JPH04354875A - Formation of metal oxide thin film - Google Patents
Formation of metal oxide thin filmInfo
- Publication number
- JPH04354875A JPH04354875A JP3127193A JP12719391A JPH04354875A JP H04354875 A JPH04354875 A JP H04354875A JP 3127193 A JP3127193 A JP 3127193A JP 12719391 A JP12719391 A JP 12719391A JP H04354875 A JPH04354875 A JP H04354875A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- thin film
- producing
- oxide thin
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 55
- 229910044991 metal oxide Inorganic materials 0.000 title claims description 25
- 150000004706 metal oxides Chemical class 0.000 title claims description 25
- 230000015572 biosynthetic process Effects 0.000 title description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 67
- 239000002994 raw material Substances 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 9
- 125000002524 organometallic group Chemical group 0.000 claims abstract description 8
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 239000012808 vapor phase Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 13
- 239000002887 superconductor Substances 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000010894 electron beam technology Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- 230000001443 photoexcitation Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 16
- 239000010949 copper Substances 0.000 abstract description 15
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 8
- 239000010935 stainless steel Substances 0.000 abstract description 8
- 229910052802 copper Inorganic materials 0.000 abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 description 17
- 238000001704 evaporation Methods 0.000 description 17
- 239000010408 film Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- -1 butyl alkoxide Chemical class 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910002370 SrTiO3 Inorganic materials 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は金属酸化物薄膜の作製方
法に係り、特に酸化物超電導体、酸化物強誘電体、酸化
物半導体、酸化物光学材料の薄膜の気相成長に適した金
属酸化物薄膜の作製方法に関する。[Industrial Application Field] The present invention relates to a method for producing metal oxide thin films, particularly metals suitable for vapor phase growth of thin films of oxide superconductors, oxide ferroelectrics, oxide semiconductors, and oxide optical materials. This invention relates to a method for producing an oxide thin film.
【0002】0002
【従来の技術】近年、金属酸化物の薄膜形成技術の開発
の重要性はますます高まっている。すなわち、最近発見
された酸化物超電導体は半導体装置の超電導配線として
応用が期待されており、また、酸化物強誘電体は半導体
メモリ−のキャパシタ−材料として着目されている。さ
らにこのほか、種々の金属酸化物の薄膜が導電材料、圧
電材料、光透過性材料、表示素子材料として利用され、
その高機能化が望まれている。BACKGROUND OF THE INVENTION In recent years, the importance of developing techniques for forming thin films of metal oxides has been increasing. That is, recently discovered oxide superconductors are expected to be used as superconducting wiring in semiconductor devices, and oxide ferroelectrics are attracting attention as capacitor materials for semiconductor memories. In addition, thin films of various metal oxides are used as conductive materials, piezoelectric materials, light-transmitting materials, and display element materials.
It is desired to improve its functionality.
【0003】これまでに開発された金属酸化物の薄膜形
成技術としては、分子線蒸着法(いわゆるMBE法)、
真空蒸着法、反応性蒸着法、スパッタ法、イオンビ−ム
蒸着法、パルスレ−ザ蒸着法、化学気相成長法など数多
くの技術が開発されている。たとえば、酸化物超電導体
の薄膜はこれらの全ての方法で薄膜形成が可能となって
いる(山香、太刀川、一ノ瀬、共著:「高温超伝導入門
」、第92頁−第94頁、オ−ム社)。The metal oxide thin film forming techniques that have been developed so far include molecular beam evaporation (so-called MBE);
Many techniques have been developed, including vacuum evaporation, reactive evaporation, sputtering, ion beam evaporation, pulsed laser evaporation, and chemical vapor deposition. For example, thin films of oxide superconductors can be formed by all of these methods (Yamaka, Tachikawa, Ichinose, co-authors: "Introduction to High Temperature Superconductivity", pp. 92-94, Ohm company).
【0004】0004
【発明が解決しようとする課題】上記のように、高温超
電導体の薄膜形成が種々の技術で実現されてはいるが、
しかしながら、いずれの技術でも金属原料の供給が非常
に困難であるという問題がある。すなわち、上記の方法
では、使用する原料の種類により、(1)金属を原料と
する技術、(2)酸化物を原料とする技術、(3)金属
と酸化物を原料とする技術、(4)有機金属を原料とす
る技術、の4種類に分類できる。これらのうち、第1か
ら第3の分類の技術では、蒸気圧の低い原料を加熱蒸発
により供給する場合、蒸発温度が高いため、次項で詳し
く述べるように供給装置が破損しやすいという問題が有
る。また、電子線加熱による供給も可能であるが、この
方式と抵抗加熱方式とを比較すると、設備費が数倍高い
、成長速度が遅い、部分的な加熱のために熱伝導性のよ
い金属では加熱効率が悪い、酸素雰囲気下では電子線源
の寿命が数百時間程度であるという問題が有る。更にス
パッタによる供給も可能であるが、この場合成長する膜
までがスパッタリングされて膜質が劣化するという問題
点が存在する。第4の分類技術では一部の原料が不安定
であるため、長時間使用ができない、あるいは、封入量
の一部しか使用できないという問題点がある。そして、
これらの問題点は酸化物超電導体のみでの問題点ではな
く、他の金属酸化物の薄膜形成技術にも共通する問題点
である。[Problems to be Solved by the Invention] As mentioned above, although the formation of thin films of high temperature superconductors has been realized using various techniques,
However, both techniques have a problem in that it is extremely difficult to supply metal raw materials. That is, in the above method, depending on the type of raw materials used, (1) technology using metal as raw material, (2) technology using oxide as raw material, (3) technology using metal and oxide as raw material, (4) ) Technologies that use organic metals as raw materials. Among these, technologies in the first to third categories have the problem that when raw materials with low vapor pressure are supplied by heating and evaporation, the evaporation temperature is high, so the supply equipment is easily damaged, as will be described in detail in the next section. . It is also possible to supply by electron beam heating, but when comparing this method and resistance heating method, it is found that the equipment cost is several times higher, the growth rate is slower, and metals with good thermal conductivity cannot be used because of partial heating. There are problems in that the heating efficiency is poor and the lifetime of the electron beam source is about several hundred hours in an oxygen atmosphere. Furthermore, it is possible to supply by sputtering, but in this case there is a problem that the growing film is also sputtered and the film quality deteriorates. In the fourth classification technique, some of the raw materials are unstable, so there is a problem that it cannot be used for a long time, or that only a part of the enclosed amount can be used. and,
These problems are not unique to oxide superconductors, but are common to other metal oxide thin film formation techniques.
【0005】本発明は上記従来の技術が内在する技術的
課題を解決し、安定かつ安価な原料供給方式を採用した
金属酸化物薄膜の作製方法を提供することに有る。The present invention solves the technical problems inherent in the above-mentioned conventional techniques and provides a method for producing a metal oxide thin film using a stable and inexpensive raw material supply method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に本発明配下の構成を採用するものである。すなわち:
本発明の1局面によれば、
(1)第1の金属元素を含む有機金属錯体を有する有機
金属及び第2の金属元素よりなる金属とを金属元素原料
として準備する第1の工程
(2)基板を配設した成長室に上記金属元素原料及び酸
素を含むガスを導入することにより上記金属元素原料を
酸化して上記基板上に金属酸化物を気相成長させる第2
の工程
を有する金属酸化物薄膜の作製方法が提供される。Means for Solving the Problems In order to achieve the above object, a configuration according to the present invention is adopted. Namely:
According to one aspect of the present invention, (1) a first step (2) of preparing a metal consisting of an organometallic complex containing a first metal element and a second metal element as a metal element raw material; A second step of oxidizing the metal element raw material and vapor-phase growing a metal oxide on the substrate by introducing the metal element raw material and a gas containing oxygen into a growth chamber in which the substrate is disposed.
A method for producing a metal oxide thin film is provided, which includes the following steps.
【0007】また限定された本発明の1局面によれば、
第2の工程は有機金属の成長室への導入口と基板間の距
離と金属の導入口から基板間の距離を異ならせて行う金
属酸化物薄膜の作製方法が提供される。According to one aspect of the invention, which is also limited,
A method for producing a metal oxide thin film is provided in which the second step is performed by varying the distance between the organic metal inlet to the growth chamber and the substrate and the distance between the metal inlet and the substrate.
【0008】第2の工程は光励起、プラズマ励起若しく
は電子線励起のいずれか、またはこれらを組み合わせた
励起を用いて気相成長を制御すると特に良いが、これら
の励起方法に限定されるものではない。[0008] In the second step, it is particularly preferable to control the vapor phase growth using optical excitation, plasma excitation, electron beam excitation, or a combination of these excitations, but the method is not limited to these excitation methods. .
【0009】また本発明で言う「金属酸化物薄膜」には
、酸化物超電導体の他、酸化物半導体、酸化物強誘電体
若しくは酸化物光学材料を含むものである。[0009] Furthermore, the "metal oxide thin film" referred to in the present invention includes, in addition to an oxide superconductor, an oxide semiconductor, an oxide ferroelectric, or an oxide optical material.
【0010】本発明の更に他の限定された1局面によれ
ば、第1の工程は1000℃で約 10−2Pa 以上
の蒸気圧をもつ前記第1の金属元素含む有機金属錯体を
有する有機金属及び 10−2Pa 以上の蒸気圧とな
る温度と分解温度との温度差が 30℃ 以上ある第2
の金属元素よりなる金属とを金属元素原料として準備す
る工程である金属酸化物薄膜の作製方法が提供される。
すなわち蒸発温度の比較的低い金属と、比較的安定性の
高い有機金属との両者を原料として用いるという新しい
原料導入方式を採用することによって、原料の安定な供
給が困難であるという問題点を解決できる。According to yet another limited aspect of the present invention, the first step comprises forming an organometallic compound having an organometallic complex containing the first metal element having a vapor pressure of about 10-2 Pa or more at 1000°C. and a second one in which the temperature difference between the temperature at which the vapor pressure is 10-2 Pa or more and the decomposition temperature is 30°C or more
A method for producing a metal oxide thin film is provided, which is a step of preparing a metal consisting of a metal element as a metal element raw material. In other words, by adopting a new raw material introduction method that uses both a metal with a relatively low evaporation temperature and an organic metal with relatively high stability as raw materials, we solved the problem of difficulty in stably supplying raw materials. can.
【0011】[0011]
【作用】本発明では、金属と有機金属の両者を原料に用
いて金属酸化物薄膜を気相成長させる。すなわち使用す
る複数種類の金属元素の各々の特性に応じて成長室への
原料供給形態を蒸気若しくは有機ガスから選択できるば
かりでなく、これらの供給形態によれば膜質劣化しやす
い金属酸化物薄膜を高品質で成長することができる。[Operation] In the present invention, a metal oxide thin film is grown in a vapor phase using both a metal and an organic metal as raw materials. In other words, not only can the material supply form to the growth chamber be selected from steam or organic gas depending on the characteristics of each of the multiple types of metal elements used, but also these supply forms can produce metal oxide thin films that are prone to film quality deterioration. Able to grow with high quality.
【0012】本発明では特に 1000℃ で約 10
−2Pa以上の蒸気圧をもつ金属と、10−2Paの蒸
気圧となる温度と分解温度との温度差が30℃以上ある
安定性の高い有機金属とを原料とする場合に特に効果が
著しい。蒸気圧が 10−2Pa 程度という条件は薄
膜を実用的な速度で成長させるのに重要な条件である。
1000℃ 以下という条件は通常の抵抗加熱方式で原
料を数千時間以上安定して蒸発させうる温度である。抵
抗加熱の場合、温度の上昇ともに加熱ヒータの蒸発と酸
化、さらに、熱放散の増大により寿命は指数関数的に短
縮される。たとえば、原料蒸発温度が1200℃の場合
、使用を継続できる時間は1000時間程度である。有
機金属の選択条件として、10−2Pa の蒸気圧とな
る温度と分解温度との温度差が30℃以上あるという条
件は蒸発中での原料の変質を防止するのに重要な条件で
ある。有機金属の蒸発温度は500℃以下であるので、
この温度範囲で蒸発温度が分解温度より30℃以上低く
ければ、分解速度が一桁以上低下する。[0012] In the present invention, in particular, at 1000°C, about 10
The effect is particularly remarkable when the raw materials are a metal with a vapor pressure of -2 Pa or more and a highly stable organic metal with a temperature difference of 30° C. or more between the temperature at which the vapor pressure becomes 10-2 Pa and the decomposition temperature. The condition that the vapor pressure is about 10-2 Pa is an important condition for growing a thin film at a practical rate. The condition of 1000° C. or lower is a temperature at which the raw material can be stably evaporated for several thousand hours or more using a normal resistance heating method. In the case of resistance heating, the lifetime decreases exponentially as the temperature increases due to evaporation and oxidation of the heater, as well as increased heat dissipation. For example, when the raw material evaporation temperature is 1200° C., the period of continuous use is about 1000 hours. As a selection condition for the organic metal, the condition that the temperature difference between the temperature at which the vapor pressure is 10@-2 Pa and the decomposition temperature is 30 DEG C. or more is an important condition for preventing deterioration of the raw material during evaporation. Since the evaporation temperature of organic metals is below 500°C,
If the evaporation temperature is 30° C. or more lower than the decomposition temperature in this temperature range, the decomposition rate will decrease by one order of magnitude or more.
【0013】また、基板からの金属原料導入口と有機金
属導入口の距離をそれぞれ異ならして供給することも本
発明の特徴である。これは、酸化物を生成させるために
酸化ガスを成長室に供給して膜成長を進める際に、金属
と有機金属ではその大きさがことなることに基づいて平
均自由行程が異なることに基づく。金属は平均自由行程
が長いため、導入口は基板から離れていても付着係数が
低下するなどの問題はなく、むしろ離すことによって、
基板での膜成長速度の均一性が向上する。一方、有機金
属は平均自由行程が短いため、導入口は基板に近くても
基板での膜成長速度の均一性は良好であり、導入口が離
れると原料の利用効率が低下してしまう。Another feature of the present invention is that the metal raw material inlet and the organic metal inlet from the substrate are supplied at different distances from each other. This is based on the fact that when an oxidizing gas is supplied to the growth chamber to proceed with film growth in order to generate an oxide, the mean free path differs between metals and organic metals due to their different sizes. Since metals have a long mean free path, there is no problem such as a decrease in the adhesion coefficient even if the inlet is separated from the substrate; in fact, by separating it,
The uniformity of the film growth rate on the substrate is improved. On the other hand, since organic metals have a short mean free path, even if the inlet is close to the substrate, the uniformity of the film growth rate on the substrate is good, and if the inlet is far away, the efficiency of raw material utilization decreases.
【0014】以下、実施例をあげて本発明を詳しく説明
する。The present invention will be explained in detail below with reference to Examples.
【0015】[0015]
【実施例】[実施例1]代表的な酸化物超電導体である
YBa2Cu3Ox薄膜を本発明により作製する有効性
について、比較例に反応性蒸着法と化学気相成長法を取
り上げて説明する。[Example 1] The effectiveness of producing a YBa2Cu3Ox thin film, which is a typical oxide superconductor, according to the present invention will be explained using a reactive vapor deposition method and a chemical vapor deposition method as comparative examples.
【0016】本発明で用いる薄膜形成装置の概念図を図
1に示す。金属元素のうち、YとCuの原料は有機金属
の一種であるテトラメチルヘプタジオネートイットリウ
ム(以下Y(THD)3)とテトラメチルヘプタジオネ
ート銅(以下Cu(THD)2)、Baの原料のみはB
a金属としている。これらのMgO基板への供給は、Y
原料1についてはこれを封入したステンレススチール容
器1aを110℃に加熱して加熱パイプ1bを通じて成
長室に導入し、Cu原料2についてはこれを封入したス
テンレススチール容器2aを120℃に加熱して加熱パ
イプ2bを通じて導入し、Ba金属3は通常のエフュー
ジョンセル3aから蒸発させて導入する。この装置では
、基板4は抵抗加熱ヒータ5により加熱され、酸化ガス
に用いた酸素はマスフローコントローラ6により流量を
所定の値に調節してマイクロ波プラズマ発生装置7に導
入されて活性化される。FIG. 1 shows a conceptual diagram of the thin film forming apparatus used in the present invention. Among the metal elements, the raw materials for Y and Cu are yttrium tetramethylheptadione (hereinafter referred to as Y(THD)3), which is a type of organic metal, and the raw material for copper tetramethylheptadionate (hereinafter referred to as Cu(THD)2), and Ba. Only B
a metal. The supply to these MgO substrates is Y
For raw material 1, a stainless steel container 1a filled with it is heated to 110°C and introduced into the growth chamber through a heating pipe 1b, and for Cu raw material 2, a stainless steel container 2a filled with it is heated to 120°C. It is introduced through a pipe 2b, and Ba metal 3 is evaporated and introduced from a normal effusion cell 3a. In this apparatus, a substrate 4 is heated by a resistance heater 5, and the flow rate of oxygen used as an oxidizing gas is adjusted to a predetermined value by a mass flow controller 6, and the oxygen is introduced into a microwave plasma generator 7 and activated.
【0017】成長温度を700℃、プラズマ発生のため
のマイクロ波電力を200W、酸素分圧を10−4to
rrとして成長させたYBa2Cu3Ox薄膜の電気抵
抗の温度依存性を図2に示す。図のように、超電導転移
開始温度は約92K,零抵抗温度は88Kであり、バル
ク材料で得られてている材料本来の特性とほぼ一致する
特性が得られている。[0017] The growth temperature was 700°C, the microwave power for plasma generation was 200W, and the oxygen partial pressure was 10-4to.
FIG. 2 shows the temperature dependence of the electrical resistance of the YBa2Cu3Ox thin film grown as rr. As shown in the figure, the superconducting transition starting temperature is about 92 K, and the zero resistance temperature is 88 K, and the properties are almost the same as the original properties of the bulk material.
【0018】そして、この薄膜形成を通算2000時間
繰り返しても原料供給は±5%以内で安定していた。Even when this thin film formation was repeated for a total of 2000 hours, the raw material supply remained stable within ±5%.
【0019】一方、比較例に取り上げる反応性蒸着法で
も、全く同一構造の成長室にY金属、Ba金属、Cu金
属をエフュージョンセルで導入することによりYBa2
Cu3Ox薄膜を作製できる。しかしながら、この場合
のY金属の蒸発温度は1300℃、Cu金属の蒸発温度
は1100℃と高いため、Y蒸発用のエフュージョンセ
ルは800時間で劣化し、Cu蒸発用のエフュージョン
セルは1300時間で劣化してしまった。また、電子線
加熱法を用いることによってもYとCuを蒸発させるこ
とはできるが、実際には金属の熱伝導率が高いために電
子線の電流密度を高くせざるをえず、さらに酸素雰囲気
で使用するため電子線加熱装置が400時間で劣化して
しまった。On the other hand, in the reactive vapor deposition method taken up as a comparative example, YBa2
A Cu3Ox thin film can be produced. However, in this case, the evaporation temperature of Y metal is as high as 1300°C and the evaporation temperature of Cu metal is 1100°C, so the effusion cell for Y evaporation deteriorates in 800 hours, and the effusion cell for Cu evaporation deteriorates in 1300 hours. have done. Y and Cu can also be evaporated by using electron beam heating, but in reality, due to the high thermal conductivity of metals, it is necessary to increase the current density of the electron beam, and in addition, in an oxygen atmosphere. The electron beam heating device deteriorated after 400 hours.
【0020】また、化学気相成長法ではYとCuの原料
には本発明と同じY(THD)3、Cu(THD)2、
を用い、Ba原料にもテトラメチルヘプタジオネートバ
リウム(以下Ba(THD)2)を用いるが、Ba(T
HD)2が不安定であり、膜成長を安定に続けられる時
間は数十時間以内と非常に短かった。In addition, in the chemical vapor deposition method, the raw materials for Y and Cu are Y(THD)3, Cu(THD)2,
barium tetramethylheptadionate (hereinafter referred to as Ba(THD)2) is used as the Ba raw material;
HD)2 is unstable, and the time for stable film growth is extremely short, within several tens of hours.
【0021】さらに、図1示した本発明の装置では、Y
(THD)3、Cu(THD)2の導入口と基板との距
離は10cmとし、エフュージョンセルのBa金属の面
と基板との距離は 40cmと異なった距離にして、直
径50cmの基板に均一に膜を形成することを実現して
いる。有機金属の導入口をこれ以上離すと気相での蒸発
により基板に到達する有機金属の比率が距離の二乗以上
の割合で減少してしまい、原料の利用効率が低下する。
また、金属の導入口を近づけると膜成長の均一性が低下
する。Furthermore, in the apparatus of the present invention shown in FIG.
The distance between the inlet of (THD)3 and Cu(THD)2 and the substrate was 10 cm, and the distance between the Ba metal surface of the effusion cell and the substrate was 40 cm, so that they were uniformly spread over a substrate with a diameter of 50 cm. It has been realized that a film can be formed. If the introduction port for the organic metal is placed further apart than this, the ratio of the organic metal that reaches the substrate due to evaporation in the gas phase will decrease at a rate greater than the square of the distance, resulting in a decrease in raw material utilization efficiency. Furthermore, if the metal inlet is brought closer, the uniformity of film growth will decrease.
【0022】[実施例2]代表的な透明圧電材料で一般
にPLZT呼ばれている、(Pb,La)(Zr,Ti
)O3の本発明による作製法について説明する。[Example 2] A typical transparent piezoelectric material, commonly called PLZT, (Pb, La) (Zr, Ti
) A method for producing O3 according to the present invention will be explained.
【0023】この場合も装置の構造は図1と同じであり
、原料についてはPbはPb金属、Laはアセチルアセ
トン錯体、Zr、Tiはブチルアルコキシドを用いた。
そして、Pb金属はエフュージョンセルにより導入し、
他の有機金属はステンレススチール容器より加熱パイプ
を通じて成長室に導入した。In this case as well, the structure of the apparatus was the same as that shown in FIG. 1, and the raw materials used were Pb metal for Pb, an acetylacetone complex for La, and butyl alkoxide for Zr and Ti. Then, Pb metal is introduced by an effusion cell,
Other organometallics were introduced into the growth chamber through a heating pipe from a stainless steel container.
【0024】成長温度を700℃、プラズマ発生のため
のマイクロ波電力を200W、酸素分圧を10−4to
rrとして成長させたPLZT薄膜の光透過率は100
%に近く、光学セラミックとして十分の値であった。ま
た、膜厚を厚くした場合、電気光学効果も確認された。
PLZT薄膜を反応性蒸着法で作製する場合、Ti金属
の蒸発は極めて困難である。
また、PLZT薄膜を化学気相成長法で作製する場合の
Pb原料はアルキル鉛かアセチルアセトン錯体を使用す
る必要があるが、いずれも安定性に問題がある。[0024] The growth temperature was 700°C, the microwave power for plasma generation was 200W, and the oxygen partial pressure was 10-4to.
The optical transmittance of the PLZT thin film grown as rr is 100
%, which is a sufficient value for an optical ceramic. Furthermore, when the film thickness was increased, an electro-optic effect was also confirmed. When producing a PLZT thin film using a reactive vapor deposition method, it is extremely difficult to evaporate Ti metal. Furthermore, when producing a PLZT thin film by chemical vapor deposition, it is necessary to use alkyl lead or an acetylacetone complex as the Pb raw material, but both have problems with stability.
【0025】[実施例3]代表的な酸化物誘電体である
BaTiO3の本発明による作製法について説明する。
この場合も装置の構造は図1と同じであり、原料につい
てはBaはBa金属、Tiはブチルアルコキシドを用い
た。そして、Ba金属はエフュージョンセルにより導入
し、Tiのブチルアルコキシドはステンレススチール容
器より加熱パイプを通じて成長室に導入した。[Example 3] A method for producing BaTiO3, which is a typical oxide dielectric, according to the present invention will be explained. In this case as well, the structure of the apparatus was the same as that shown in FIG. 1, and the raw materials used were Ba metal for Ba and butyl alkoxide for Ti. Then, Ba metal was introduced through an effusion cell, and Ti butyl alkoxide was introduced into the growth chamber from a stainless steel container through a heating pipe.
【0026】成長温度を800℃、プラズマ発生のため
のマイクロ波電力を100W、酸素分圧を10−3to
rrとして成長させたBaTiO3薄膜の比誘電率は約
1000で、コンデンサーの誘電体として十分の値であ
った。成長室の圧力が高いため、薄膜の被覆性も良好で
あった。[0026] The growth temperature was 800°C, the microwave power for plasma generation was 100W, and the oxygen partial pressure was 10-3to.
The relative dielectric constant of the BaTiO3 thin film grown as rr was about 1000, which was a value sufficient for use as a dielectric material for a capacitor. Since the pressure in the growth chamber was high, the thin film coverage was also good.
【0027】[実施例4]酸化物半導体薄膜の作製例と
して、NbをドーピングしたSrTiO3薄膜の作製法
について説明する。[Example 4] As an example of manufacturing an oxide semiconductor thin film, a method for manufacturing a Nb-doped SrTiO3 thin film will be described.
【0028】この場合も装置の構造は図1と同じであり
、原料についてはSrはSr金属、NbとTiはブチル
アルコキシドを用いた。そして、Ba金属はエフュージ
ョンセルにより導入し、NbとTiのブチルアルコキシ
ドはステンレススチール容器より加熱パイプを通じて成
長室に導入した。In this case as well, the structure of the apparatus was the same as that shown in FIG. 1, and as for the raw materials, Sr metal was used for Sr, and butyl alkoxide was used for Nb and Ti. Then, Ba metal was introduced through an effusion cell, and Nb and Ti butyl alkoxide were introduced into the growth chamber from a stainless steel container through a heating pipe.
【0029】成長温度を800℃、プラズマ発生のため
のマイクロ波電力を100W、酸素分圧を5X10−5
torrとして成長させたNbを0.5%ドーピングし
たSrTiO3薄膜は、キャリヤー濃度1020/cm
3、易動度10cm2/Vs(300K)の半導体であ
った。この薄膜の結晶構造は軸長が0.391nmの立
方晶であるため、ペロブスカイト構造が基本構造である
酸化物超電導体のヘテロエピタキシャル成長に好適で、
このNbをドーピングしたSrTiO3薄膜上に実施例
1の方法で図2に近い超電導特性のYBa2Cu3Ox
薄膜を形成できた。[0029] The growth temperature was 800°C, the microwave power for plasma generation was 100W, and the oxygen partial pressure was 5X10-5.
A 0.5% Nb-doped SrTiO3 thin film grown as torr has a carrier concentration of 1020/cm.
3. It was a semiconductor with a mobility of 10 cm2/Vs (300K). Since the crystal structure of this thin film is a cubic crystal with an axial length of 0.391 nm, it is suitable for the heteroepitaxial growth of oxide superconductors whose basic structure is a perovskite structure.
On this Nb-doped SrTiO3 thin film, YBa2Cu3Ox with superconducting properties close to that shown in Fig. 2 was formed by the method of Example 1.
A thin film was formed.
【0030】[実施例5]実施例1と同様にMgO基板
上にYBa2Cu3Ox薄膜を形成し、その上に、実施
例5と同様の方法でSrTiO3薄膜を約30Å形成し
、さらにその上に実施例1と同様にYBa2Cu3Ox
薄膜を形成した。そして、上下のYBa2Cu3Ox薄
膜の間の電圧ー電流特性を4Kで測定したところ、トン
ネル電流、および、マイクロ波によるシャピロステップ
が観測された。すなわち、本発明により、ジョセフソン
接合素子を作製できることが明らかとなった。[Example 5] A YBa2Cu3Ox thin film was formed on an MgO substrate in the same manner as in Example 1, and a SrTiO3 thin film of about 30 Å was formed thereon in the same manner as in Example 5. Similar to 1, YBa2Cu3Ox
A thin film was formed. When the voltage-current characteristics between the upper and lower YBa2Cu3Ox thin films were measured at 4K, a tunnel current and a Shapiro step due to microwaves were observed. That is, it has become clear that a Josephson junction element can be manufactured according to the present invention.
【0031】[0031]
【発明の効果】本発明により金属酸化物薄膜、特に酸化
物超電導体、酸化物強誘電体、酸化物半導体、酸化物光
学材料の薄膜を気相成長法により長時間安定して作製す
ることが可能となり、超電導素子、エレクトロニクス素
子、光学素子等の製品の生産性を大巾に高めることが可
能となった。[Effects of the Invention] According to the present invention, metal oxide thin films, particularly thin films of oxide superconductors, oxide ferroelectrics, oxide semiconductors, and oxide optical materials, can be stably produced for a long time by vapor phase growth. This has made it possible to greatly increase the productivity of products such as superconducting devices, electronic devices, and optical devices.
【0032】なお、実施例ではプラズマ励起を利用して
結晶化を促進し、約200℃成長温度を低温化している
。
同様の効果は光励起や電子線励起などの励起を利用した
場合においても得られるが、本発明の効果はこのような
励起技術の利用如何によらず達成される。また、実施例
では、酸化ガスとして酸素を用いた例のみを示したが、
オゾン、酸化チッ素などの酸素を含むガスでも本発明の
効果は達成される。In the example, crystallization is promoted using plasma excitation, and the growth temperature is lowered by about 200°C. Although similar effects can be obtained using excitation such as optical excitation or electron beam excitation, the effects of the present invention can be achieved regardless of whether such excitation techniques are used. In addition, in the examples, only examples using oxygen as the oxidizing gas were shown, but
The effects of the present invention can also be achieved with gases containing oxygen such as ozone and nitrogen oxide.
【図1】本発明の代表的な実施例である、酸化物超電導
体薄膜を作製するための装置の原理構成図である。FIG. 1 is a diagram showing the principle configuration of an apparatus for producing an oxide superconductor thin film, which is a typical embodiment of the present invention.
【図2】本発明により作製した薄膜の超電導特性を示す
図である。FIG. 2 is a diagram showing the superconducting properties of a thin film produced according to the present invention.
1…Y原料、1a…Y原料を封入したステンレススチー
ル容器、1b…加熱パイプ、2…Cu原料、2a…Cu
原料を封入したステンレススチール容器、2b…加熱パ
イプ、3…Ba金属、3a…エフュージョンセル、4…
基板、5…抵抗加熱ヒータ、6…酸素流量調節用のマス
フローコントローラ、7…マイクロ波プラズマ発生装置
。1...Y raw material, 1a...stainless steel container enclosing Y raw material, 1b...heating pipe, 2...Cu raw material, 2a...Cu
Stainless steel container filled with raw materials, 2b... heating pipe, 3... Ba metal, 3a... effusion cell, 4...
Substrate, 5... resistance heater, 6... mass flow controller for adjusting oxygen flow rate, 7... microwave plasma generator.
Claims (5)
属酸化物薄膜の作製方法。 (1)第1の金属元素を含む有機金属錯体を有する有機
金属及び第2の金属元素よりなる金属とを金属元素原料
として準備する第1の工程 (2)基板を配設した成長室に上記金属元素原料及び酸
素を含むガスを導入することにより上記金属元素原料を
酸化して上記基板上に金属酸化物を気相成長させる第2
の工程1. A method for producing a metal oxide thin film, which comprises the following steps. (1) A first step of preparing an organic metal having an organometallic complex containing a first metal element and a metal consisting of a second metal element as metal element raw materials. A second step of oxidizing the metal element raw material and growing a metal oxide on the substrate in a vapor phase by introducing a metal element raw material and a gas containing oxygen.
process
法において、前記第2の工程は前記有機金属の前記成長
室への導入口と前記基板間の距離と前記金属の導入口か
ら前記基板間の距離を異ならせて行う金属酸化物薄膜の
作製方法。2. The method for producing a metal oxide thin film according to claim 1, wherein the second step includes determining the distance between the organic metal introduction port into the growth chamber and the substrate, and the distance between the metal introduction port and the substrate. A method for producing a metal oxide thin film by varying the distance between the substrates.
法において、前記第2の工程は光励起、プラズマ励起若
しくは電子線励起のいずれか、またはこれらを組み合わ
せた励起を用いて前記気相成長を制御する金属酸化物薄
膜の作製方法。3. The method for producing a metal oxide thin film according to claim 1, wherein the second step uses any one of photoexcitation, plasma excitation, electron beam excitation, or a combination of these excitations to stimulate the vapor phase. A method for producing metal oxide thin films with controlled growth.
法において、前記第2の工程は酸化物超電導体、酸化物
半導体、酸化物強誘電体若しくは酸化物光学材料を気相
成長させる工程である金属酸化物薄膜の作製方法。4. The method for producing a metal oxide thin film according to claim 1, wherein the second step involves vapor phase growth of an oxide superconductor, an oxide semiconductor, an oxide ferroelectric material, or an oxide optical material. A method for producing a metal oxide thin film, which is a process.
法において、前記第1の工程は1000℃で約 10−
2Pa 以上の蒸気圧をもつ前記第1の金属元素含む有
機金属錯体を有する有機金属及び 10−2Pa以上の
蒸気圧となる温度と分解温度との温度差が 30℃以上
ある第2の金属元素よりなる金属とを金属元素原料とし
て準備する工程である金属酸化物薄膜の作製方法。5. The method for producing a metal oxide thin film according to claim 1, wherein the first step is performed at 1000° C. for about 10 −
An organic metal having an organometallic complex containing the first metal element having a vapor pressure of 2 Pa or more, and a second metal element having a temperature difference of 30°C or more between the temperature at which the vapor pressure becomes 10-2 Pa or more and the decomposition temperature. A method for producing a metal oxide thin film, which is a process of preparing a metal as a metal element raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3127193A JPH04354875A (en) | 1991-05-30 | 1991-05-30 | Formation of metal oxide thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3127193A JPH04354875A (en) | 1991-05-30 | 1991-05-30 | Formation of metal oxide thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04354875A true JPH04354875A (en) | 1992-12-09 |
Family
ID=14953998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3127193A Pending JPH04354875A (en) | 1991-05-30 | 1991-05-30 | Formation of metal oxide thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04354875A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0670666A1 (en) * | 1994-03-02 | 1995-09-06 | Nissin Electric Company, Limited | Plasma generating apparatus and plasma processing apparatus |
JP2005064413A (en) * | 2003-08-20 | 2005-03-10 | National Institute Of Advanced Industrial & Technology | Parallel flat plate capacitor |
-
1991
- 1991-05-30 JP JP3127193A patent/JPH04354875A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0670666A1 (en) * | 1994-03-02 | 1995-09-06 | Nissin Electric Company, Limited | Plasma generating apparatus and plasma processing apparatus |
JP2005064413A (en) * | 2003-08-20 | 2005-03-10 | National Institute Of Advanced Industrial & Technology | Parallel flat plate capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4912087A (en) | Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates | |
US5478610A (en) | Metalorganic chemical vapor deposition of layered structure oxides | |
US5527567A (en) | Metalorganic chemical vapor deposition of layered structure oxides | |
US5625587A (en) | Rare earth manganate films made by metalorganic decomposition or metalorganic chemical vapor deposition for nonvolatile memory devices | |
KR100382149B1 (en) | Formation method for Sr-Ta-O thin films | |
US5116811A (en) | Cvd method for the formation of bi-containing superconducting thin films | |
EP0342039B1 (en) | Josephson device and method of making same | |
JPH07267791A (en) | Production of oxide superconductor thin film and oxide superconductor thin film laminate | |
JPH04354875A (en) | Formation of metal oxide thin film | |
Kwo | Growth and properties of high Tc films in Y1Ba2Cu3O7− x perovskite by molecular beam epitaxy | |
US5883050A (en) | Hg-based superconducting cuprate films | |
JPH0286014A (en) | Composite oxide superconducting thin film and film forming method | |
JP2854623B2 (en) | Method for producing oxide superconductor thin film | |
JP3500787B2 (en) | Method for producing bismuth compound and dielectric substance of bismuth compound | |
Li et al. | High dielectric constant BaxSr1-xTiO3 (BST) thin films made by mocvd techniques for dram applications | |
US5225396A (en) | Method for forming an oxide superconducting film | |
Kimura et al. | Bi-Sr-Ca-Cu-O film on sapphire grown by plasma-enhanced halide CVD | |
JP2001244511A (en) | Method of manufacturing josephson device having ramp edge structure and film-forming device | |
JP2541037B2 (en) | Oxide superconducting thin film synthesis method | |
JP3562120B2 (en) | Composite structure of stabilized zirconia thin film and single-crystal silicon substrate and method for producing the same | |
JPH03285804A (en) | Production of oxide superconductor thin film | |
JP2523785B2 (en) | Method for manufacturing superconductor thin film | |
JPH0196015A (en) | Formation of superconducting thin film | |
JPH02210718A (en) | Gaseous phase growing method for oxide superconductor | |
JPH04349107A (en) | Formation of oxide superconducting thin film |