular light propagating parts 11 provided on a mask 2, and condensing a laser light 1 radiated to the mask 2 to a printed board 7. Since light is condensed by the Fresnel band plate 12, the utilization efficiency of light can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えばマスクを用い
てレーザ光によりプリント基板のバイアホール(via
 hole)の加工等を行う光処理装置に関するもので
ある。
[Industrial Field of Application] This invention is a method of forming via holes in a printed circuit board by laser light using a mask, for example.
This invention relates to an optical processing device that processes holes, etc.

【0002】0002

【従来の技術】図6,図7は、例えば特開昭63−22
0991号公報に示された従来の光処理装置であるレー
ザ加工装置を示すもので、図6は装置の光加工部を示す
構成図、図7はマスクの平面図である。
[Prior Art] FIGS. 6 and 7 are, for example, Japanese Patent Laid-Open No. 63-22
This figure shows a laser processing apparatus which is a conventional optical processing apparatus disclosed in Japanese Patent No. 0991, and FIG. 6 is a block diagram showing the optical processing section of the apparatus, and FIG. 7 is a plan view of a mask.

【0003】これらの図において、1は光源(図示せず
)から発せられたレーザ光であり、波長 248〔nm
〕のKrF エキシマレーザ光が用いられている。2は
光遮蔽部材としてのマスクであり、図7に示されるよう
に光を透過させる合成石英製の光透過板3の上に光伝搬
部としての光を通過させる光通過部4が所定の形状を構
成するように光を遮断する遮光部5を薄膜により形成し
、光透過板3を通して光を透過(以下通過、透過を総称
して伝搬という)させるようにしている。
In these figures, 1 is a laser beam emitted from a light source (not shown), and has a wavelength of 248 nm.
] KrF excimer laser light is used. Reference numeral 2 denotes a mask as a light shielding member, and as shown in FIG. 7, a light transmitting portion 4 for transmitting light as a light propagating portion is provided with a predetermined shape on a light transmitting plate 3 made of synthetic quartz for transmitting light. A light blocking portion 5 that blocks light is formed of a thin film so as to constitute a light transmitting plate 3, and the light is transmitted through the light transmitting plate 3 (hereinafter referred to as "transmission" and "propagation").

【0004】なお、図7においては図示の都合上光通過
部4を連続した形状の如く示しているが、正確には、直
径20〔μm〕程度の光通過窓(図1  光伝搬部11
参照)が多数、図7の光通過部4のような模様を描くよ
うに配設されているもので、1平方センチメートル当り
100 個程度散在している。従って、マスク2の開口
率(光通過部4の面積のマスク2全体の面積に対する割
合)は0.03%程度である。6は、焦点距離fの結像
レンズであり、マスク2から距離A離して設けられてい
る。7は被処理物であるポリイミド製のプリント基板で
あり、結像レンズ6と距離Bを置いて設けられている。
Note that in FIG. 7, the light passing section 4 is shown as having a continuous shape for convenience of illustration, but to be more precise, the light passing section 11 has a diameter of about 20 [μm] (see FIG. 1).
(see) are arranged in a pattern similar to the light passing portions 4 in FIG. 7, with about 100 pieces scattered per square centimeter. Therefore, the aperture ratio of the mask 2 (the ratio of the area of the light passage section 4 to the area of the entire mask 2) is about 0.03%. 6 is an imaging lens having a focal length f, and is provided at a distance A from the mask 2. Reference numeral 7 denotes a printed circuit board made of polyimide, which is an object to be processed, and is provided at a distance B from the imaging lens 6.

【0005】次に動作について説明する。レーザ光1は
マスク2に照射され、光通過部4のみレーザ光1が通過
する。その後レーザ光1は結像レンズ6に入射して、結
像レンズ6,マスク2及びプリント基板7相互間の距離
の間に次の関係式 1/A+1/B=1/f が成立する時、マスク2の光通過部4の形状が反転した
形でプリント基板7上に投影され、プリント基板7上に
その形状に従ってバイアホール8が加工される。この時
、マスク2の光通過部4の形状に対応する投影像の倍率
は、B/Aとなる。なお、マスク2の開口率は0.03
%と小さく、残る 99.97%の光はマスク2により
吸収ないし反射される。
Next, the operation will be explained. The laser beam 1 is irradiated onto the mask 2, and the laser beam 1 passes only through the light passage section 4. After that, the laser beam 1 enters the imaging lens 6, and when the following relational expression 1/A+1/B=1/f holds between the distances between the imaging lens 6, the mask 2, and the printed circuit board 7, The shape of the light passing portion 4 of the mask 2 is projected onto the printed circuit board 7 in an inverted form, and the via hole 8 is processed on the printed circuit board 7 according to the shape. At this time, the magnification of the projected image corresponding to the shape of the light passing portion 4 of the mask 2 is B/A. In addition, the aperture ratio of mask 2 is 0.03
The remaining 99.97% of the light is absorbed or reflected by the mask 2.

【0006】[0006]

【発明が解決しようとする課題】従来のレーザ加工装置
は以上のように構成されているので、マスク2に照射さ
れたレーザ光1の大部分がマスク2で反射ないし吸収さ
れ、レーザ光のエネルギーは殆ど(上記従来例では 9
9.97%)が加工に使われることなく損失となり、光
の利用効率が低いという問題点があった。この発明は上
記のような問題点を解決するためになされたもので、光
の利用効率が高い光処理装置を得ることを目的とする。
[Problems to be Solved by the Invention] Since the conventional laser processing apparatus is constructed as described above, most of the laser beam 1 irradiated onto the mask 2 is reflected or absorbed by the mask 2, and the energy of the laser beam is reduced. is almost (9 in the conventional example above)
There was a problem that 9.97%) of the light was not used for processing and was lost, resulting in low light utilization efficiency. This invention was made to solve the above-mentioned problems, and an object of the invention is to obtain a light processing device with high light utilization efficiency.

【0007】[0007]

【課題を解決するための手段】この発明に係る光処理装
置は、光遮蔽部材の光伝搬部あるいはその近傍に集光手
段を設けて被加工物に集光するようにしたものである。
[Means for Solving the Problems] The optical processing apparatus according to the present invention is such that a light condensing means is provided at or near the light propagation section of a light shielding member to condense light onto a workpiece.

【0008】[0008]

【作用】この発明においては光通過部の面積を大きくし
て集光手段により集光して被処理物に加える。この結果
、被処理物へ照射される光の強度を強くでき、その分、
光の利用効率が向上する。
[Operation] In the present invention, the area of the light passing portion is increased, and the light is focused by the light focusing means and applied to the object to be processed. As a result, the intensity of the light irradiated onto the workpiece can be increased, and the
Improves light usage efficiency.

【0009】[0009]

【実施例】図1,図2はこの発明の一実施例を示すもの
で、図1はレーザ加工装置の光加工部を示す斜視図、図
2はフレネル帯板の詳細を示す平面図である。これらの
図において、11は光が通過するように遮光部5に設け
られた円形の光伝搬部であり、この一実施例では図示の
都合上、光通過部を4個の光伝搬部11にて構成したも
のを示したが、光伝搬部11を所定の形状に多数配列し
たものが図7に示される光通過部4である。12は光伝
搬部11に設けられた集光手段である円形のフレネル帯
板であり、光を通過させるリング状の光通過帯13と光
を遮断するリング状の光遮断帯14とが交互に設けられ
ている。各光通過帯13、光遮断帯14はその境界線が
中心Oから半径方向にa1(2m+1)1/2 (m=
0,1,2,……)(a1:フレネル帯板のパラメータ
、後述)の距離になるように製作されている。
[Embodiment] Figs. 1 and 2 show an embodiment of the present invention. Fig. 1 is a perspective view showing an optical processing section of a laser processing device, and Fig. 2 is a plan view showing details of a Fresnel strip. . In these figures, reference numeral 11 denotes a circular light propagation section provided in the light shielding section 5 so that light can pass therethrough.In this embodiment, for convenience of illustration, the light passage section is divided into four light propagation sections 11. However, the light passage section 4 shown in FIG. 7 is one in which a large number of light propagation sections 11 are arranged in a predetermined shape. Reference numeral 12 denotes a circular Fresnel band plate which is a condensing means provided in the light propagation section 11, and a ring-shaped light passing band 13 for passing light and a ring-shaped light blocking band 14 for blocking light are arranged alternately. It is provided. The boundaries of each light passing zone 13 and light blocking zone 14 are a1(2m+1)1/2 (m=
0, 1, 2, ...) (a1: Fresnel strip parameter, described later).

【0010】次に動作について図1,図2及び光の分布
図である図3,集光の説明図である図4を用いて説明す
る。図1においてフレネル帯板12を設けたマスク2に
平面波からなるレーザ光1が照射されるとレーザ光1は
それぞれのフレネル帯板12によって回折され、プリン
ト基板7上に到り加工を行う。フレネル帯板12は上述
のような寸法にされているので、光通過帯13を通過す
る光の分布は図3に示される分布を有し、図4に示され
るマスク2の光の出射側の集光点Fにおいて集光されマ
スク2上におけるより高い光の強度が得られる。この時
の集光点Fまでの距離f(焦点距離)とフレネル帯板の
パラメータa1との関係は、 (a1)2=λ・f(λ:レーザ光1の波長)で与えら
れる。
Next, the operation will be explained using FIGS. 1 and 2, FIG. 3 which is a light distribution diagram, and FIG. 4 which is an explanatory diagram of condensing light. In FIG. 1, when a laser beam 1 consisting of a plane wave is irradiated onto a mask 2 provided with a Fresnel strip 12, the laser beam 1 is diffracted by each Fresnel strip 12 and reaches a printed circuit board 7 for processing. Since the Fresnel band plate 12 has the dimensions described above, the distribution of light passing through the light passing band 13 has the distribution shown in FIG. The light is condensed at the condensing point F, and a higher intensity of light on the mask 2 is obtained. At this time, the relationship between the distance f (focal length) to the condensing point F and the parameter a1 of the Fresnel band plate is given by (a1)2=λ·f (λ: wavelength of the laser beam 1).

【0011】また、集光点Fにおける光の強度Iはマス
ク2面上における強度をI0としたとき、I=m2 ・
I0 (m:フレネル帯の数)で与えられる。通常フレ
ネル帯(光通過帯13)の数としては6〜10程度を使
用するので、その値を上記式に代入すると、集光点Fに
おける光の強度Iはマスク2上の光の強度I0の36倍
から100 倍が得られることになる。もちろん、この
一実施例においてはフレネル帯板12を4個設けている
ので、従来の転写光学系におけるのと同様に、互に離れ
た4ヶ所の穴明け加工を一度に行うことができる。
[0011] Furthermore, the intensity I of the light at the condensing point F is given by I=m2, where I0 is the intensity on the mask 2 surface.
It is given by I0 (m: number of Fresnel bands). Normally, the number of Fresnel bands (light passing band 13) is about 6 to 10, so by substituting that value into the above equation, the intensity I of the light at the focal point F is equal to the intensity I0 of the light on the mask 2. This results in a gain of 36 to 100 times. Of course, in this embodiment, since four Fresnel strip plates 12 are provided, holes can be drilled at four distant locations at the same time, as in the conventional transfer optical system.

【0012】ここで、フレネル帯板12の大きさを算出
する。光の波長をλ=248〔mm〕、焦点距離をf=
50〔mm〕とするとa1= 111〔μm〕となる。 フレネル帯の数をm=10とするとフレネル帯板12の
直径はa1(2m+1)1/2 = 509〔μm〕と
なる。従って、この場合加工したい穴の間隔を 509
〔μm〕以上に取れば良いことになる。
[0012] Here, the size of the Fresnel strip 12 is calculated. The wavelength of light is λ=248 [mm], and the focal length is f=
If it is 50 [mm], a1=111 [μm]. When the number of Fresnel bands is m=10, the diameter of the Fresnel band plate 12 is a1(2m+1)1/2=509 [μm]. Therefore, in this case, the distance between the holes you want to machine is 509
It would be better if it was larger than [μm].

【0013】なお、図1に示した一実施例においてはフ
レネル帯板12から出た光をそのままプリント基板7に
照射する例を示したが、例えば図5に示すように、集光
面21における光分布をレンズ22によってプリント基
板7に転写する構成としても良い。
In the embodiment shown in FIG. 1, an example was shown in which the light emitted from the Fresnel strip 12 is directly irradiated onto the printed circuit board 7, but as shown in FIG. A configuration may also be adopted in which the light distribution is transferred to the printed circuit board 7 by the lens 22.

【0014】さらに、図1におけるフレネル帯板12の
パターンは図2に示される構成となっているので、集光
点Fにおける光の強度Iは、一次のベッセル関数をJ1
(r) 、半径をr、フレネルナンバをN、フレネル帯
板の最外郭までの距離をDとしたとき、 I=c・{J1(2Nπr/D)/(Nπr/D)}2
   (c:比例定数) となっているが、フレネル帯板のパターンとして他の形
状のものを使用することで、集光点における光の分布を
矩形に近づけたり、リング状にしたりすることもできる
。また、一次元のフレネル帯板のパターンを使用するこ
とによりスリット状の光の分布を得ることもできる。 なお、フレネル帯板の代りにマイクロレンズ等他の集光
手段を用いる場合であっても同様の効果を奏する。
Furthermore, since the pattern of the Fresnel strip 12 in FIG. 1 has the configuration shown in FIG.
(r), where the radius is r, the Fresnel number is N, and the distance to the outermost edge of the Fresnel strip is D, I=c・{J1(2Nπr/D)/(Nπr/D)}2
(c: constant of proportionality) However, by using other shapes of Fresnel strip patterns, the distribution of light at the focal point can be made closer to a rectangle or ring-shaped. . A slit-like light distribution can also be obtained by using a one-dimensional Fresnel strip pattern. Note that the same effect can be achieved even when using other light condensing means such as a microlens instead of the Fresnel strip.

【0015】以上の各実施例において、光遮蔽部材とし
てマスク2を示したがレジクル、アパチャ等であっても
良く、また光透過板を用いずに例えば金属薄板に所定の
形状の透孔等を穿設して光伝搬部とし、ここに集光手段
を設けても良い。また、集光手段は光伝搬部の近傍に設
けるものであっても良い。さらに、光はレーザ光に限ら
れるものではなく、他の光であっても同様の効果を奏す
るし、光処理装置はレーザ光によるアブレーション(a
blation)加工に限らず他の加工を行うものやフ
ォトリソグラフィにおける露光装置等他の光処理装置で
あっても良い。
In each of the above embodiments, the mask 2 is shown as the light shielding member, but it may also be a resicle, an aperture, etc. Alternatively, instead of using a light transmitting plate, for example, a through hole of a predetermined shape may be formed in a thin metal plate. A hole may be formed to form a light propagation section, and a light condensing means may be provided here. Further, the light condensing means may be provided near the light propagation section. Furthermore, the light is not limited to laser light; other light can have similar effects, and the light processing device is capable of ablation (a) using laser light.
The optical processing apparatus is not limited to processing (blation), and may be other optical processing equipment such as one that performs other processing or an exposure equipment in photolithography.

【0016】[0016]

【発明の効果】以上のようにこの発明によれば、光遮蔽
部材の光伝搬部あるいはその近傍に光を集光する集光手
段を設けたので、光遮蔽部材に照射される光を有効に利
用できる。
As described above, according to the present invention, since the light condensing means for concentrating light on or near the light propagation part of the light shielding member is provided, the light irradiated onto the light shielding member can be effectively used. Available.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例であるレーザ加工装置を示
す斜視図である。
FIG. 1 is a perspective view showing a laser processing apparatus which is an embodiment of the present invention.

【図2】この発明の一実施例を示すフレネル帯板の平面
図である。
FIG. 2 is a plan view of a Fresnel strip showing an embodiment of the present invention.

【図3】この発明の一実施例におけるフレネル帯板を伝
搬する光の分布を示す光の分布図である。
FIG. 3 is a light distribution diagram showing the distribution of light propagating through a Fresnel strip in an embodiment of the present invention.

【図4】この発明の一実施例における集光の説明図であ
る。
FIG. 4 is an explanatory diagram of light collection in an embodiment of the present invention.

【図5】この発明の他の実施例を示す斜視図である。FIG. 5 is a perspective view showing another embodiment of the invention.

【図6】従来のレーザ加工装置の光加工部を示す構成図
である。
FIG. 6 is a configuration diagram showing an optical processing section of a conventional laser processing device.

【図7】従来の光遮蔽部材の平面図である。FIG. 7 is a plan view of a conventional light shielding member.

【符号の説明】[Explanation of symbols]

1  レーザ光 2  マスク 5  遮光部 7  プリント基板 11  光遮蔽部材 12  フレネル帯板 21  集光面 22  レンズ 1 Laser light 2. Mask 5. Light shielding part 7 Printed circuit board 11 Light shielding member 12 Fresnel strip 21 Light condensing surface 22 Lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  所定の形状を有し光を伝搬させる光伝
搬部を設けた光遮蔽部材を備え上記光伝搬部を伝搬した
上記光により被処理物を処理する光処理装置において、
上記光伝搬部に上記光を上記被処理物に集光する集光手
段を設けたことを特徴とする光処理装置。
1. A light processing apparatus that processes a workpiece with the light propagated through the light propagation part, the apparatus comprising a light shielding member having a predetermined shape and provided with a light propagation part for propagating light,
An optical processing apparatus characterized in that the light propagation section is provided with a condensing means for condensing the light onto the object to be processed.
JP3004817A 1990-04-28 1991-01-21 Optical processor Pending JPH04356392A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3004817A JPH04356392A (en) 1991-01-21 1991-01-21 Optical processor
US07/659,691 US5223693A (en) 1990-04-28 1991-02-25 Optical machining apparatus
DE4106423A DE4106423C2 (en) 1990-04-28 1991-02-26 Laser processing device
CA002037063A CA2037063C (en) 1990-04-28 1991-02-26 Optical machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004817A JPH04356392A (en) 1991-01-21 1991-01-21 Optical processor

Publications (1)

Publication Number Publication Date
JPH04356392A true JPH04356392A (en) 1992-12-10

Family

ID=11594286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004817A Pending JPH04356392A (en) 1990-04-28 1991-01-21 Optical processor

Country Status (1)

Country Link
JP (1) JPH04356392A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310986A (en) * 1992-04-28 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
US5498851A (en) * 1992-08-27 1996-03-12 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus and method
JP2009225470A (en) * 2009-06-26 2009-10-01 Panasonic Corp Communicating equipment
JP2012035294A (en) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd Tapered bore forming device, tapered bore forming method, light modulation means, and modulation mask
US9077377B2 (en) 2010-02-10 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Transmission device and reception device for communication in an environment with strong external noise, and transmission method and reception method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310986A (en) * 1992-04-28 1994-05-10 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
US5498851A (en) * 1992-08-27 1996-03-12 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus and method
JP2009225470A (en) * 2009-06-26 2009-10-01 Panasonic Corp Communicating equipment
US9077377B2 (en) 2010-02-10 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Transmission device and reception device for communication in an environment with strong external noise, and transmission method and reception method for the same
JP2012035294A (en) * 2010-08-05 2012-02-23 Dainippon Printing Co Ltd Tapered bore forming device, tapered bore forming method, light modulation means, and modulation mask

Similar Documents

Publication Publication Date Title
JP2657957B2 (en) Projection device and light irradiation method
JP3102076B2 (en) Illumination device and projection exposure apparatus using the same
US5362940A (en) Use of Fresnel zone plates for material processing
US5357311A (en) Projection type light exposure apparatus and light exposure method
JP3194155B2 (en) Semiconductor device manufacturing method and projection exposure apparatus using the same
JPH02142111A (en) Lighting method and device therefor and projection type exposure method and device therefor
US7098995B2 (en) Apparatus and system for improving phase shift mask imaging performance and associated methods
JPH01286478A (en) Beam uniformizing optical system and manufacture thereof
JPH04263254A (en) Exposing mechanism
JPH04356392A (en) Optical processor
JP3212197B2 (en) Projection exposure apparatus and projection exposure method
JPH0950131A (en) Aperture for slant incident illumination and projection exposure device utilizing apperture thereof
JPH08184781A (en) Projecting device and manufacture of orifice plate using it
EP0648154B1 (en) Use of fresnel zone plates for material processing
US5523184A (en) Photomask for forming high resolution photoresist patterns
JP4791630B2 (en) Exposure equipment
JP3656371B2 (en) Optical processing equipment
EP0236521B1 (en) Reflection type optical device
JP2848425B2 (en) Light exposure method
JPH03210987A (en) Optical treating device
JP3227842B2 (en) LSI manufacturing method
JPH03258481A (en) Laser marking device
JP4003356B2 (en) Light irradiation apparatus and transfer processing apparatus using the same
JPH07253652A (en) Halftone phase shift mask
KR980010631A (en) Projection exposure device for incident illumination