JPH04351840A - E-b separator - Google Patents

E-b separator

Info

Publication number
JPH04351840A
JPH04351840A JP3155830A JP15583091A JPH04351840A JP H04351840 A JPH04351840 A JP H04351840A JP 3155830 A JP3155830 A JP 3155830A JP 15583091 A JP15583091 A JP 15583091A JP H04351840 A JPH04351840 A JP H04351840A
Authority
JP
Japan
Prior art keywords
magnets
parallel plate
magnetic
magnet
plate electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3155830A
Other languages
Japanese (ja)
Inventor
Hiroshi Inami
宏 稲実
Yutaka Inai
裕 井内
Yasuhiro Matsuda
松田 恭博
Shuichi Fujiwara
修一 藤原
Takatoshi Yamashita
貴敏 山下
Koji Matsunaga
幸二 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3155830A priority Critical patent/JPH04351840A/en
Publication of JPH04351840A publication Critical patent/JPH04351840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To maintain constant level of intensity of a magnetic field in a wide range, and to carry out mass separation for a charged particle beam of large width by providing auxiliary magnets with the same polarities opposed to one another, outside of a parallel flat plate electrode, and in parallel thereto. CONSTITUTION:A parallel flat plate electrodes 1 are opposed to one another, and a beam is guided so that it is in parallel to the electrode. Main magnets 2 are provided on both sides of the electrode 1 so that different polarities are opposed to one another. Auxiliary magnets 3, 4... that are in parallel to the electrode 1 are provided on the outside of the electrode 1, and the auxiliary magnets are formed in pair with the same poles opposed to one another, and the same magnetic poles as the opposed magnetic pole of the nearer one of the main magnets 2 are opposed to one another. In a coordinate in which the center of a region for passing beam will be origin, in a region of x>0, the same poles are directed inward, while in a region of x<0, the same poles of different polarities are directed inward.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は直交する電界と磁界の作
用によってイオンビ−ムのうち特定の質量のイオンを選
択するようにしたウィーンフィルタ型の質量分離器の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved Wien filter type mass separator that selects ions of a specific mass from an ion beam by the action of orthogonal electric and magnetic fields.

【0002】0002

【従来の技術】質量分離装置として最も良く使われてい
るのは扇形電磁石を利用したものである。これは扇形の
対向する電磁石の間に一定強度の磁界を形成し、一定エ
ネルギ−で飛来する荷電粒子の飛行軌跡を円弧軌跡にす
るものである。質量の大きいものほど円弧の曲率が小さ
く、質量の小さいものほど円弧の曲率が大きいので、質
量の違う粒子の軌跡を分離できる。磁石の後方に適当な
スリットを設けると所望の質量の粒子のみを取り出すこ
とができる。このような質量分離器は円弧状の軌跡を描
かせるために磁石が大型になり占有スペースを多く取る
という難点がある。またビ−ムラインが直線にならない
ので質量分離器の前と後でビ−ムラインの調整が難しい
という欠点もある。
2. Description of the Related Art The most commonly used mass separator is one that utilizes a sector-shaped electromagnet. This creates a magnetic field of constant strength between opposing fan-shaped electromagnets, making the flight trajectory of charged particles flying with constant energy into a circular arc trajectory. The greater the mass, the smaller the curvature of the arc, and the smaller the mass, the greater the curvature of the arc, so the trajectories of particles with different masses can be separated. By providing a suitable slit behind the magnet, only particles of a desired mass can be taken out. This type of mass separator has a drawback in that the magnet is large and occupies a large amount of space because it draws an arcuate trajectory. Another disadvantage is that it is difficult to adjust the beam line before and after the mass separator because the beam line is not straight.

【0003】直線を保ったまま質量分離できるものとし
てウィーンフィルタがある。これは電界と磁界とを直交
するように形成しておきこれらへ直角になるよう荷電粒
子を通すものである。荷電粒子に働く電界と磁界の作用
は相反するのであるが、速度vによって磁界が及ぼす作
用が異なる。エネルギ−が一定(加速電圧が一定)だと
すると質量の差異が速度vの差異として現れる。E=v
Bを満足する質量の荷電粒子のみがウィーンフィルタを
直進できる。ウィーンフィルタがこのような質量分離作
用を持つためには、ビ−ムが通る領域で、電界、磁界と
もに一定していなければならない。電極、磁石が無限大
の大きさを持っていれば一定の電界、磁界を形成できよ
う。しかし実際には電極板は有限の拡がりしか持たない
し、磁石もそれほど大きくはない。有限の寸法であるた
め、これらによって囲まれる領域に於いて電界、磁界は
一様にならない。中央部の極く狭い部分領域のみ電界、
磁界が一様になるのである。そうであれば荷電粒子のビ
−ムをウィーンフィルタの中央の狭い部分領域だけに通
せばよいのである。しかし目的によっては広い断面積の
荷電粒子を質量分離したいという事もある。また帯状の
断面を持つ荷電粒子を質量分離することが望まれる事も
ある。
[0003] There is a Wien filter that can perform mass separation while maintaining a straight line. In this method, an electric field and a magnetic field are formed so as to be orthogonal to each other, and charged particles are passed through at right angles to these fields. The effects of the electric field and magnetic field acting on charged particles are contradictory, but the effect of the magnetic field differs depending on the velocity v. If energy is constant (acceleration voltage is constant), a difference in mass will appear as a difference in velocity v. E=v
Only charged particles with a mass that satisfies B can travel straight through the Wien filter. In order for the Wien filter to have such a mass separation effect, both the electric and magnetic fields must be constant in the region through which the beam passes. If the electrodes and magnets have infinite sizes, they can form a constant electric and magnetic field. However, in reality, the electrode plate only has a finite extent, and the magnet is not that large. Due to their finite dimensions, the electric and magnetic fields are not uniform in the area surrounded by these. Electric field only in a very narrow area in the center,
The magnetic field becomes uniform. If this is the case, it is only necessary to pass the charged particle beam through a narrow central region of the Wien filter. However, depending on the purpose, it may be necessary to mass-separate charged particles with a wide cross-sectional area. It may also be desirable to mass-separate charged particles having a band-shaped cross section.

【0004】0004

【発明が解決しようとする課題】図4にそのような場合
のウィーンフィルタ型質量分離器の断面を示している。 対向する平行平板電極11、11の間には静電界Eが生
じている。これらに対して直角な方向に設けられた磁石
10、10は異極が対向するように設定されている。こ
の間に電界及び磁界が互いに直交するように形成される
。広い帯状の断面を持つ荷電粒子ビ−ム14がこれらに
よって囲まれる空間を通る。電極11、11の距離が離
れると両端での電気力線の乱れが大きくなるので、電極
間距離を狭くしている、しかしビ−ム14が幅広いので
、磁石10、10の距離が離れてしまう。
FIG. 4 shows a cross section of a Wien filter type mass separator in such a case. An electrostatic field E is generated between the parallel plate electrodes 11, 11 facing each other. The magnets 10, 10 provided in a direction perpendicular to these are set so that different poles thereof face each other. During this time, an electric field and a magnetic field are formed so as to be perpendicular to each other. A charged particle beam 14 having a wide band-like cross section passes through the space surrounded by these. If the distance between the electrodes 11 and 11 increases, the disturbance of the electric lines of force at both ends will increase, so the distance between the electrodes is narrowed. However, since the beam 14 is wide, the distance between the magnets 10 and 10 increases. .

【0005】磁石の磁力線の方向をx軸に、電界の方向
をy軸に、ビ−ムの飛行方向をz軸に取って説明する。 ビ−ムが通るのはy=0の近傍にしてある。磁力線はx
方向に平行であるべきであるが、y=0から離れると磁
力線は必ずしもx方向を向かずy方向成分を持ち、凸レ
ンズ型に歪む。磁場の大きさ、方向が所望の値からずれ
てくる。荷電粒子ビ−ム14は幅の広いものであるが、
y方向についてはy=0の近傍に絞りこむことができる
。するとy方向の磁場の乱れの影響は少なくなる筈であ
る。しかしそうはいってもビ−ムをy方向に絞りきれな
いこともあるし、有限の幅がある限り凸レンズ型に乱れ
た磁界の影響を受け精密な質量分離ができない。つまり
y=0から外れると磁束密度がy=0の値よりも低下す
るので、所望の質量の荷電粒子であっても磁界による偏
向力が弱くなり、電界の方向に曲げられてしまうので、
後方のスリットを通過できないという事になる。反対に
より質量の小さい荷電粒子(vが大きい)であってもy
=0から外れた領域を通ると後方のスリットを通過する
ようになる。このようなことを避けもっと精密な質量分
離を行いたいとすれば、僅かであっても磁界の乱れを矯
正しておく必要がある。
An explanation will be given with the direction of the magnetic field lines of the magnet as the x-axis, the direction of the electric field as the y-axis, and the direction of flight of the beam as the z-axis. The beam passes near y=0. The magnetic field lines are x
However, when y=0, the lines of magnetic force do not necessarily point in the x direction, but have a y-direction component, and are distorted into a convex lens shape. The magnitude and direction of the magnetic field deviate from the desired values. Although the charged particle beam 14 is wide,
Regarding the y direction, it is possible to narrow down to the vicinity of y=0. Then, the influence of disturbance of the magnetic field in the y direction should be reduced. However, even so, the beam may not be able to be narrowed down completely in the y direction, and as long as there is a finite width, precise mass separation cannot be achieved due to the influence of the magnetic field disturbed in the shape of a convex lens. In other words, if y=0, the magnetic flux density will be lower than the value of y=0, so even if a charged particle has the desired mass, the deflection force due to the magnetic field will become weaker, and it will be bent in the direction of the electric field.
This means that it cannot pass through the slit at the back. Conversely, even if a charged particle has a small mass (v is large), y
If it passes through an area that deviates from =0, it will pass through the slit at the rear. If you want to avoid this and perform more precise mass separation, it is necessary to correct the disturbance in the magnetic field, even if it is slight.

【0006】[0006]

【課題を解決するための手段】本発明の質量分離器は静
電圧を印加されている対向する平行平板電極と、該平行
平板電極の法線に対して直交する方向に磁束を生ずるよ
うに平行平板電極の側方に互いに対向するように設置さ
れた磁石とを含み、平行平板電極によって生ずる電界と
磁石によって生ずる磁界の両者に直交する方向から荷電
粒子を電極間及び磁石間に通過させて直進する荷電粒子
のみを透過させることによって質量分離を行う質量分離
器に於いて、平行平板電極の外側に設けられ前記主とな
る一対の磁石のうち近いほうの磁石の対向面の磁極と同
じ極性の磁極が対向するように設けられた複数の補助磁
石を有する事を特徴とする。
[Means for Solving the Problems] The mass separator of the present invention has opposing parallel plate electrodes to which an electrostatic voltage is applied, and parallel plate electrodes that are parallel to each other so as to generate magnetic flux in a direction perpendicular to the normal line of the parallel plate electrodes. It includes magnets installed on the sides of the parallel plate electrodes so as to face each other, and charged particles are passed between the electrodes and between the magnets in a direction perpendicular to both the electric field generated by the parallel plate electrodes and the magnetic field generated by the magnets to travel straight. In a mass separator that performs mass separation by allowing only charged particles to pass through, the main pair of magnets is provided outside the parallel plate electrode and has the same polarity as the magnetic pole on the opposing surface of the nearer magnet. It is characterized by having a plurality of auxiliary magnets with magnetic poles facing each other.

【0007】[0007]

【作用】補助磁石は、主磁石の作る磁力線を実効的に内
側へ押さえ込む作用をする。このためにy=0でない部
分(中央からかなり離れた領域)に於いても磁場の方向
はx方向を向き、大きさもy=0に於ける値と同一にな
るのである。従って、荷電粒子ビ−ムが存在する領域に
於いては、電界、磁界ともに一定大きさ、一定方向を保
持することができる。理論的な計算通りの質量分離を行
うことができる。
[Operation] The auxiliary magnet has the effect of effectively suppressing the lines of magnetic force created by the main magnet inward. For this reason, even in areas where y=0 is not present (a region quite far from the center), the direction of the magnetic field is in the x direction, and the magnitude is the same as the value at y=0. Therefore, in the region where the charged particle beam exists, both the electric field and the magnetic field can be maintained at a constant magnitude and direction. Mass separation can be performed as theoretically calculated.

【0008】[0008]

【実施例】図1に本発明の実施例に係るE×B質量分離
器の概略斜視図を示す。図2は同じものの断面図であっ
て磁力線の分布を示している。平行平板電極1、1が互
いに対向するようにある。ビ−ムはこれに平行になるよ
うに導入されるものとする。平行平板電極1、1の両側
に、異極が対向するように主磁石2、2が設置される。 これは永久磁石であっても電磁石であっても良い。これ
らの基本形式に加えて、本発明では平行平板電極の外側
にこれと平行な補助磁石3、4、・・・を設ける。補助
磁石は同極が対向するように対にして設けるのであるが
、主磁石の内、近い方の磁石の対向磁極と同じ磁極が対
向するようにしている。
Embodiment FIG. 1 shows a schematic perspective view of an ExB mass separator according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the same, showing the distribution of magnetic field lines. Parallel plate electrodes 1, 1 are arranged to face each other. The beam is assumed to be introduced parallel to this. Main magnets 2, 2 are installed on both sides of the parallel plate electrodes 1, 1 so that their different poles face each other. This may be a permanent magnet or an electromagnet. In addition to these basic formats, the present invention provides auxiliary magnets 3, 4, . . . parallel to the parallel plate electrodes on the outside thereof. The auxiliary magnets are provided in pairs so that the same poles face each other, and the same magnetic poles as the opposite magnetic pole of the closer magnet among the main magnets face each other.

【0009】図1に於いて、補助磁石は3、3と4、4
というふうに2対ある。もちろんこれより多くても良い
のである。この例で右方の補助磁石はN極が対向するよ
うに設置されている。これは右方の主磁石2の対向磁極
がN極だからである。左方の補助磁石はS極が対向する
よう設置されている。これは左方の主磁石2の対向磁極
がS極だからである。ビ−ムの通過する領域の中心を原
点とする座標系で表現すると、x>0の領域では、同一
の極が内側を向くようにし、x<0の領域では異なる極
性の同一の極が内側を向くようにする、というふうにな
る。x=0の点つまり真中に置いてはいけない。この点
を避ければ補助磁石は何対設けても良いのである。
In FIG. 1, the auxiliary magnets are 3, 3 and 4, 4.
There are two pairs. Of course, it may be more than this. In this example, the auxiliary magnet on the right side is installed so that its north poles face each other. This is because the opposing magnetic pole of the right main magnet 2 is the north pole. The auxiliary magnet on the left is installed so that its S poles are facing each other. This is because the opposing magnetic pole of the left main magnet 2 is the S pole. Expressed in a coordinate system with the origin at the center of the area through which the beam passes, in the area where x>0, the same poles point inward, and in the area where x<0, the same poles with different polarities point inward. It turns out to be facing the same direction. Do not place it at the point where x=0, that is, in the middle. As long as this point is avoided, any number of pairs of auxiliary magnets may be provided.

【0010】図2に示すように補助磁石3、4は図4の
ように凸レンズ型に拡がった磁力線を中心付近へ押さえ
込む作用がある。このためy=0の両側のかなり広い範
囲に於いて磁界はx方向を向きかつ一定の強度を取るよ
うになるのである。もちろん、補助マグネットの強度、
寸法はいくらでもよいというのではなく、平行磁界を生
ずるように計算しなければならない。
As shown in FIG. 2, the auxiliary magnets 3 and 4 have the effect of suppressing the lines of magnetic force, which have spread into a convex lens shape as shown in FIG. 4, toward the center. Therefore, in a fairly wide range on both sides of y=0, the magnetic field is oriented in the x direction and has a constant strength. Of course, the strength of the auxiliary magnet,
The dimensions are not arbitrary; they must be calculated so as to produce parallel magnetic fields.

【0011】主磁石2、2は電磁石でも永久磁石でもよ
いのであるが、永久磁石の場合は、希土類(Sm−Co
)磁石や、Ne−Fe系磁石を用いると良い。強い飽和
磁束が得られるから装置を小型化する事ができる。補助
磁石3、4、・・・も電磁石であっても永久磁石であっ
ても良い。ただし主磁石2が電磁石であって発生磁界が
変化する場合は、補助磁石3、4が生ずべき磁界も変わ
るので電磁石にした方がよい。しかし補助磁石の生ずべ
き補正磁場が余り変化しなくてよい場合もあるので、こ
の時は主磁石が電磁石で、補助磁石が永久磁石という組
み合わせが可能である。選択すべき粒子の質量の変更は
電界を変えることによってなされる。
The main magnets 2, 2 may be electromagnets or permanent magnets, but in the case of permanent magnets, rare earth (Sm-Co)
) or a Ne-Fe magnet. Since a strong saturation magnetic flux can be obtained, the device can be made smaller. The auxiliary magnets 3, 4, . . . may also be electromagnets or permanent magnets. However, if the main magnet 2 is an electromagnet and the generated magnetic field changes, the magnetic field that the auxiliary magnets 3 and 4 should generate will also change, so it is better to use electromagnets. However, there are cases where the correction magnetic field to be generated by the auxiliary magnet does not need to change much, so in this case, a combination in which the main magnet is an electromagnet and the auxiliary magnet is a permanent magnet is possible. Changing the mass of the particles to be selected is done by changing the electric field.

【0012】図1、図2に示すものは本発明の質量分離
器の基本形である。この形状でも十分に機能する。しか
しこのままであると強力な直流磁場が周囲近傍に形成さ
れる。これが諸装置や作業者の健康に影響を及ぼす惧れ
がある場合がある。またこのままであると磁気回路の磁
気抵抗が高くて、強力な磁束密度を得にくいということ
がある。そこで図3に示すように磁気シールド6を主磁
石、補助磁石を囲むように設けることができる。磁気シ
ールド6は鉄、フェライト、その他の強磁性体材料であ
ればよい。磁石から外方へ出る磁力線の殆ど全ては磁気
シールド6の中を通るようになる。磁気シールドの外に
磁気が漏れないので周辺機器、作業者への影響がない。 また磁気抵抗を下げる事ができるから、同じ磁石を使用
しても得られる磁束密度は大きくなる。
What is shown in FIGS. 1 and 2 is the basic form of the mass separator of the present invention. This shape also works well. However, if this continues, a strong DC magnetic field will be formed in the vicinity. This may affect the health of various equipment and workers. Furthermore, if this state continues, the magnetic resistance of the magnetic circuit will be high, making it difficult to obtain a strong magnetic flux density. Therefore, as shown in FIG. 3, a magnetic shield 6 can be provided to surround the main magnet and the auxiliary magnet. The magnetic shield 6 may be made of iron, ferrite, or other ferromagnetic material. Almost all of the magnetic lines of force coming out from the magnet pass through the magnetic shield 6. Magnetism does not leak outside the magnetic shield, so there is no effect on peripheral equipment or workers. Furthermore, since the magnetic resistance can be lowered, the magnetic flux density obtained can be increased even if the same magnet is used.

【0013】[0013]

【発明の効果】電界と磁界の作用によって荷電粒子を分
離するウィーンフィルタ型の質量分離器に於いて、対向
する磁石間の距離が広くても、磁場の強さを広い範囲に
わたって一定に保つことができる。このため幅の広い荷
電粒子ビ−ムを精密に質量分離することができる。大出
力のイオンビ−ム照射装置、大出力のイオン注入装置の
質量分離器として好適である。
[Effect of the invention] In a Wien filter type mass separator that separates charged particles by the action of an electric field and a magnetic field, the strength of the magnetic field can be kept constant over a wide range even if the distance between opposing magnets is wide. Can be done. Therefore, a wide charged particle beam can be precisely mass separated. It is suitable as a mass separator for high-power ion beam irradiation equipment and high-power ion implantation equipment.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のE×B分離器の基本的構成を示す斜視
図。
FIG. 1 is a perspective view showing the basic configuration of an E×B separator of the present invention.

【図2】同じものの断面図で磁力線の分布を示す図。FIG. 2 is a diagram showing the distribution of magnetic lines of force in a cross-sectional view of the same object.

【図3】磁気シールドを付加した本発明のE×B分離器
の斜視図。
FIG. 3 is a perspective view of the E×B separator of the present invention with an added magnetic shield.

【図4】従来例に係るE×B分離器の断面図。FIG. 4 is a sectional view of a conventional ExB separator.

【符号の説明】[Explanation of symbols]

1  平行平板電極 2  主磁石 3  補助磁石 4  補助磁石 6  磁気シールド 1 Parallel plate electrode 2 Main magnet 3 Auxiliary magnet 4 Auxiliary magnet 6 Magnetic shield

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  静電圧を印加されている対向する平行
平板電極と、該平行平板電極の法線に対して直交する方
向に磁束を生ずるように平行平板電極の側方に互いに対
向するように設置された磁石とを含み、平行平板電極に
よって生ずる電界と磁石によって生ずる磁界の両者に直
交する方向から荷電粒子を電極間及び磁石間に通過させ
て直進する荷電粒子のみを透過させることによって質量
分離を行う質量分離器に於いて、平行平板電極の外側に
設けられ前記主となる一対の磁石のうち近いほうの磁石
の対向面の磁極と同じ極性の磁極が対向するように設け
られた複数の補助磁石を有する事を特徴とするE×B分
離器。
1. Opposing parallel plate electrodes to which an electrostatic voltage is applied, and opposing sides of the parallel plate electrodes so as to generate magnetic flux in a direction perpendicular to the normal line of the parallel plate electrodes. Mass separation is achieved by passing charged particles between the electrodes and between the magnets from a direction perpendicular to both the electric field generated by the parallel plate electrodes and the magnetic field generated by the magnet, allowing only the charged particles traveling in a straight line to pass through. In a mass separator that performs An ExB separator characterized by having an auxiliary magnet.
【請求項2】  静電圧を印加されている対向する平行
平板電極と、該平行平板電極の法線に対して直交する方
向に磁束を生ずるように平行平板電極の側方に互いに対
向するように設置された磁石とを含み、平行平板電極に
よって生ずる電界と磁石によって生ずる磁界の両者に直
交する方向から荷電粒子を電極間及び磁石間に通過させ
て直進する荷電粒子のみを透過させることによって質量
分離を行う質量分離器に於いて、平行平板電極の外側に
設けられ前記主となる一対の磁石のうち近いほうの磁石
の対向面の磁極と同じ極性の磁極が対向するように設け
られた複数の補助磁石を設け、かつ前記の主となる磁石
と、補助磁石とを囲むように筒状の磁性体の磁気シール
ドを有する事を特徴とするE×B分離器。
2. Opposing parallel plate electrodes to which an electrostatic voltage is applied, and opposing sides of the parallel plate electrodes so as to generate magnetic flux in a direction perpendicular to the normal line of the parallel plate electrodes. Mass separation is achieved by passing charged particles between the electrodes and between the magnets from a direction perpendicular to both the electric field generated by the parallel plate electrodes and the magnetic field generated by the magnet, allowing only the charged particles traveling in a straight line to pass through. In a mass separator that performs An ExB separator characterized in that an auxiliary magnet is provided and a magnetic shield made of a cylindrical magnetic material surrounds the main magnet and the auxiliary magnet.
JP3155830A 1991-05-29 1991-05-29 E-b separator Pending JPH04351840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155830A JPH04351840A (en) 1991-05-29 1991-05-29 E-b separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155830A JPH04351840A (en) 1991-05-29 1991-05-29 E-b separator

Publications (1)

Publication Number Publication Date
JPH04351840A true JPH04351840A (en) 1992-12-07

Family

ID=15614431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155830A Pending JPH04351840A (en) 1991-05-29 1991-05-29 E-b separator

Country Status (1)

Country Link
JP (1) JPH04351840A (en)

Similar Documents

Publication Publication Date Title
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
JP3869680B2 (en) Ion implanter
CN101584017B (en) Techniques for confining electrons in an ion implanter
WO1988009559A1 (en) Improved wien filter design
US5596304A (en) Permanent magnet edge-field quadrupole
US10991497B2 (en) Apparatus and methods for controlling a charged particle in a magnetic field
JPH04351840A (en) E-b separator
CN106469634A (en) Ion beam line
JPS5951446A (en) Method of varying deflection of locus of charge particle beam
US8921802B2 (en) Mass analyzer apparatus and systems operative for focusing ribbon ion beams and for separating desired ion species from unwanted ion species in ribbon ion beams
KR20130098215A (en) Mass analyzer apparatus and systems operative for focusing ribbon ion beams and for separating desired ion species from unwanted ion species in ribbon ion beams
JP3792181B2 (en) Magnetic field generator
JP4221524B2 (en) Mass analyzer
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
US2636999A (en) x x x x i
JPH06349429A (en) Ion beam lead-out electrode group device having mass separating electrode
US10755827B1 (en) Radiation shield
JPH03266350A (en) Exb type energy filter
JPH05275058A (en) Wien filter
JP3758446B2 (en) Ion source
JPH02201855A (en) Wien filter
JPH05275057A (en) Wien filter
JPS598949B2 (en) ion source device
US8598971B2 (en) Magnetic field control apparatus and dipole magnet
JPH077060U (en) Ion beam extraction electrode system device