JPH04356315A - Cold rolling method - Google Patents

Cold rolling method

Info

Publication number
JPH04356315A
JPH04356315A JP20064991A JP20064991A JPH04356315A JP H04356315 A JPH04356315 A JP H04356315A JP 20064991 A JP20064991 A JP 20064991A JP 20064991 A JP20064991 A JP 20064991A JP H04356315 A JPH04356315 A JP H04356315A
Authority
JP
Japan
Prior art keywords
emulsion
oil
particle size
rolling
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20064991A
Other languages
Japanese (ja)
Other versions
JPH0783892B2 (en
Inventor
Shuichi Iwato
岩藤 秀一
Hiroshi Kuwamoto
鍬本 紘
Hiroshi Nishimura
啓 西村
Takeshi Shiyariyou
社領 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3200649A priority Critical patent/JPH0783892B2/en
Publication of JPH04356315A publication Critical patent/JPH04356315A/en
Publication of JPH0783892B2 publication Critical patent/JPH0783892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To perform rolling by using emulsion which can satisfy both stability in a supplying system of emulsion and play-out (water repelling and spreading) performance to show lubricating performance. CONSTITUTION:Rolling is performed by using emulsion having a distribution form of oil particles formed from oil particles in which the average particle diameter of oil content in emulsion as rolling lubricant is 6-15mum and the particle diameters of 50% of oil content are 6-15mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、一定範囲の粒径分布
を有するクーラントエマルジョンを用いることを特徴と
する冷間圧延方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold rolling method characterized by using a coolant emulsion having a particle size distribution within a certain range.

【0002】0002

【従来の技術】従来冷間圧延に用いられる潤滑剤はO/
W(水中油滴)型エマルジョンの形でロールバイトに供
給されているが、エマルジョンの供給系内での安定性と
、潤滑性能を出すためのプレートアウト(離水展着)性
とは全く逆の方向である。
[Prior art] The lubricant conventionally used in cold rolling is O/
It is supplied to the roll bite in the form of a W (oil-in-water) type emulsion, but the stability within the emulsion supply system and the plate-out (water syneresis) property to achieve lubrication performance are completely opposite. It is the direction.

【0003】すなわち、安定なエマルジョンを得るため
にはエマルジョン中の油粒径を細かくし乳化を深くする
必要があるが、こうした場合、水と油の親和力が強くな
り板へのプレートアウト性が損なわれるので潤滑性能が
低下し、ロール疵の発生、能率の低下を余儀なくされる
[0003] In other words, in order to obtain a stable emulsion, it is necessary to make the oil particle size in the emulsion finer and deepen the emulsification, but in this case, the affinity between water and oil becomes strong and the ability to plate out onto the plate is impaired. As a result, lubrication performance deteriorates, roll flaws occur, and efficiency decreases.

【0004】また逆に、油粒径を大きくすればプレート
アウト性は向上するが、系内で油が浮上分離しやすくな
るため、潤滑にムラが出易く、チャタリングや不安定ス
リッブによる板厚変動が生じるので原単位が高くなると
いう問題が起る。
On the other hand, if the oil particle size is increased, the plate-out property is improved, but the oil becomes more likely to float and separate in the system, resulting in uneven lubrication and plate thickness fluctuations due to chattering and unstable slitting. This causes the problem of higher unit consumption.

【0005】これらの現象は、冷間圧延油のシステムで
は一般に経験されることであるが、直接方式よりも、供
給系統が大規模となる循環方式の方が、この傾向が顕著
である。そこで、この相反する現象をいかにうまく適性
範囲にコントロールするかが、安定で、高能率に、高品
質な製品を生産できるかを左右することになる。
[0005] These phenomena are commonly experienced in cold rolling oil systems, but this tendency is more pronounced in circulation systems in which the supply system is large-scale than in direct systems. Therefore, how well these contradictory phenomena are controlled within an appropriate range will determine whether stable, highly efficient, and high-quality products can be produced.

【0006】[0006]

【発明が解決しようとする課題】従来、クーラントエマ
ルジョンの乳化は界面活性剤の添加、機械的攪拌等によ
って行われているが、これまでは前述のごときエマルジ
ョンの潤滑性と安定性との相反する2つの性質を満足す
るための定量的な指標はなく、単に経験的に乳化の状態
を目視又は何らかの粒径測定装置で測定して操業の目安
としていた。
[Problem to be Solved by the Invention] Conventionally, emulsification of coolant emulsions has been carried out by adding surfactants, mechanical stirring, etc., but until now, the emulsions have conflicting effects on lubricity and stability as described above. There is no quantitative index for satisfying the two properties, and the state of emulsification has been merely empirically measured visually or with some kind of particle size measuring device as a guideline for operation.

【0007】また従来の乳化剤である界面活性剤や、機
械的な攪拌だけでは、図1に示すごとく、油粒子粒径の
分布の幅が広く、ピークも弱いため定量的な指標を得る
ことが困難であることや、温度の変化、経時変化による
影響が大きいことが、更に問題解決を困難にしていた。
[0007] Furthermore, as shown in Figure 1, it is difficult to obtain quantitative indicators using only surfactants, which are conventional emulsifiers, or mechanical stirring because the oil particle size distribution is wide and the peak is weak. Further complicating the problem was its difficulty and the fact that it was highly influenced by changes in temperature and changes over time.

【0008】そこで、この相反する現象を適性範囲にコ
ントロールするためには、エマルジョンを形成している
油粒子の粒径分布を一定の範囲に収めること及び機械攪
拌の大小や経時変化等の外乱の影響を受けにくく且つ油
粒子の粒径をコントロールできる乳化分散剤が必要とな
る。
Therefore, in order to control these contradictory phenomena within an appropriate range, it is necessary to keep the particle size distribution of the oil particles forming the emulsion within a certain range, and to control disturbances such as the magnitude of mechanical stirring and changes over time. An emulsifying and dispersing agent that is less susceptible to oil particles and that can control the particle size of oil particles is needed.

【0009】本発明者らは、研究の結果、上記諸特性を
充足する乳化分散剤、例えば特願昭56−204623
号(56.12.18出願)に開示されている分散剤を
開発することに成功した。
As a result of our research, the present inventors have developed an emulsifying and dispersing agent that satisfies the above characteristics, for example, in Japanese Patent Application No. 56-204623.
The dispersant disclosed in No. 56.12.18 was successfully developed.

【0010】この発明は、上記のような実情にかんがみ
てなされたもので、その目的はエマルジョンを形成する
油粒子の粒径分布がタンク内、ポンプ出口、ヘッダー内
で常に一定の範囲に収まるエマルジョンを用いて圧延す
ることにより、高能率、高品質で安定した操業のできる
冷間圧延方法を提供することを課題とするものである。
[0010] This invention was made in view of the above-mentioned circumstances, and its purpose is to create an emulsion in which the particle size distribution of oil particles forming the emulsion is always within a certain range in the tank, pump outlet, and header. It is an object of the present invention to provide a cold rolling method that enables stable operation with high efficiency and high quality by rolling using a cold rolling method.

【0011】[0011]

【課題を解決するための手段】本発明の冷間圧延方法は
、乳化分散剤を添加してタンク内、ポンプ出口、ヘッダ
ー内で常にエマルジョン中の油分の平均粒径が6〜15
μでかつ50%以上が粒径6〜15μの直径を持つ油粒
子で形成されるようにし、該エマルジョン濃度を1〜5
%とし、このエマルジョンを圧延潤滑剤として用いて圧
延することを特徴とするものである。
[Means for Solving the Problems] In the cold rolling method of the present invention, an emulsifying dispersant is added so that the average particle size of the oil in the emulsion is always 6 to 15 mm in the tank, pump outlet, and header.
μ and at least 50% of the oil particles have a diameter of 6 to 15 μm, and the emulsion concentration is 1 to 5 μm.
%, and is characterized by rolling using this emulsion as a rolling lubricant.

【0012】0012

【作用】圧延潤滑剤としてのエマルジョン中の各部の油
分の50%以上が粒径6〜15μの直径をもつ油粒子で
形成される油粒子の分布形態を有するエマルジョンを用
いて圧延することにより、高能率で高品質の製品を安定
した圧延操業で、かつ油分のスカムへの浮上分離(ロス
)も少なく、圧延油原単位も優れた生産することができ
る。
[Operation] By rolling using an emulsion having a distribution form of oil particles in which 50% or more of the oil content in each part of the emulsion as a rolling lubricant is formed by oil particles having a diameter of 6 to 15 μm. It is possible to produce high-efficiency, high-quality products with stable rolling operations, with little oil flotation (loss) to the scum, and with excellent rolling oil consumption.

【0013】[0013]

【実施例】以下エマルジョン中の油粒子の適正な平均径
及び分布形態を求めるために行った各種の実験結果につ
いて説明する。
EXAMPLES The results of various experiments conducted to determine the appropriate average diameter and distribution form of oil particles in an emulsion will be described below.

【0014】図2は、本発明者らが開発した乳化分散剤
を用いたエマルジョン中の油粒子の粒径の平均値と粒径
の分布状態の一例を示すものである。これは、図1に示
した従来のものに比べ、極めてシャープな粒度分布にな
っており、また循環系統内の各部において安定した分布
状態になっている。即ち、粒径の平均値も12〜14μ
と安定し、粒径分布も6〜15μで50%以上を示して
いる。
FIG. 2 shows an example of the average particle size and particle size distribution of oil particles in an emulsion using the emulsifying dispersant developed by the present inventors. This has an extremely sharp particle size distribution compared to the conventional one shown in FIG. 1, and the distribution is stable in each part of the circulation system. That is, the average value of the particle size is also 12 to 14μ.
It is stable, and the particle size distribution is 6 to 15μ, which is more than 50%.

【0015】図3は、本発明のエマルジョンA(平均粒
径15μ、かつ粒径6〜15μが50%)及びB(平均
粒径9μ、かつ粒径6〜13μが55%)並びに従来の
エマルジョンC(平均粒径7μ、かつ粒径3〜15μが
35%)を用いて、そのポンプ出側濃度と付着量との関
係を調査した結果を示すものである。この場合の各エマ
ルジョンの粒子径分布を図4に示す。
FIG. 3 shows emulsions A (average particle size 15 μm, 50% particle size 6-15 μm) and B (average particle size 9 μm, 55% particle size 6-13 μm) of the present invention, and a conventional emulsion. This figure shows the results of investigating the relationship between the concentration at the pump outlet side and the amount of adhesion using C (average particle size: 7 μm, and 35% particle size from 3 to 15 μm). The particle size distribution of each emulsion in this case is shown in FIG.

【0016】従来のエマルジョンCの場合、図1に示し
たように粒度分布の幅が広くなっているので、一定濃度
のエマルジョンをスプレイした場合にも付着量のバラツ
キが大きくなっている。これに対し、本発明のエマルジ
ョンA、Bでは、図2に示すように、油分の粒径は、6
〜15μの粒径分布がシャープで、その上粒径の平均値
も9〜15μと安定しているので、エマルジョンのプレ
ートアウト性が安定しており、かつ濃度と付着量との相
関性、再現性が強く、潤滑性を濃度でコントロールする
ことができる。
In the case of the conventional emulsion C, the width of the particle size distribution is wide as shown in FIG. 1, so even when an emulsion of a constant concentration is sprayed, there is a large variation in the amount of adhesion. On the other hand, in emulsions A and B of the present invention, as shown in FIG.
The particle size distribution of ~15μ is sharp, and the average particle size is also stable at 9 to 15μ, so the plate-out property of the emulsion is stable, and the correlation between concentration and adhesion amount is easy to reproduce. It has strong lubricity, and the lubricity can be controlled by concentration.

【0017】次に、本発明のエマルジョン中の油分の平
均粒径と潤滑性能としての単位幅当たりの圧下力との関
係を図5に示す。これは、油分の粒子径分布が本発明の
要件を満たすエマルジョンの中で、その平均粒子径のみ
を変更して、タンデムミルの第5スタンドにおける圧延
荷重と、平均粒子径の関係を示したものである。
Next, FIG. 5 shows the relationship between the average particle diameter of the oil in the emulsion of the present invention and the rolling force per unit width as lubricating performance. This shows the relationship between the rolling load in the fifth stand of the tandem mill and the average particle size by changing only the average particle size of an emulsion whose oil particle size distribution satisfies the requirements of the present invention. It is.

【0018】この場合、平均粒径が6μ未満になると、
プレートアウト性不良により、急激に潤滑性能が低くな
り、圧下力が上昇している。また逆に15μを越えると
、過潤滑となり圧下力が低下する他、チャタリングや不
安定スリップが発生している。  図6は、図5に示す
圧延荷重と圧延された材料の変形抵抗値から、フオン・
カルマンの微分方程式を用いて算出した、ロールバイト
内の平均摩擦係数と、該エマルジョンの平均粒子径との
関係をプロットしたものである。
[0018] In this case, if the average particle size is less than 6μ,
Due to poor plate-out properties, the lubrication performance suddenly decreased and the rolling force increased. On the other hand, if it exceeds 15μ, excessive lubrication occurs, reducing the rolling force and causing chattering and unstable slipping. Figure 6 shows the Huon
This is a plot of the relationship between the average friction coefficient within the roll bite and the average particle diameter of the emulsion, which was calculated using Kalman's differential equation.

【0019】図5及び図6において、平均粒子径が6μ
未満になった場合、ロール疵が多発しているのは、油分
粒子が小さくなりすぎて、プレートアウト性が低下した
ために発生した、ヒートスクラッチと呼ばれる焼きつき
疵である。また平均粒子径が15μを越えた場合に多発
したのは、プレートアウト量が過多となって発生したチ
ャタリングとスリップによるゲージ変動である。ここで
、平均粒子径が6μ未満のもの、及び15μを越えたも
のについては、本発明の要件である「油分の50%以上
が6〜15μの粒子よりなる」ことを満足していなかっ
た。図5及び図6のプロットが示す圧延で使用したエマ
ルジョンを用いて、平均粒子径とプレートアウト量との
関係を調べた結果を図7に示す。
In FIGS. 5 and 6, the average particle diameter is 6 μm.
If it is less than that, roll defects occur frequently because the oil particles become too small and the plate-out property deteriorates, resulting in burn-in defects called heat scratches. Also, when the average particle diameter exceeds 15 μm, gauge fluctuations occur frequently due to chattering and slip caused by an excessive amount of plate out. Here, those with an average particle diameter of less than 6 μm and those exceeding 15 μm did not satisfy the requirement of the present invention that “50% or more of the oil content consists of particles with a size of 6 to 15 μm”. FIG. 7 shows the results of investigating the relationship between the average particle diameter and the plateout amount using the emulsion used in the rolling shown by the plots in FIGS. 5 and 6.

【0020】図8は、図3に見られる本発明と従来技術
の差を、さらに細かく分析するために、平均粒子径が6
μ以上のエマルジョンにおいて、その中に含まれる油分
の内、6〜15μの粒子径の比率とプレートアウト量の
バラツキを調査した結果得られたものである。即ち、油
分の平均粒径を濃度を主体に対比した図3を、さらに細
かく粒子径の分布状態と付着量のバラツキを見たもので
ある。これより、6〜15μの粒子径の比率が50%を
割ると、付着量のバラツキが急速に大きくなることが分
かった。
FIG. 8 shows an example in which the average particle diameter is 6, in order to analyze in more detail the difference between the present invention and the prior art shown in FIG.
This was obtained as a result of investigating the ratio of particle diameters of 6 to 15 microns in the oil contained therein and the variation in the amount of plate-out in emulsions with a particle diameter of micron or larger. That is, FIG. 3 is a comparison of the average particle size of oil based on the concentration, and a more detailed view of the particle size distribution and the variation in the amount of adhesion. From this, it was found that when the ratio of particle diameters of 6 to 15 microns was less than 50%, the variation in the amount of adhesion rapidly increased.

【0021】これより、エマルジョン中の油分の平均粒
径が6〜15μであるのみでなく、油分の50%以上が
粒径6〜15μの直径をもった油粒子で形成される油粒
子の分布形態を有するエマルジョンを用いないと、付着
量のバラツキが大きくなり、安定した付着量が得られな
いことが明かとなった。また粒径に大小があると、微視
的な潤滑性能でみた場合、局部的に潤滑の優れた部分と
、潤滑の不足した部分ができ不安定スリップを起こしや
すいのに加えて、潤滑不足の部分ではヒートスクラッチ
を発生しやすく、安定した操業を行うことができない。
From this, it can be seen that not only the average particle diameter of the oil in the emulsion is 6 to 15 μm, but also the distribution of oil particles in which more than 50% of the oil content is formed by oil particles having a diameter of 6 to 15 μm. It has become clear that unless an emulsion having a certain shape is used, the amount of adhesion increases and a stable amount of adhesion cannot be obtained. In addition, when particle sizes vary, when looking at microscopic lubrication performance, there are localized areas with excellent lubrication and areas with insufficient lubrication, which can easily cause unstable slips. Heat scratches are likely to occur in some parts, making stable operation impossible.

【0022】[0022]

【発明の効果】この発明は、上記の各種実験結果を総合
的に検討して得られてたもので、圧延潤滑剤としての各
部のエマルジョン中の油分の平均粒径が6〜15μで、
かつ油分の50%以上が粒径6〜15μの直径をもつ油
粒子で形成される油粒子の分布形態を有するエマルジョ
ンを用いて圧延することにより、油分のスカムへの浮上
分離(ロス)も少なく、かつ高能率で高品質の製品を安
定した圧延操業により生産することができる。
[Effects of the Invention] This invention was obtained by comprehensively examining the various experimental results mentioned above.
In addition, by rolling an emulsion with an oil particle distribution form in which 50% or more of the oil content is formed by oil particles with a diameter of 6 to 15 μm, floating separation (loss) of the oil content into the scum is reduced. , and can produce high-efficiency, high-quality products through stable rolling operations.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来のエマルジョン中の油粒子の平均値と粒径
分布を示す説明図。
FIG. 1 is an explanatory diagram showing the average value and particle size distribution of oil particles in a conventional emulsion.

【図2】本発明のエマルジョン中の油粒子の平均値と粒
径分布を示す説明図。
FIG. 2 is an explanatory diagram showing the average value and particle size distribution of oil particles in the emulsion of the present invention.

【図3】本発明と従来のエマルジョンのエマルジョン濃
度と付着量との関係を示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between emulsion concentration and adhesion amount of emulsions of the present invention and conventional emulsions.

【図4】本発明と従来のエマルジョンの粒子径分布図(
図3の粒子径分布図)。
[Figure 4] Particle size distribution diagram of the present invention and conventional emulsion (
Particle size distribution diagram in Figure 3).

【図5】エマルジョン中の油粒子の平均粒径と単位幅当
たり圧下力との関係を示す説明図。
FIG. 5 is an explanatory diagram showing the relationship between the average particle diameter of oil particles in an emulsion and the rolling force per unit width.

【図6】エマルジョン中の油粒子の平均粒径と摩擦係数
との関係を示す説明図。
FIG. 6 is an explanatory diagram showing the relationship between the average particle diameter of oil particles in an emulsion and the coefficient of friction.

【図7】エマルジョン中の油粒子の平均粒径と付着量と
の関係を示す説明図。
FIG. 7 is an explanatory diagram showing the relationship between the average particle diameter of oil particles in an emulsion and the amount of adhesion.

【図8】粒子径6〜15μのエマルジョン油粒の全体に
占める割合と付着量との関係を示す説明図。
FIG. 8 is an explanatory diagram showing the relationship between the proportion of emulsion oil particles having a particle size of 6 to 15 μm in the total and the amount of adhesion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  乳化分散剤を添加してタンク内、ポン
プ出口、ヘッダー内で常にエマルジョン中の油分の平均
粒径が6〜15μでかつ50%以上が粒径6〜15μの
直径を持つ油粒子で形成されるようにし、該エマルジョ
ン濃度を1〜5%とし、このエマルジョンを圧延潤滑剤
として用いて圧延することを特徴とする冷間圧延方法。
Claim 1: Adding an emulsifying dispersant to the oil in which the average particle size of the oil in the emulsion is always 6 to 15 μm in the tank, pump outlet, and header, and 50% or more of the oil particles have a diameter of 6 to 15 μm. A cold rolling method characterized in that the emulsion is formed of particles, the emulsion concentration is 1 to 5%, and rolling is carried out using this emulsion as a rolling lubricant.
JP3200649A 1991-08-09 1991-08-09 Cold rolling method Expired - Lifetime JPH0783892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200649A JPH0783892B2 (en) 1991-08-09 1991-08-09 Cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200649A JPH0783892B2 (en) 1991-08-09 1991-08-09 Cold rolling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11956082A Division JPS5910412A (en) 1982-07-09 1982-07-09 Method for cold rolling

Publications (2)

Publication Number Publication Date
JPH04356315A true JPH04356315A (en) 1992-12-10
JPH0783892B2 JPH0783892B2 (en) 1995-09-13

Family

ID=16427914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200649A Expired - Lifetime JPH0783892B2 (en) 1991-08-09 1991-08-09 Cold rolling method

Country Status (1)

Country Link
JP (1) JPH0783892B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736011A (en) * 1980-08-09 1982-02-26 Sumitomo Metal Ind Ltd Cold rolling method for steel strip
JPS6260165A (en) * 1985-09-10 1987-03-16 Alps Electric Co Ltd Magnetic head assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736011A (en) * 1980-08-09 1982-02-26 Sumitomo Metal Ind Ltd Cold rolling method for steel strip
JPS6260165A (en) * 1985-09-10 1987-03-16 Alps Electric Co Ltd Magnetic head assembly

Also Published As

Publication number Publication date
JPH0783892B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
DE60030288T2 (en) ROLLING OIL SUPPLY METHOD FOR COLD ROLLING
US4781849A (en) Lyotropic liquid crystal metalworking lubricant composition
Asano et al. Viscosity change in oil/water food emulsions prepared using a membrane emulsification system
JPH04356315A (en) Cold rolling method
JPH0356277B2 (en)
JP3815425B2 (en) Cold rolling method
Dubey et al. A study of lubrication mechanism of oil‐in‐water (O/W) emulsions in steel cold rolling
JPS6260165B2 (en)
JP3402217B2 (en) Cold rolling method
JPS6160792A (en) Cold rolling oil for steel sheet
US4024742A (en) Method of lubricating a cold reduction mill
WO1999051369A1 (en) Process for adjusting lubricant oil droplet size in an aluminum rolling mill
JP2003170207A (en) Method for rolling metal plate
JPH10314805A (en) Method for cold-rolling aluminum
JP2002102914A (en) Control over submarine oil drop emulsion lubricant and method for rolling steel plate
JP2000158034A (en) Method for cold-rolling thin steel sheet
Kondo An improvement of rolling stability during cold rolling of aluminum
JPS63124B2 (en)
JP2002224731A (en) Lubricant supply method for cold rolling
JP4022952B2 (en) Properties control method of emulsion rolling oil
WO2023007378A1 (en) Device & method for rolling a steel strip
JP3287687B2 (en) Adjustment method of rolling oil in cold rolling of steel
JPH01167396A (en) Lubricant for hot-rolling stainless steel
JPH11226607A (en) Method for cold-rolling stainless steel sheet
CN117448071A (en) Water-soluble lubricating fluid for hot rolling and preparation method thereof