JPH0435549B2 - - Google Patents

Info

Publication number
JPH0435549B2
JPH0435549B2 JP58185741A JP18574183A JPH0435549B2 JP H0435549 B2 JPH0435549 B2 JP H0435549B2 JP 58185741 A JP58185741 A JP 58185741A JP 18574183 A JP18574183 A JP 18574183A JP H0435549 B2 JPH0435549 B2 JP H0435549B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnet
raw material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185741A
Other languages
Japanese (ja)
Other versions
JPS6077944A (en
Inventor
Setsuo Fujimura
Masato Sagawa
Katsuhisa Ito
Eiji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Proterial Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58185741A priority Critical patent/JPS6077944A/en
Publication of JPS6077944A publication Critical patent/JPS6077944A/en
Publication of JPH0435549B2 publication Critical patent/JPH0435549B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、Fe−B−R系(RはYを含む希
土類元素のうち少なくとも1種)永久磁石、特に
磁気特性のすぐれたFe−B−Nd系永久磁石の磁
気特性を劣化させる不純物が少ない希土類磁石用
原料合金の製造方法に関する。 永久磁石材料は、一般家庭の各種電気製品か
ら、大型コンピユータの周辺端末機器まで、幅広
い分野で使用される極めて重要な電気・電子材料
の一つである。近年の電気・電子機器の小形化、
高効率化の要求にともない、永久磁石材料は益々
高性能化が求められるようになつた。 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴な
い、コバルトを20〜30wt%含むアルニコ磁石の
需要は減り、鉄の酸化物を主成分とする安価なハ
ードフエライトが磁石材料の主流を占めるように
なつた。一方、希土類コバルト磁石はコバルトを
50〜60wt%も含むうえ、希土類鉱石中にあまり
含まれていないSmを使用するため大変高価であ
るが、他の磁石に比べて、磁気特性が格段に高い
ため、主として小型で付加価値の高い磁気回路に
多用されるようになつた。 そこで、本発明者は先に、高価なSmやCoを必
ずしも含有しない新しい高性能永久磁石として
Fe−B−R系(RはYを含む希土類元素)永久
磁石を提案した(特願昭57−145072号)。このFe
−B−R系磁石材料は、組成(原子%)が8%〜
30%R、2%〜28%B、残部Feからなり、保磁
力Hc≧1KOe、残留磁束密度Br>4KG、の磁気
特性を示し、最大エネルギー積(BH)maxはハ
ードフエライトと同等以上となり、好ましい組成
範囲では、(BH)max≧10MGOeを示し、最大
値は25MGOe以上に達する。また、RとしてNd、
Pr等の軽希土類金属を中心とした好ましい組成
範囲では、(BH)maxは36MGOe以上となる。 上記の新規な永久磁石は、例えば焼結磁石の場
合は、次の工程により製造される。 (1) 出発原料として、純度99.9%の電解鉄、
B19.4%を含有し残部はFe及びAl、Si、C等の
不純物からなるフエロボロン合金、純度99.7%
以上の希土類金属、あるいはさらに、純度99.9
%の電解Coを高周波溶解し、その後水冷銅鋳
型に鋳造し、 (2) スタンプミルにより35メツシユスルーまでに
粗粉砕し、次にボールミルにより3時間微粉砕
(3〜10μm)し、 (3) 磁界(10KOe)中配向して加圧成形(1.5t/
cm2にて加圧)し、 (4) 焼結、1000℃〜1200℃、1時間、Ar中、焼
結後放冷、 (5) 時効処理、500℃〜700℃、1時間、Ar中、
処理後放冷。 上述したFe−B−R系(RはYを含む希土類
元素のうち少なくとも1種)永久磁石を製造する
ための出発原料の希土類金属は、Nd、Pr等の軽
希土類金属の場合にすぐれた特性が得られ、特に
Ndの場合に最もすぐれた磁気特性を示す。しか
しながら、Ndは従来、酸化物としてブラウン管
ガラスやセラミツクコンデンサーの一部に用いら
れたにすぎず、Nd金属ではほとんど用途がなく、
その製錬法についても一般にCa還元法、電解法
が知られているのみで、十分に確立されていな
い。 一般に、電解法により製造する場合、Ndの融
点が1024℃と高いため、溶湯及び塩浴の温度を
1200℃程度の高温に上げる必要があり、そのため
電極、炉耐火物、弗化物、塩化物などから不純物
の混入が避けられず、さらに溶融状態のNdは粘
性が大きく、不純物の分離が困難であるなど種々
の問題があつた。 この発明は、Fe−B−R系(RはYを含む希
土類元素のうち少なくとも1種)永久磁石におけ
る出発原料の希土類金属の純度が、磁石合金の磁
気特性に及ぼす影響が重大であることに鑑み、純
度の高い希土類磁石用中間原料合金を経て、不純
物を少ないFe−B−R系永久磁石を提供するこ
とを目的としている。 すなわち、この発明は、希土類金属の酸化物、
並びに弗化物、塩化物などのハロゲン化物を電解
法によつて還元反応を行なわせる際に、Fe及び
Bを添加溶融させることによつて、低融点かつ酸
素等の不純物の少ない3wt%〜20wt%Fe、0.5wt
%〜10wt%B、残部実質的に希土類金属よりな
るFe−B−R中間原料合金を得ることを特徴と
する希土類磁石用原料合金の製造方法である。 一般に、Nd及びFeは、ある組成領域で低融点
となることが知られている。例えば、10wt%Fe
−Nd合金の融点は約700℃であり、これはNd単
独の1050℃に比べて十分に低い。 しかし、このNd−Fe合金は、Nd単独よりも
若干の改善効果はあるが、まだ溶融状態で粘度が
高く、不純物の分離が困難で酸素含有量も多い。 上記の問題を解決するためには、NdまたはNd
合金の融点を下げ、かつ電解浴の温度を下げるこ
と及びNdまたはNd合金に耐酸化性を保有させる
必要がある。 本発明者等は、Fe−B−R系磁石がBを必須
元素とすること、Bのハロゲン化物や酸化物の添
加が、弗化リチウム、弗化バリウム、弗化希土等
との混合塩浴の温度を下げる可能性のあることに
着目して、種々の検討を行ない、上記のFe−B
−R中間原料合金を用いて磁石材料化を行なつた
場合、従来方法によるNd、Nd−Fe合金を用い
た場合よりも低い不純物濃度と良好な磁石特性を
示すFe−B−R系磁石が得られることを知見し
た。 さらに、これに付随して、電解時に電解浴の融
点が下がり、電解浴中の他の成分とFe−B−Nd
合金との分離が容易に進行し、また介在物が少な
くなることが分つた。 この発明の電解還元法により、Fe−B−R合
金を得る具体的方法は、次のとおりである。まず
酸化物の電解法について説明する。 電解浴として、弗化リチウム及び弗化ネオジム
を用いる、この混合浴は68wt%NdF3−LiFあた
りで低融点となるので、該組成付近が望ましい。
また、NdF3またはLiFの一部を弗化バリウム、
弗化マグネシウム、弗化カルシウム等と置換する
ことは、混合浴の温度を下げ、Nd2O3の電解度を
上げる効果を有する。 Ndの原料となるNd2O3は、例えば900℃で上記
混合浴中では約2wt%程度の溶解度しかなく、電
解を正常に継続させるためには電解によつて析出
されるNd粉に相当するNd2O3を常に定量ずつ供
給し続けなければならない。 Bの原料となるB2O3は、上記組成、温度で相
当量溶解されるが、供給量を多くすると前記組成
領域外の合金ができるため、Fe−B−R中間原
料合金のB含有量の狙いによつて供給量を調整し
てやればよい。 この発明における電解還元法において、電解槽
は黒鉛製がよく、陽極は黒鉛を用い、電解槽を兼
ねる構成でもよい。また、陰極にはMo等が一般
に使用されるが、不純物の混入を避けるため、消
耗電極として鉄製の棒や板を用いる。Fe製のも
のを用いれば、Fe−B−R合金のFe原料供給源
にもなる。 また、この発明方法において、900℃〜1000℃
で電解すると、鉄陰極上に析出したNdとBは鉄
と反応して、低融点Fe−B−Nd合金を作り、電
解槽底部に沈澱し、連続的に製造することができ
る。 電解浴中にFe酸化物を混合し、また、Bとし
て弗化物や塩化物を用いたり、鉄以外の電極を用
いても、Fe−B−Nd合金を得ることができる。 次に、希土類の塩化物を電解する場合は、混合
浴として、NdCl3、KCl、CaF2、CaCl2 NaCl等
の混合浴を用いる。NdはNdCl3を還元すること
により得られ、Bは酸化物以外に弗化物、塩化物
が用いられる。その他の条件は上述した酸化物の
電解法の場合と同様である。なお、これらの工程
は不活性ガス雰囲気中でおこなわれることが望ま
しい。 以上には、RとしてNdを中心に説明したが、
Nd以外の希土類元素の場合も同様に、この発明
方法は有効であり、また、Fe−B−R系磁石の
Ndの一部を重希土類元素のうち、Dy、Tb、
Ho、Er、Gd、Yb等に置換することにより、エ
ネルギー積、保磁力を向上させることができる。 しかし、これら重希土類元素は、Ybを除いて、
いずれも1300℃以上の高い融点を有するため、金
属原料中に酸素や不純物が残留しやすい。そこ
で、かかる場合は、上記重希土類元素のハロゲン
化物、酸化物を電解浴中に添加しておけば、純度
が高く低融点で耐酸化性の高い、例えばNd−Dy
−Fe−B合金などを得ることができる。 次に、この発明による希土類磁石用原料合金の
組成を限定した理由を説明する。 Feは、3wt%未満、20wt%を越える含有では、
合金の融点が1000℃以上となり、得られる合金中
に、NdF3及びLiFが混入したり、あるいは炉材、
NdF3、LiF中不純物のO2が、Ndと固溶してNd
中に存在したり、Ndの純度が低下し、これを素
材とする磁石合金の磁気特性を劣化させるため、
3wt%〜20wt%の範囲が好ましい。 Bは、Nd−Fe合金の融点を下げ、耐酸化性を
増し、またBのハロゲン化物、酸化物は電解塩浴
の融点を下げる効果を有するために多いほうが望
ましいが、10wt%を越えると、前記磁石組成に
調整する際に、従来法によるようにNdやNd−
Fe合金を併用しなければならず、また、0.5wt%
未満では上記の効果が期待できないため、0.5wt
%〜10wt%の含有とする。 希土類元素Rは、Yを包含し、軽希土類及び重
希土類を包含するもので、Nd、Pr、La、Ce、
Tb、Dy、Ho、Er、Eu、Sm、Gd、Tm、Yb、
Luを包含する。 また、この発明によるFe−B−R系磁石合金
において、Coは50at%までFeと置換することに
より、磁石特性を損ねることなく、キユリー点を
上げ、Brの温度係数を小さくすることができる
ので、Coを含有する中間原料合金を得るために
は、前記Fe−B−R中間原料合金のFeの一部ま
たは全部をCoに置換えることによつて、R−Fe
−Co−B合金またはR−Co−B合金を得ること
ができる。 さらに、Fe−B−R系磁石合金に下記添加元
素Mを少なくとも1種を含有させることによつて
保磁力(iHc)を増大させることができる。な
お、2種以上添加する場合は当該添加元素Mの最
大値以下の含有とする。 Ti 4.5%以下、Ni 4.5%以下、 Bi 5 %以下、V 9.5%以下、 Nb 12.5%以下、Ta 10.5%以下、 Cr 8.5%以下、Mo 9.5%以下、 W 9.5%以下、Mn 3.5%以下、 Al 9.5%以下、Sb 2.5%以下、 Ge 7 %以下、Sn 3.5%以下、 Zr 5.5%以下、Hf 5.5%以下、 なお、これらの添加元素は、単独金属または合
金を成分調整の溶製時に添加してもよく、また、
酸化物の化合物を電解塩浴中に混入しておき、R
−Fe−B−M中間原料合金として得ることがで
きる。 この発明による希土類磁石用中間原料合金を使
用して、組成(原子%)が8%〜30%R、2%〜
28%B、残部Feの組成に、アルゴンまたは真空
中で溶製された鋳塊を、粉砕、磁界中成形、焼
結、時効処理を施した磁気異方性磁石は、保磁力
Hc≧1KOe、残留磁束密度Br>4KG、の磁気特
性を示し、最大エネルギー積(BH)maxはハー
ドフエライトと同等以上となる。 また、Rの主成分、すなわち50原子%以上を
Nd、Prなどの軽希土類金属とした磁気異方性磁
石合金は、組成(原子%)が12%〜20%R、4%
〜24%B、残部Feの場合、(BH)max≧
10MGOe以上のすぐれた磁気特性を示し、特に
軽希土類金属がNdのときは、(BH)maxはその
最大値が36MGOe以上に達する。 以下に、この発明による実施例を示しその効果
を明らかにする。 実施例 1 電解浴として、LiF32wt%−68wt%NdF3の混
合浴を、黒鉛製の容器に入れ、900℃〜1000℃に
加熱し、さらに、この混合浴に、91wt%Nd2O3
と9wt%B2O3からなる原料を供給した。 槽底面に受け皿として、BN焼結体を用い、陰
極として鉄製の棒をその先端が常に浴中に浸漬す
るように保持し、黒鉛容器を陽極として用い、装
置全体をステンレス製容器中に収納し、Ar気流
中で電解できるよう構成し、約20Aの電流を10時
間通電することにより、164gのFe−B−Nd中
間原料合金を得た。 得られた合金の組成は、16.8wt%Fe−3.0wt%
B−Ndであり、このFe−B−Nd合金中に含ま
れる不純物量を第1表に示す。 次に、上記の16.8wt%Fe−3.0wt%B−Nd合
金を用い、他の原料を調整して14at%Nd−7at%
B−Feの組成になるよう真空中で溶解を行なつ
た。 得られた鋳塊を粉砕スタンプミルにより35メツ
シユスルーまでに粗粉砕し、さらにボールミルに
より粉砕して平均粒径3μmの微粉となした。つ
いで、磁界(10KOe)中配向したのち、2t/cm2
て加圧成形して成形体を得た。 得られた成形体を、1100℃、1時間、20Torr、
Ar中の焼結条件で焼結し、焼結後放冷したのち、
さらに、600℃、1時間、Ar中で時効処理を行な
い磁石合金を得た。 比較のため、出発原料のNdとして、第1表に
示す不純物を含有する市販のNdを使用した以外
は全く同じ製造条件で作製した同一組成の比較磁
石合金、並びにBを供給せずに他の条件は全く同
一にして製造した比較磁石合金の磁石特性を測定
し第2表に示し、さらに、上記の各中間原料の不
純物量を第1表に示す。 この発明による磁石素材用中間原料合金は、不
純物量、特に酸素量が少なく、この中間合金を使
用することにより、希土類金属に含まれる不純物
の影響が少なく、磁気特性が向上することがわか
る。 実施例 2 電解浴として、KCl37.5wt%、NdCl362.5wt%
の混合浴を黒鉛製の容器に入れ、950℃〜1100℃
に加熱した。電解浴中にはB2O3が常に約0.5wt%
存在するように供給し、容器、電極は実施例1と
全く同一のものを使用し、約20Aの電流を10時間
通電することにより、121gの19.1wt%Fe−1.3%
wtB−Nd合金を得た。 得られたFe−B−Nd合金の不純物を測定し、
第1表に示し、さらに、この合金を用いて実施例
1と同様の製造方法で磁石材料化し、得られた磁
石の特性を測定して第2表に示す。 結果から明らかなように、本発明の塩化物電解
によつても、不純物が少なく、すぐれた磁石特性
を示す磁石が得られることがわかる。
This invention has fewer impurities that degrade the magnetic properties of Fe-B-R permanent magnets (R is at least one rare earth element including Y), especially Fe-B-Nd permanent magnets with excellent magnetic properties. The present invention relates to a method for producing a raw material alloy for rare earth magnets. Permanent magnetic materials are extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. The miniaturization of electrical and electronic equipment in recent years,
With the demand for higher efficiency, permanent magnet materials are required to have increasingly higher performance. Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 30 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer. On the other hand, rare earth cobalt magnets contain cobalt.
It is very expensive because it contains 50-60wt% Sm, which is not included in rare earth ores, but it has much higher magnetic properties than other magnets, so it is mainly small and has high added value. It came to be widely used in magnetic circuits. Therefore, the inventor first developed a new high-performance permanent magnet that does not necessarily contain expensive Sm or Co.
We proposed a Fe-BR-based permanent magnet (R is a rare earth element containing Y) (Japanese Patent Application No. 145072/1982). This Fe
-B-R magnet material has a composition (atomic %) of 8% or more
Consisting of 30% R, 2% to 28% B, and the balance Fe, it exhibits the magnetic properties of coercive force Hc≧1KOe, residual magnetic flux density Br>4KG, and the maximum energy product (BH) max is equal to or higher than that of hard ferrite. In a preferred composition range, (BH)max≧10MGOe, and the maximum value reaches 25MGOe or more. Also, as R, Nd,
In a preferred composition range centered on light rare earth metals such as Pr, (BH)max is 36MGOe or more. The above novel permanent magnet, for example in the case of a sintered magnet, is manufactured by the following steps. (1) As a starting material, electrolytic iron with a purity of 99.9%,
Feroboron alloy containing 19.4% B and the remainder consisting of Fe and impurities such as Al, Si, and C, purity 99.7%
Rare earth metals of more than 99.9 purity or even more
% of electrolytic Co was high-frequency melted, then cast into a water-cooled copper mold, (2) coarsely ground to 35 mesh through using a stamp mill, then finely ground (3 to 10 μm) using a ball mill for 3 hours, (3) magnetic field. (10KOe) Medium oriented and pressure molded (1.5t/
( 4 ) Sintering, 1000℃~1200℃, 1 hour in Ar, cooling after sintering, (5) Aging treatment, 500℃~700℃, 1 hour, in Ar ,
Cool after processing. The rare earth metals that are the starting materials for manufacturing the above-mentioned Fe-B-R system (R is at least one rare earth element including Y) permanent magnets have excellent properties when they are light rare earth metals such as Nd and Pr. is obtained, especially
Nd shows the best magnetic properties. However, Nd has only been used as an oxide in some parts of cathode ray tube glass and ceramic capacitors, and Nd metal has almost no use.
Regarding the smelting method, generally only the Ca reduction method and the electrolytic method are known, but it is not fully established. Generally, when manufacturing by electrolytic method, the melting point of Nd is as high as 1024℃, so the temperature of the molten metal and salt bath is adjusted.
It is necessary to raise the temperature to a high temperature of about 1200℃, which makes it inevitable that impurities from electrodes, furnace refractories, fluorides, chlorides, etc. are mixed in. Furthermore, molten Nd has a high viscosity, making it difficult to separate impurities. Various problems arose. This invention is based on the fact that the purity of the rare earth metal as the starting material in Fe-B-R permanent magnets (R is at least one rare earth element including Y) has a significant effect on the magnetic properties of the magnet alloy. In view of this, it is an object of the present invention to provide Fe-BR-based permanent magnets with few impurities through a highly pure intermediate raw material alloy for rare earth magnets. That is, this invention provides rare earth metal oxides,
In addition, when halides such as fluorides and chlorides are subjected to a reduction reaction using an electrolytic method, by adding and melting Fe and B, 3wt% to 20wt% of halides with a low melting point and low impurities such as oxygen can be obtained. Fe, 0.5wt
% to 10 wt% B, and the remainder is substantially a rare earth metal. It is generally known that Nd and Fe have a low melting point in a certain composition range. For example, 10wt% Fe
The melting point of the -Nd alloy is about 700°C, which is much lower than the 1050°C of Nd alone. However, although this Nd-Fe alloy has a slight improvement effect over Nd alone, it is still molten and has a high viscosity, making it difficult to separate impurities and containing a large amount of oxygen. To solve the above problem, Nd or Nd
It is necessary to lower the melting point of the alloy and the temperature of the electrolytic bath, and to make Nd or Nd alloy have oxidation resistance. The present inventors believe that Fe-B-R magnets contain B as an essential element, and that the addition of halides and oxides of B is a combination of mixed salts with lithium fluoride, barium fluoride, rare earth fluoride, etc. Focusing on the possibility of lowering the bath temperature, various studies were conducted and the above Fe-B
When producing magnet materials using the -R intermediate raw material alloy, Fe-B-R magnets exhibit lower impurity concentration and better magnetic properties than when Nd or Nd-Fe alloys are used using conventional methods. I found out that it can be obtained. Furthermore, accompanying this, the melting point of the electrolytic bath decreases during electrolysis, and Fe-B-Nd
It was found that separation from the alloy progressed easily and inclusions were reduced. A specific method for obtaining Fe-BR alloy by the electrolytic reduction method of the present invention is as follows. First, the oxide electrolysis method will be explained. Lithium fluoride and neodymium fluoride are used as the electrolytic bath. Since this mixed bath has a low melting point around 68 wt% NdF 3 -LiF, a composition near this value is desirable.
Also, part of NdF3 or LiF can be replaced with barium fluoride,
Substitution with magnesium fluoride, calcium fluoride, etc. has the effect of lowering the temperature of the mixed bath and increasing the electrolyte of Nd 2 O 3 . Nd 2 O 3 , which is the raw material for Nd, has a solubility of only about 2 wt% in the above mixed bath at, for example, 900°C, and in order to continue the electrolysis normally, it must be equivalent to the Nd powder deposited by electrolysis. Nd 2 O 3 must be constantly supplied in fixed amounts. A considerable amount of B 2 O 3 , which is the raw material for B, is melted at the above composition and temperature, but if the supply amount is increased, an alloy outside the above composition range will be produced, so the B content of the Fe-B-R intermediate raw material alloy The amount of supply can be adjusted depending on the aim. In the electrolytic reduction method according to the present invention, the electrolytic cell is preferably made of graphite, and the anode may be made of graphite so that it also serves as the electrolytic cell. Furthermore, although Mo or the like is generally used for the cathode, an iron rod or plate is used as the consumable electrode to avoid contamination with impurities. If one made of Fe is used, it can also serve as a source of Fe raw material for Fe-BR alloy. In addition, in the method of this invention, 900°C to 1000°C
When electrolyzed, the Nd and B deposited on the iron cathode react with iron to form a low-melting point Fe-B-Nd alloy, which is precipitated at the bottom of the electrolytic cell and can be produced continuously. An Fe-B-Nd alloy can also be obtained by mixing Fe oxide in the electrolytic bath, using fluoride or chloride as B, or using an electrode other than iron. Next, when electrolyzing rare earth chlorides, a mixed bath of NdCl 3 , KCl, CaF 2 , CaCl 2 NaCl, etc. is used as the mixed bath. Nd is obtained by reducing NdCl 3 , and for B, in addition to oxides, fluorides and chlorides are used. Other conditions are the same as in the case of the oxide electrolysis method described above. Note that these steps are preferably performed in an inert gas atmosphere. Above, we mainly explained Nd as R, but
The method of this invention is also effective for rare earth elements other than Nd, and it is also effective for rare earth elements other than Nd.
Of the heavy rare earth elements, Dy, Tb,
By substituting with Ho, Er, Gd, Yb, etc., the energy product and coercive force can be improved. However, these heavy rare earth elements, except for Yb,
Since both have high melting points of 1300°C or higher, oxygen and impurities tend to remain in the metal raw materials. Therefore, in such a case, it is possible to add halides and oxides of the heavy rare earth elements mentioned above to the electrolytic bath.
-Fe-B alloy etc. can be obtained. Next, the reason for limiting the composition of the raw material alloy for rare earth magnets according to the present invention will be explained. If the Fe content is less than 3wt% or more than 20wt%,
When the melting point of the alloy reaches 1000℃ or higher, NdF 3 and LiF may be mixed into the resulting alloy, or the furnace material,
NdF 3 , the impurity O 2 in LiF dissolves with Nd and Nd
The purity of Nd decreases, deteriorating the magnetic properties of the magnet alloy made from it.
A range of 3wt% to 20wt% is preferred. B lowers the melting point of the Nd-Fe alloy and increases oxidation resistance, and halides and oxides of B have the effect of lowering the melting point of the electrolyte salt bath, so it is desirable to have a large amount, but if it exceeds 10 wt%, When adjusting the magnet composition to the above, as in the conventional method, Nd or Nd-
Fe alloy must be used together, and 0.5wt%
The above effects cannot be expected with less than 0.5wt.
% to 10wt%. The rare earth element R includes Y, light rare earths and heavy rare earths, and includes Nd, Pr, La, Ce,
Tb, Dy, Ho, Er, Eu, Sm, Gd, Tm, Yb,
Includes Lu. Furthermore, in the Fe-BR-based magnet alloy according to the present invention, by replacing up to 50 at% of Co with Fe, it is possible to raise the Curie point and reduce the temperature coefficient of Br without impairing the magnetic properties. In order to obtain an intermediate raw material alloy containing Co, R-Fe
-Co-B alloy or R-Co-B alloy can be obtained. Furthermore, the coercive force (iHc) can be increased by incorporating at least one of the following additive elements M into the Fe-BR-based magnet alloy. In addition, when two or more types are added, the content is set to be less than the maximum value of the additional element M. Ti 4.5% or less, Ni 4.5% or less, Bi 5% or less, V 9.5% or less, Nb 12.5% or less, Ta 10.5% or less, Cr 8.5% or less, Mo 9.5% or less, W 9.5% or less, Mn 3.5% or less, Al: 9.5% or less, Sb: 2.5% or less, Ge: 7% or less, Sn: 3.5% or less, Zr: 5.5% or less, Hf: 5.5% or less. These additional elements are added during the melting process for adjusting the composition of single metals or alloys. You may also
An oxide compound is mixed in an electrolytic salt bath, and R
-Fe-B-M can be obtained as an intermediate raw material alloy. Using the intermediate raw material alloy for rare earth magnets according to the present invention, the composition (atomic %) is 8% to 30%R, 2% to
A magnetically anisotropic magnet with a composition of 28% B and the balance Fe, which is made from an ingot melted in argon or vacuum, is crushed, formed in a magnetic field, sintered, and aged, and has a coercive force.
It exhibits magnetic properties such as Hc≧1KOe and residual magnetic flux density Br>4KG, and the maximum energy product (BH) max is equal to or higher than that of hard ferrite. In addition, the main component of R, that is, 50 atomic% or more
Magnetic anisotropic magnet alloys made of light rare earth metals such as Nd and Pr have a composition (atomic %) of 12% to 20% R, 4%
~24%B, balance Fe, (BH)max≧
It shows excellent magnetic properties of 10MGOe or more, and especially when the light rare earth metal is Nd, the maximum value of (BH)max reaches 36MGOe or more. Examples according to the present invention will be shown below to clarify its effects. Example 1 As an electrolytic bath, a mixed bath of LiF32wt%-68wt% NdF3 was placed in a graphite container and heated to 900°C to 1000°C, and further, 91wt% Nd2O3 was added to this mixed bath.
and 9wt % B2O3 . A BN sintered body is used as a saucer on the bottom of the tank, an iron rod is held as a cathode so that its tip is always immersed in the bath, a graphite container is used as an anode, and the entire device is housed in a stainless steel container. The structure was configured so that electrolysis could be carried out in an Ar gas flow, and a current of about 20 A was applied for 10 hours to obtain 164 g of Fe--B--Nd intermediate raw material alloy. The composition of the obtained alloy is 16.8wt%Fe−3.0wt%
The amount of impurities contained in this Fe-B-Nd alloy is shown in Table 1. Next, using the above 16.8wt%Fe-3.0wt%B-Nd alloy and adjusting other raw materials, 14at%Nd-7at%
Melting was carried out in vacuum to obtain a composition of B-Fe. The obtained ingot was coarsely ground to 35 mesh through using a crushing stamp mill, and further ground to a fine powder with an average particle size of 3 μm using a ball mill. Then, after being oriented in a magnetic field (10 KOe), it was press-molded at 2 t/cm 2 to obtain a molded body. The obtained molded body was heated at 1100°C for 1 hour at 20 Torr.
After sintering under sintering conditions in Ar and cooling after sintering,
Furthermore, aging treatment was performed in Ar at 600°C for 1 hour to obtain a magnetic alloy. For comparison, a comparison magnet alloy with the same composition was prepared under exactly the same manufacturing conditions except that commercially available Nd containing the impurities shown in Table 1 was used as the starting material Nd, and other magnetic alloys were prepared without supplying B. The magnetic properties of comparative magnet alloys produced under exactly the same conditions are measured and shown in Table 2, and the amounts of impurities in each of the above intermediate raw materials are shown in Table 1. It can be seen that the intermediate raw material alloy for magnet materials according to the present invention has a small amount of impurities, especially oxygen, and that by using this intermediate alloy, the influence of impurities contained in rare earth metals is reduced and the magnetic properties are improved. Example 2 As electrolytic bath, KCl 37.5wt%, NdCl 3 62.5wt%
Place the mixed bath in a graphite container and heat it to 950℃~1100℃.
heated to. B2O3 is always about 0.5wt% in the electrolytic bath .
121g of 19.1wt%Fe-1.3%
A wtB-Nd alloy was obtained. Measure the impurities in the obtained Fe-B-Nd alloy,
The results are shown in Table 1, and further, this alloy was made into a magnet material by the same manufacturing method as in Example 1, and the characteristics of the obtained magnet were measured and shown in Table 2. As is clear from the results, it can be seen that even with the chloride electrolysis of the present invention, a magnet containing few impurities and exhibiting excellent magnetic properties can be obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 希土類金属の酸化物またはハロゲン化物を
Fe及びBの存在下で電解還元して、3wt%〜
20wt%Fe、0.5wt%〜10wt%B、残部実質的に
希土類金属よりなるFe−B−R中間原料合金を
得ることを特徴とする希土類磁石用原料合金の製
造方法。
1 Rare earth metal oxides or halides
3 wt% ~ by electrolytic reduction in the presence of Fe and B
A method for producing a raw material alloy for rare earth magnets, which comprises obtaining an Fe-B-R intermediate raw material alloy consisting of 20 wt% Fe, 0.5 wt% to 10 wt% B, and the remainder substantially rare earth metal.
JP58185741A 1983-10-03 1983-10-03 Manufacture of raw material alloy for rare earth magnet Granted JPS6077944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185741A JPS6077944A (en) 1983-10-03 1983-10-03 Manufacture of raw material alloy for rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185741A JPS6077944A (en) 1983-10-03 1983-10-03 Manufacture of raw material alloy for rare earth magnet

Publications (2)

Publication Number Publication Date
JPS6077944A JPS6077944A (en) 1985-05-02
JPH0435549B2 true JPH0435549B2 (en) 1992-06-11

Family

ID=16176043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185741A Granted JPS6077944A (en) 1983-10-03 1983-10-03 Manufacture of raw material alloy for rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6077944A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761002B2 (en) * 1988-10-05 1998-06-04 昭和電工株式会社 Method for producing Nd-Fe alloy or Nd metal
JP4649591B2 (en) * 2004-12-27 2011-03-09 日立金属株式会社 Rare earth alloy manufacturing method
JP5853826B2 (en) * 2012-03-30 2016-02-09 日立金属株式会社 Process for producing rare earth metals and alloys

Also Published As

Publication number Publication date
JPS6077944A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
TWI401704B (en) R-Fe-B rare earth permanent magnet material
EP1420418B1 (en) R-Fe-B sintered magnet
JP4742966B2 (en) Method for producing R-Fe-B rare earth sintered magnet
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
US4769063A (en) Method for producing rare earth alloy
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
WO2005015580A1 (en) R-t-b sintered magnet and rare earth alloy
JP2005150503A (en) Method for manufacturing sintered magnet
US5069713A (en) Permanent magnets and method of making
JP3894061B2 (en) Rare earth magnet scrap and / or sludge remelting method, magnet alloy and rare earth sintered magnet
JPS6248744B2 (en)
JPH0435548B2 (en)
JPH0369981B2 (en)
JPH0435549B2 (en)
JP2610798B2 (en) Permanent magnet material
JPS6263642A (en) Rare earth alloy for magnet stock and its production
JPS59132105A (en) Permanent magnet
US4898613A (en) Rare earth alloy powder used in production of permanent magnets
JPH04268051A (en) R-fe-co-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JP2023515331A (en) RTB Permanent Magnet Material, Manufacturing Method, and Application
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0461042B2 (en)
JPH0146575B2 (en)
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0536495B2 (en)