JPH04351808A - Lightning insulator - Google Patents

Lightning insulator

Info

Publication number
JPH04351808A
JPH04351808A JP12388691A JP12388691A JPH04351808A JP H04351808 A JPH04351808 A JP H04351808A JP 12388691 A JP12388691 A JP 12388691A JP 12388691 A JP12388691 A JP 12388691A JP H04351808 A JPH04351808 A JP H04351808A
Authority
JP
Japan
Prior art keywords
lightning
resistance element
current
resistance
surge current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12388691A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakayama
哲也 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP12388691A priority Critical patent/JPH04351808A/en
Publication of JPH04351808A publication Critical patent/JPH04351808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)

Abstract

PURPOSE:To heighten a discharge-resisting amount and stabilize a breaking characteristic of a follow current following a lighetning surge current by instantly transmitting thermal energy of resistance elements generated by the lightning surge current to the insulating bushing side by heat pipes so as to suppress a temperature rise of the resistance element while suppressing its electric resistance even in the case of a lightning surge current invasion at the time of a lightning stroke. CONSTITUTION:Resistance elements 5 having a voltage-current characteristic are built inside of an insulating bushing 9 having an umbrella part 9a and each inner end of heat pipes 10 for transmitting heat generated in the resistance elements 5 to the insulating bushing 9 is inserted between the resistance elements 5 while inserting each other end part of the heat pipes 10 into the umbrella parts 9a of the insulating bushing 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は電線路において雷撃が
発生した場合に雷サージ電流を大地に放電するとともに
、その後に生じる運転電圧に基づく続流電流を抑制して
地絡事故を防止することができる避雷碍子に関するもの
である。
[Industrial Application Field] This invention prevents ground faults by discharging lightning surge current to the ground when a lightning strike occurs on a power line, and suppressing the subsequent current based on the operating voltage. This relates to lightning insulators that can provide lightning protection.

【0002】0002

【従来の技術】一般に、送電線の避雷碍子装置において
は、鉄塔本体の側部に水平に支持した支持アームに接地
側の連結金具を介して懸垂碍子連よりなる支持碍子が吊
下され、この支持碍子の下端部には課電側の連結金具及
び電線クランプを介して送電線が支持されている。又、
鉄塔には雷サージ電流を流すとともに、この雷サージ電
流に続く運転電圧に基づく続流電流を抑制するための条
件を備えた電圧−電流特性が非直線性の抵抗素子を内蔵
した避雷碍子が装着されている。この避雷碍子には前記
課電側の連結金具に支持した課電側の放電電極と所定の
気中放電間隙をもって対向する接地側の放電電極が支持
されている。
[Prior Art] Generally, in a lightning arrester device for a power transmission line, a support insulator consisting of a chain of suspended insulators is suspended from a support arm horizontally supported on the side of a steel tower body via a connecting fitting on the ground side. A power transmission line is supported at the lower end of the support insulator via a connection fitting and a wire clamp on the power supply side. or,
The tower is equipped with a lightning arrester insulator that contains a resistance element with non-linear voltage-current characteristics that allows the lightning surge current to flow and suppresses the follow-on current based on the operating voltage that follows the lightning surge current. has been done. This lightning arrester supports a ground-side discharge electrode that faces the power-supply-side discharge electrode supported by the power-supply-side connection fitting with a predetermined air discharge gap.

【0003】0003

【発明が解決しようとする課題】上述の避雷碍子装置に
おいては、送電線に侵入した雷サージ電流が課電側の放
電電極から気中放電間隙をフラッシオーバーして接地側
の放電電極に流れ、避雷碍子内の抵抗素子を通って鉄塔
側へ放電され、その後に生じる運転電圧に基づく続流電
流は抵抗素子の抵抗値の復元により限流され気中放電間
隙により抑制遮断され、地絡事故が防止される。この雷
サージ電流を抵抗素子により処理する場合、雷サージ電
流の通電によるジュール熱によって抵抗素子の温度が上
昇し、場合によっては抵抗素子の放電耐量を決定する許
容温度を越えたり、さらには運転電圧付近の低電圧領域
での電気抵抗が許容値以下に低下する。特に冬期雷のよ
うに夏期雷と比較して電流値は比較的小さいもののその
継続時間が長い雷サージ電流は、抵抗素子に大きなエネ
ルギーを処理させるため、温度上昇が夏期雷の場合と比
較して大きく、それに伴って放電耐量が不足したり、抵
抗素子の電気抵抗が大きく低下することによる続流遮断
特性の低下を引き起し、最悪の場合には地絡事故に到る
ケースがあった。このことから、放電耐量を確保したり
、続流遮断特性を正常に機能させるために抵抗素子の径
を大きくしたり、長くしたりする必要があり、避雷碍子
が大型、大重量化し、あるいは絶縁強調の面から既設の
碍子装置への適用が困難となる。
[Problems to be Solved by the Invention] In the above-mentioned lightning arrester device, lightning surge current that has entered the power transmission line flashes over the air discharge gap from the discharge electrode on the energized side and flows to the discharge electrode on the ground side. A follow-on current based on the operating voltage that is discharged through the resistance element in the lightning arrester to the tower side is limited by the restoration of the resistance value of the resistance element, and is suppressed and cut off by the air discharge gap, preventing a ground fault. Prevented. When this lightning surge current is handled by a resistance element, the temperature of the resistance element rises due to Joule heat caused by the lightning surge current, and in some cases, the temperature of the resistance element may exceed the allowable temperature that determines the discharge withstand capacity of the resistance element, or even the operating voltage The electrical resistance in the nearby low voltage area drops below the allowable value. In particular, lightning surge currents such as winter lightning, which have a relatively small current value but have a long duration compared to summer lightning, cause the resistive element to process a large amount of energy, resulting in a temperature rise that is higher than that of summer lightning. As a result, the electrical resistance of the resistive element becomes insufficient, and the electrical resistance of the resistive element decreases significantly, causing a deterioration in the follow-on current breaking characteristics. In the worst case, this can lead to a ground fault. For this reason, it is necessary to increase the diameter or length of the resistance element in order to ensure the discharge withstand capacity and to ensure that the follow-on current breaking characteristics function properly. Due to the emphasis, it is difficult to apply it to existing insulator devices.

【0004】又、絶縁外套体と抵抗素子との間に絶縁性
のガスを封入したタイプの避雷碍子では、抵抗素子に雷
サージ電流が侵入して一旦温度が上昇すると、前記ガス
はあたかも断熱材の性質を発揮し、半径方向の熱伝達率
を低下せしめて容易に内部温度が低下せず、このため抵
抗素子の電気抵抗が低下したままとなり、重畳して発生
する雷サージ電流が侵入すると、放電耐量、続流遮断特
性がさらに低下するという問題があった。
[0004] Furthermore, in a type of lightning arrester in which an insulating gas is sealed between an insulating jacket and a resistive element, once a lightning surge current enters the resistive element and the temperature rises, the gas acts as if it were a heat insulating material. It exhibits the properties of radial heat transfer, and the internal temperature does not drop easily. Therefore, the electrical resistance of the resistive element remains low, and when the superimposed lightning surge current enters, There was a problem in that the discharge withstand capacity and follow-on current blocking characteristics further deteriorated.

【0005】この発明の目的は雷サージ電流が抵抗素子
に流れた場合、その温度上昇を抑制して、放電耐量を向
上せしめ同時に抵抗素子の電気抵抗の変化を抑制し、安
定した続流遮断特性を発揮することができる避雷碍子を
提供することにある。
[0005] The purpose of the present invention is to suppress the temperature rise when a lightning surge current flows through a resistance element, thereby improving the discharge withstand capacity, and at the same time suppressing changes in the electrical resistance of the resistance element, thereby achieving stable follow-on current breaking characteristics. The purpose of this invention is to provide a lightning arrester that can exhibit the following effects.

【0006】[0006]

【課題を解決するための手段】この発明は上記目的を達
成するため、笠部を有する絶縁外套体の内部に電圧−電
流特性が非直線性の抵抗素子を内蔵し、前記絶縁外套体
の両端部に電極金具を取着した避雷碍子において、ヒー
トパイプの一端部を前記抵抗素子に挿入するとともに、
他端部を前記絶縁外套体の笠部に挿入するという手段を
とっている。
[Means for Solving the Problems] In order to achieve the above object, the present invention incorporates a resistance element with non-linear voltage-current characteristics inside an insulating mantle having a cap, and a resistance element having a non-linear voltage-current characteristic is installed at both ends of the insulating mantle. In the lightning arrester having an electrode fitting attached to the portion thereof, one end portion of the heat pipe is inserted into the resistance element, and
The other end is inserted into the cap of the insulating jacket.

【0007】[0007]

【作用】この発明は上記手段をとったことにより、雷撃
時に雷サージ電流が避雷碍子に内蔵した抵抗素子を流れ
ると、抵抗素子の温度が上昇する。この温度上昇に伴う
熱エネルギーはヒートパイプにより抵抗素子の外部に伝
達され、絶縁外套体の笠部に伝えられ、該笠部に伝達さ
れた熱エネルギーは笠部表面から空気中に放射されるの
で、抵抗素子自身の温度上昇が抑制され、従って、素子
に生じる熱ストレスを低減せしめて放電耐量を向上する
とともに抵抗素子の電気抵抗の低下が抑制され、雷サー
ジ電流に続く続流電流の遮断特性を安定化することがで
きる。
[Operation] By adopting the above-mentioned means, this invention causes the temperature of the resistance element to rise when a lightning surge current flows through the resistance element built into the lightning arrester during a lightning strike. Thermal energy associated with this temperature rise is transmitted to the outside of the resistance element by the heat pipe and then to the cap of the insulating jacket, and the thermal energy transmitted to the cap is radiated into the air from the surface of the cap. , the temperature rise of the resistance element itself is suppressed, thus reducing the thermal stress generated in the element, improving the discharge withstand capacity, and suppressing the decrease in the electrical resistance of the resistance element, which improves the blocking characteristics of follow-on current following lightning surge current. can be stabilized.

【0008】[0008]

【実施例】以下、この発明を具体化した一実施例を図面
に基づいて説明する。図1に示すように、FRP(強化
プラスチック)等により円筒状に形成された耐圧絶縁筒
1の上下両端部には接着剤2により接地側及び課電側の
電極金具3,4が嵌合固定されている。接地側の電極金
具3には鉄塔側への取付用のフランジ部3aが形成され
、課電側の電極金具4には放電電極を支持するためのブ
ラケット4aが形成されている。前記耐圧絶縁筒1内部
には電圧−電流特性が非直線性を有する酸化亜鉛を主材
とする抵抗素子5が複数個直列に収容されている。前記
各抵抗素子5の間には熱伝動性の優れた熱伝達導体6が
介在されている。接地側の電極金具3と抵抗素子5との
間には、電極板7及びバネ8が介在され、抵抗素子5及
び熱伝達導体6を互いに圧接して熱的及び電気的接続状
態を良好にしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will be described below with reference to the drawings. As shown in Fig. 1, electrode fittings 3 and 4 on the grounding side and on the power supply side are fitted and fixed with adhesive 2 to the upper and lower ends of a voltage-resistant insulating cylinder 1 formed in a cylindrical shape from FRP (reinforced plastic) or the like. has been done. The electrode fitting 3 on the ground side is formed with a flange portion 3a for attachment to the steel tower side, and the electrode fitting 4 on the power supply side is formed with a bracket 4a for supporting the discharge electrode. A plurality of resistive elements 5 mainly made of zinc oxide and having non-linear voltage-current characteristics are housed in series inside the voltage-resistant insulating tube 1 . A heat transfer conductor 6 having excellent thermal conductivity is interposed between each of the resistance elements 5. An electrode plate 7 and a spring 8 are interposed between the electrode fitting 3 on the ground side and the resistance element 5, and the resistance element 5 and the heat transfer conductor 6 are pressed against each other to maintain a good thermal and electrical connection state. There is.

【0009】前記耐圧絶縁筒1の外周部にはEPDMゴ
ム等よりなる笠部9aを有する絶縁外套体9がモールド
成形されている。前記耐圧絶縁筒1には熱伝達導体6と
対応して貫通孔1aが複数箇所(この実施例では180
°に二箇所)に形成され、該貫通孔1aと対応するよう
に熱伝達導体6には挿入孔6aが形成されている。そし
て、前記絶縁外套体9をモールド成形する以前に前記貫
通孔1a及び挿入孔6aにヒートパイプ10を貫通固定
した状態で、ヒートパイプの外側部が笠部9aの内部に
埋設されるように絶縁外套体9をモールド成形する。
An insulating jacket 9 having a cap 9a made of EPDM rubber or the like is molded on the outer periphery of the voltage-resistant insulating cylinder 1. The voltage-resistant insulating tube 1 has a plurality of through holes 1a (180 holes in this embodiment) corresponding to the heat transfer conductors 6.
Insertion holes 6a are formed in the heat transfer conductor 6 so as to correspond to the through holes 1a. Before the insulating jacket 9 is molded, the heat pipe 10 is fixed through the through hole 1a and the insertion hole 6a, and the heat pipe is insulated so that the outer part of the heat pipe is buried inside the cap 9a. The mantle body 9 is molded.

【0010】前記ヒートパイプ10には笠部9aに埋設
されるように放熱フィン11が多数形成されている。図
2に示すように前記ヒートパイプ10の先端部には熱伝
達率の優れ金属よりなる円形の放熱リング12が連結さ
れている。前記ヒートパイプ10は同一径の銀の棒に比
較して500〜1000倍の等価熱伝導率を有する熱伝
導素子である。このヒートパイプ10は図3に示すよう
に金属管13の内部から空気を完全に追い出して真空状
態とした後、例えば水、フロン(フロロカーボン)系あ
るいはメタノール等の少量の作動液14を密封したもの
で、金属管13内面には作動液14の沸騰・凝縮及び毛
細管現象を促進させるためのウイック15が形成されて
いる。
A large number of radiation fins 11 are formed in the heat pipe 10 so as to be buried in the cap 9a. As shown in FIG. 2, a circular heat dissipation ring 12 made of metal with excellent heat transfer coefficient is connected to the tip of the heat pipe 10. The heat pipe 10 is a thermal conductive element having an equivalent thermal conductivity of 500 to 1000 times that of a silver rod of the same diameter. As shown in FIG. 3, this heat pipe 10 is made by completely expelling air from the inside of a metal tube 13 to create a vacuum state, and then sealing it with a small amount of working fluid 14 such as water, fluorocarbon, or methanol. A wick 15 is formed on the inner surface of the metal tube 13 to promote boiling, condensation, and capillarity of the working fluid 14.

【0011】ヒートパイプ10は前述した構造となって
いるため、金属管13の一端が加熱されると、内部が減
圧状態のため作動液14は低温下で沸騰し、その蒸気は
圧力液となり音速で他端部に移動し、そこで冷却される
と凝縮して潜熱を放出し、液化し、凝縮液はウィック1
5を通して加熱部端に還流し、再び沸騰した蒸気となり
他端へ移動するというサイクルを外力なしに繰り返す。 このためヒートパイプ10は金属固体伝導に比較して、
瞬時に極めて大量の熱を非常に小さな温度差で輸送する
ことができる。
Since the heat pipe 10 has the above-described structure, when one end of the metal pipe 13 is heated, the working fluid 14 boils at a low temperature because the pressure inside is reduced, and the vapor becomes a pressure liquid and moves at the speed of sound. It moves to the other end, and when it is cooled there, it condenses, releases latent heat, and liquefies, and the condensed liquid flows into the wick 1.
5 and returns to the end of the heating section, becomes boiling steam again and moves to the other end, and the cycle is repeated without any external force. Therefore, compared to the metal solid conduction heat pipe 10,
Extremely large amounts of heat can be transported instantaneously with very small temperature differences.

【0012】次に、前記のように構成した避雷碍子につ
いて、その作用を説明する。今、図1において、雷撃に
よる雷サージ電流が図示しない送電線側から課電側電極
金具4へ侵入し、該金具から抵抗素子5及び熱伝達導体
6を順次流れて接地側の電極金具3に流れ、その後、図
示しない鉄塔に流れて大地に放電される。又、雷サージ
電流に続く運転電圧による続流電流は、抵抗素子5の抵
抗値の復元により抑制される。この雷サージ電流を処理
する際、抵抗素子5にはジュール熱が発生するが、この
熱エネルギーは抵抗素子5から各熱伝達導体6に伝達さ
れた後、ヒートパイプ10により絶縁外套体9の笠部9
aに瞬時に伝達される。このとき放熱フィン11及び放
熱リング12によりヒートパイプ10から絶縁外套体9
に効率好く熱が伝達される。又、絶縁外套体9の笠部9
aに伝達された熱はその表面から大気中に放射される。 このため、抵抗素子5の温度上昇は所定値に抑制され、
放電耐量が確保されるとともに抵抗素子5の電気抵抗の
低下が抑制され、続流電流の遮断特性が安定化する。
Next, the operation of the lightning arrester constructed as described above will be explained. Now, in FIG. 1, a lightning surge current due to a lightning strike enters the power-supplying side electrode fitting 4 from the power transmission line side (not shown), flows from the fitting through the resistance element 5 and the heat transfer conductor 6 in order, and reaches the grounding side electrode fitting 3. After that, it flows to a steel tower (not shown) and is discharged to the ground. Further, a follow-on current due to the operating voltage following the lightning surge current is suppressed by restoring the resistance value of the resistance element 5. When processing this lightning surge current, Joule heat is generated in the resistance element 5, but after this thermal energy is transferred from the resistance element 5 to each heat transfer conductor 6, the heat pipe 10 connects the cap of the insulating jacket 9. Part 9
instantaneously transmitted to a. At this time, the heat pipe 10 is connected to the insulation jacket 9 by the heat radiation fins 11 and the heat radiation ring 12.
Heat is efficiently transferred to. Moreover, the cap 9 of the insulating mantle 9
The heat transferred to a is radiated from its surface into the atmosphere. Therefore, the temperature rise of the resistance element 5 is suppressed to a predetermined value,
The discharge withstand capacity is ensured, and a decrease in the electrical resistance of the resistance element 5 is suppressed, and the follow-on current interrupting characteristics are stabilized.

【0013】この結果、冬期雷のような大きな雷撃エネ
ルギーが避雷碍子に侵入して抵抗素子5の温度が上昇し
て放電耐量や電気抵抗が低下するのを考慮して、抵抗素
子5の設計をする必要がなくなり、抵抗素子5の径及び
長さの増加を小さくして素子の小型化及び軽量化を図り
、製造を容易に行い、避雷碍子のコストダウンを実現す
ることができる。又、既設の碍子装置への適用も容易と
なる。
As a result, the design of the resistor element 5 is designed in consideration of the fact that large lightning energy such as winter lightning penetrates the lightning arrester, increasing the temperature of the resistor element 5 and reducing the discharge withstand capacity and electrical resistance. This eliminates the need to increase the diameter and length of the resistance element 5, thereby making the element smaller and lighter, making it easier to manufacture, and reducing the cost of the lightning arrester. Furthermore, it is easy to apply to existing insulator devices.

【0014】なお、前記絶縁外套体9の温度が上昇する
と、外套が乾燥しやすくなることから外套体9沿面の耐
汚損電圧特性が向上する。又、この発明は前記実施例に
限定されるものではなく、次のように具体化してもよい
。前記実施例では熱伝達導体6を各抵抗素子5間に介在
したが、これをある間隔で設けたり、これを省略してヒ
ートパイプ10の端部を抵抗素子5自身に形成した挿入
孔(図示略)に嵌入すること。あるいは電極金具3,4
にもヒートパイプを付加すること。
[0014] When the temperature of the insulating mantle 9 increases, the mantle dries more easily, so that the contamination resistance voltage characteristic along the surface of the mantle 9 improves. Furthermore, the present invention is not limited to the above embodiments, but may be embodied as follows. In the embodiment described above, the heat transfer conductor 6 was interposed between each resistance element 5, but it is possible to provide the heat transfer conductor 6 at a certain interval, or omit this and insert the end of the heat pipe 10 into an insertion hole (not shown) formed in the resistance element 5 itself. omitted). Or electrode fittings 3, 4
Also add a heat pipe.

【0015】[0015]

【発明の効果】以上詳述したように、この発明は雷撃時
に雷サージ電流が侵入した場合にも、その雷サージ電流
によって発生する抵抗素子の熱エネルギーをヒートパイ
プにより絶縁外套体側へ瞬時に伝達するので、抵抗素子
の温度上昇を抑制し、放電耐量を向上したりその続流遮
断特性を安定化したりすることができ、ひいては避雷碍
子の小型、軽量化を図ることができる効果がある。
[Effects of the Invention] As described in detail above, even when a lightning surge current enters during a lightning strike, the thermal energy of the resistance element generated by the lightning surge current is instantly transmitted to the insulating jacket side through the heat pipe. Therefore, the temperature rise of the resistance element can be suppressed, the discharge withstand capacity can be improved, and the follow-on current blocking characteristics can be stabilized, and the lightning arrester can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の避雷碍子の一実施例を示す縦断面図
である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a lightning arrester according to the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1;

【図3】ヒートパイプの断面図である。FIG. 3 is a cross-sectional view of a heat pipe.

【符号の説明】[Explanation of symbols]

1  耐圧絶縁筒、5  抵抗素子、6  熱伝達導体
、9  絶縁外套体、9a  笠部、10  ヒートパ
イプ。
DESCRIPTION OF SYMBOLS 1 voltage-resistant insulation tube, 5 resistance element, 6 heat transfer conductor, 9 insulation jacket, 9a cap, 10 heat pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  笠部を有する絶縁外套体の内部に電圧
−電流特性が非直線性の抵抗素子を内蔵し、前記絶縁外
套体の両端部に電極金具を取着した避雷碍子において、
ヒートパイプの一端部を前記抵抗素子に挿入するととも
に、他端部を前記絶縁外套体の笠部に挿入したことを特
徴とする避雷碍子。
1. A lightning arrester in which a resistance element with non-linear voltage-current characteristics is built into an insulating jacket having a shade, and electrode fittings are attached to both ends of the insulating jacket, comprising:
A lightning arrester characterized in that one end of a heat pipe is inserted into the resistance element, and the other end is inserted into a cap of the insulating jacket.
JP12388691A 1991-05-28 1991-05-28 Lightning insulator Pending JPH04351808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12388691A JPH04351808A (en) 1991-05-28 1991-05-28 Lightning insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12388691A JPH04351808A (en) 1991-05-28 1991-05-28 Lightning insulator

Publications (1)

Publication Number Publication Date
JPH04351808A true JPH04351808A (en) 1992-12-07

Family

ID=14871800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12388691A Pending JPH04351808A (en) 1991-05-28 1991-05-28 Lightning insulator

Country Status (1)

Country Link
JP (1) JPH04351808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704157A1 (en) * 2012-12-19 2014-03-05 ABB Technology Ltd Electrical insulator bushing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2704157A1 (en) * 2012-12-19 2014-03-05 ABB Technology Ltd Electrical insulator bushing

Similar Documents

Publication Publication Date Title
US7453681B2 (en) Metal oxide varistor with a heat protection
KR100295967B1 (en) Electric motor protection sensor
US9530545B2 (en) Device comprising a thermal fuse and a resistor
US4218721A (en) Heat transfer system for voltage surge arresters
KR20020019074A (en) High voltage lead-through
JP4778336B2 (en) Synthetic material end of DC electric cable
US4972067A (en) PTC heater assembly and a method of manufacturing the heater assembly
WO2007107119A1 (en) Current carrier combined with heat-pipe
US4150414A (en) Air gap short circuiting device for gas tube arrester
US4303959A (en) Fail safe surge arrester systems
CN211016603U (en) Auxiliary heating power transmission cable in extremely low temperature environment
JPH04351808A (en) Lightning insulator
CN208637232U (en) Cable protective layer protector
CN210641091U (en) Heating device
US10460858B2 (en) Caps for power distribution system components
WO2017113957A1 (en) Gas discharge tube and metallization electrode used thereby
CN201937860U (en) Anti-explosion single-end lead-out wire electric heater
JPH05196174A (en) Insulated vacuum valve
EP3588714B1 (en) Hv cable termination device
JP2724086B2 (en) Gas insulated bushing
JP3476812B1 (en) Continuous lightning arrester
JPH0616454Y2 (en) Lightning arrester
CN206312678U (en) Tubulose MOV with thermal tripping mechanism
JP2563382B2 (en) Lightning arrester
CA1131297A (en) Heat transfer system for voltage surge arresters