JPH04351605A - Preparation of fine polymer particle - Google Patents

Preparation of fine polymer particle

Info

Publication number
JPH04351605A
JPH04351605A JP15246491A JP15246491A JPH04351605A JP H04351605 A JPH04351605 A JP H04351605A JP 15246491 A JP15246491 A JP 15246491A JP 15246491 A JP15246491 A JP 15246491A JP H04351605 A JPH04351605 A JP H04351605A
Authority
JP
Japan
Prior art keywords
particle size
polymer
polymerization
average particle
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15246491A
Other languages
Japanese (ja)
Other versions
JP2679453B2 (en
Inventor
Jun Hasegawa
純 長谷川
Takeshi Fujimoto
健 藤本
Hidekazu Haneda
英和 羽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP3152464A priority Critical patent/JP2679453B2/en
Publication of JPH04351605A publication Critical patent/JPH04351605A/en
Application granted granted Critical
Publication of JP2679453B2 publication Critical patent/JP2679453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To produce fine polymer particles having a monodisperse particle diameter distribution and an average particle diameter in a specific range. CONSTITUTION:A hydrophobic monomer is polymerized in the presence of poly(methacrylic acid) using a free-radical polymerization initiator in a solvent that dissolves both the monomer and poly(methacrylic acid) but does not dissolve a polymer of the monomer, thereby giving fine polymer particles. As the initiator is used a compound that is soluble in the solvent and capable of generating a free radical. The fine polymer particles produced by this method have a monodisperse particle diameter distribution and an average particle size not less than 0.05mum but less than 1mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、単分散の粒子径分布を
有する平均粒子径0.05μm以上1μm未満の重合体
微粒子の製造方法に関する。この重合体微粒子は、診断
用微粒子担体、液体クロマトグラフィー用カラム充填剤
等の広範な用途に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine polymer particles having a monodisperse particle size distribution and an average particle size of 0.05 μm or more and less than 1 μm. These polymer particles are used in a wide range of applications, such as diagnostic particle carriers and liquid chromatography column packing materials.

【0002】0002

【従来の技術】単分散重合体微粒子は、診断用微粒子担
体、診断用試薬担体、液体クロマトグラフィー用カラム
充填剤、塗料用充填剤、各種のスペーサー、電子写真方
式のトナー用粒子等の用途に用いられている。
[Prior Art] Monodisperse polymer fine particles are used as diagnostic fine particle carriers, diagnostic reagent carriers, column packing materials for liquid chromatography, fillers for paints, various spacers, particles for electrophotographic toners, etc. It is used.

【0003】例えば、診断用微粒子担体は、通常は抗原
、抗体などを粒子表面に固定化して検査試薬として使用
されている。この診断用微粒子分散液(診断用ラテック
ス)を血液や尿などの体液と混合すると、その微粒子表
面に固定化された抗原、抗体などが検体体液中の特異物
質と反応して凝集する。凝集の有無を判定したり、凝集
の程度を測定することにより、免疫学的検査等を行なう
。このような診断用微粒子担体に要求される主な条件と
して、粒度が均一であること、特に、真球状単分散微粒
子であることが挙げられる。
[0003] For example, diagnostic microparticle carriers are usually used as test reagents by immobilizing antigens, antibodies, etc. on the particle surface. When this diagnostic microparticle dispersion (diagnostic latex) is mixed with a body fluid such as blood or urine, the antigens, antibodies, etc. immobilized on the surface of the microparticles react with specific substances in the sample body fluid and aggregate. Immunological tests are performed by determining the presence or absence of agglutination and measuring the degree of agglutination. The main conditions required for such diagnostic microparticle carriers include uniform particle size, particularly true spherical monodisperse microparticles.

【0004】また、単分散重合体微粒子には、使用目的
に応じて各種粒径のものが知られているが、例えば、診
断用ラテックスとして広く用いられているのは直径1μ
m未満のものであることに見られるように、0.05μ
m以上1μm未満の平均粒子径の重合体粒子は、診断用
微粒子担体、カラム充填剤、各種のスペーサー途等の用
途に多くの需要がある。ところが、従来法により、単分
散粒子径分布を有し、平均粒子径が0.05μm以上1
μm未満の範囲内にある重合体微粒子を製造することは
、非常に困難である。
[0004] Monodisperse polymer fine particles are known to have various particle sizes depending on the purpose of use, but for example, the one widely used as diagnostic latex is 1 μm in diameter.
0.05μ, as seen in those less than m
Polymer particles having an average particle diameter of 1 μm or more and less than 1 μm are in great demand for applications such as diagnostic microparticle carriers, column packing materials, and various spacers. However, with the conventional method, particles with a monodisperse particle size distribution and an average particle size of 0.05 μm or more1
It is very difficult to produce polymer microparticles in the sub-μm range.

【0005】従来、単分散重合体微粒子を得る方法とし
ては、例えば、通常の乳化重合法で作製した重合体粒子
をシード(重合種)粒子とし、これに単量体と界面活性
剤、重合開始剤等の各種重合副資材を添加して重合する
ことにより、シード粒子の粒子径を大きくさせていくシ
ード重合法が知られている。しかし、この方法では、界
面活性剤や重合開始剤等を過剰に添加すると、新たな重
合体粒子が発生するため、得られる重合体の粒子径分布
の単分散性が損なわれてしまう。そこで、界面活性剤量
は、通常、重合系中における界面活性剤の臨界ミセル形
成濃度の前後となる量に調整するが、この条件下では成
長中の重合体粒子がコロイド的に極めて不安定となり、
凝集物を生成しやすくなる。したがって、凝集物発生を
抑えるために、撹拌等重合操作の上でも細心の注意が必
要とされる。
Conventionally, as a method for obtaining monodisperse polymer fine particles, for example, polymer particles prepared by a normal emulsion polymerization method are used as seed (polymerization seed) particles, and then a monomer, a surfactant, and a polymerization initiator are added to the seed particles. A seed polymerization method is known in which the particle size of seed particles is increased by adding and polymerizing various polymerization auxiliary materials such as agents. However, in this method, when surfactants, polymerization initiators, etc. are added in excess, new polymer particles are generated, which impairs the monodispersity of the particle size distribution of the obtained polymer. Therefore, the amount of surfactant is usually adjusted to be around the critical micelle-forming concentration of surfactant in the polymerization system, but under these conditions, the growing polymer particles become extremely unstable colloidally. ,
It becomes easier to form aggregates. Therefore, in order to suppress the generation of aggregates, careful attention is required during polymerization operations such as stirring.

【0006】また、乳化重合法により得られた重合体粒
子の表面には、ラテックス製造時に添加される界面活性
剤や反応開始剤の一部が露出しており、このような重合
体粒子を、例えば診断用微粒子担体として使用すると、
抗原、抗体の感作に影響を及ぼし、また、試薬の安定性
にも悪影響を及ぼす。
[0006] Furthermore, a part of the surfactant and reaction initiator added during latex production are exposed on the surface of the polymer particles obtained by the emulsion polymerization method. For example, when used as a diagnostic microparticle carrier,
It affects the sensitization of antigens and antibodies, and also has an adverse effect on the stability of reagents.

【0007】単分散粒子径分布を有する重合体微粒子を
得る別の方法として、界面活性剤を使用せず、その代わ
りに乳化力を有するスチレンスルホン酸ナトリウムを用
いたソープフリー重合が知られている。しかし、この方
法では、重合系中に含まれる溶存酸素、無機塩類等によ
り、得られる重合体の粒子径が微妙に変化するため、再
現性に乏しく、工業的生産には不向きである。また、反
応系は、界面活性剤を使用しないのでコロイド的に不安
定であり、しかも単量体濃度を通常10重量%以下とし
なければならず、経済性の面からも問題がある。
[0007] As another method for obtaining polymer fine particles having a monodisperse particle size distribution, soap-free polymerization is known, which does not use a surfactant and uses sodium styrene sulfonate, which has emulsifying power, instead. . However, in this method, the particle size of the obtained polymer varies slightly depending on dissolved oxygen, inorganic salts, etc. contained in the polymerization system, so reproducibility is poor and it is unsuitable for industrial production. Furthermore, since the reaction system does not use a surfactant, it is colloidally unstable, and the monomer concentration must usually be kept at 10% by weight or less, which is also problematic from an economic standpoint.

【0008】通常の懸濁重合法により得られた広い分子
径分布を有する重合体粒子を分級する方法では、充分な
単分散性を達成することはできない。
[0008] Sufficient monodispersity cannot be achieved by a method of classifying polymer particles having a wide molecular size distribution obtained by a conventional suspension polymerization method.

【0009】近年、単分散重合体粒子を容易に製造する
方法として、分散重合法が提案されている。しかし、こ
の分散重合法は、有機溶媒中でのポリマー析出を利用す
る重合法であり、一般的に有機溶媒中での析出分子量が
水系の重合に比べて大きいので、得られる重合体粒子の
平均粒子径は、通常、1〜数μmになる。しかも、分散
重合法により得られた重合体粒子表面は、使用した分散
安定剤で覆われているため、実用上粒子の精製を必要と
する用途、例えば、診断用微粒子担体、液体クロマトグ
ラフィー用カラム充填剤、塗料添加用充填剤等には使用
できない。また、分散安定剤として水溶性高分子を用い
ているため、重合体粒子の表面は、かなりの程度まで親
水性となっており、このような粒子を電子写真方式のト
ナーに使用すると、粒子表面の帯電量が減少して、鮮明
な画像が得られない。
[0009] In recent years, a dispersion polymerization method has been proposed as a method for easily producing monodisperse polymer particles. However, this dispersion polymerization method is a polymerization method that utilizes polymer precipitation in an organic solvent, and the molecular weight of the precipitated polymer in an organic solvent is generally larger than that in aqueous polymerization. The particle size is usually 1 to several μm. Moreover, the surface of the polymer particles obtained by the dispersion polymerization method is covered with the dispersion stabilizer used, so it can be used in applications that require purification of the particles, such as diagnostic microparticle carriers, liquid chromatography columns, etc. It cannot be used as a filler, filler for paint additives, etc. In addition, since a water-soluble polymer is used as a dispersion stabilizer, the surface of the polymer particles is hydrophilic to a considerable extent, and when such particles are used in electrophotographic toners, the particle surface becomes The amount of charge decreases, making it impossible to obtain a clear image.

【0010】本出願人は、疎水性単量体をポリメタクリ
ル酸の存在下にラジカル開始剤を用いて分散重合するこ
とにより、単分散粒子径分布を有する重合体粒子を製造
する方法について特許出願を行なったが(特開平1−2
49806号)、この方法では、1〜20μmの比較的
大粒径の重合体粒子は得られるものの、0.05μm以
上1μm未満の範囲の平均粒子径を有する重合体微粒子
を得ることができない。このような事情から、単分散の
粒子径分布を有する重合体微粒子を簡易に製造する方法
が求められている。
The applicant has filed a patent application for a method for producing polymer particles having a monodisperse particle size distribution by dispersion polymerizing a hydrophobic monomer in the presence of polymethacrylic acid using a radical initiator. (Unexamined Japanese Patent Publication No. 1-2)
No. 49806), although this method can obtain relatively large polymer particles of 1 to 20 μm, it is not possible to obtain fine polymer particles having an average particle size of 0.05 μm or more and less than 1 μm. Under these circumstances, there is a need for a method for easily producing polymer fine particles having a monodisperse particle size distribution.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、従来
法と比較して簡易な方法により、単分散粒子径分布を有
し、かつ、平均粒子径が0.05μm以上1μm未満の
範囲内にある重合体微粒子の製造方法を提供することに
ある。
[Problems to be Solved by the Invention] An object of the present invention is to obtain particles that have a monodisperse particle size distribution and have an average particle size within the range of 0.05 μm or more and less than 1 μm by a method that is simpler than conventional methods. An object of the present invention is to provide a method for producing polymer fine particles.

【0012】本発明者らは、前記従来技術の有する問題
点を克服するために鋭意研究した結果、疎水性単量体を
ポリメタクリル酸の存在下で分散重合を行なう際に、ラ
ジカル重合開始剤として溶媒に可溶であってラジカルイ
オン発生能を有する化合物を用いることにより前記目的
を達成できることを見出し、その知見に基づいて本発明
を完成するに至った。
[0012] As a result of intensive research to overcome the problems of the prior art, the present inventors found that when carrying out dispersion polymerization of hydrophobic monomers in the presence of polymethacrylic acid, the radical polymerization initiator The inventors have discovered that the above object can be achieved by using a compound that is soluble in a solvent and has the ability to generate radical ions, and based on this knowledge, the present invention has been completed.

【0013】[0013]

【課題を解決するための手段】かくして本発明によれば
、疎水性単量体をポリメタクリル酸の存在下に、これら
を溶解するが該疎水性単量体の重合体を溶解しない溶媒
中でラジカル重合開始剤を用いて重合を行ない粒子状の
重合体を製造する方法において、ラジカル重合開始剤と
して該溶媒に可溶であってラジカルイオン発生能を有す
る化合物を用いることを特徴とする単分散粒子径分布を
有し、かつ、平均粒子径が0.05μm以上1μm未満
の範囲内にある重合体微粒子の製造方法が提供される。 以下、本発明について詳述する。
Thus, according to the present invention, hydrophobic monomers are dissolved in the presence of polymethacrylic acid in a solvent that dissolves them but does not dissolve the polymer of the hydrophobic monomers. A method for producing a particulate polymer by performing polymerization using a radical polymerization initiator, characterized in that a compound soluble in the solvent and capable of generating radical ions is used as the radical polymerization initiator. A method for producing fine polymer particles having a particle size distribution and an average particle size within a range of 0.05 μm or more and less than 1 μm is provided. The present invention will be explained in detail below.

【0014】(疎水性単量体)本発明で使用する疎水性
単量体は、20℃における水に対する溶解度が5重量%
未満、好ましくは1重量%未満の単量体である。
(Hydrophobic monomer) The hydrophobic monomer used in the present invention has a solubility in water of 5% by weight at 20°C.
less than 1% by weight, preferably less than 1% by weight of monomer.

【0015】疎水性単量体の具体例としては、例えば、
スチレン、α−メチルスチレン、p−メチルスチレン、
クロルメチルスチレン、ハロゲン化スチレン、ジビニル
ベンゼン等の芳香族ビニル単量体;メチル(メタ)アク
リレート、エチル(メタ)アクリレート、ブチル(メタ
)アクリレート、2−エチルヘキシル(メタ)アクリレ
ート、ラウリル(メタ)アクリレート、ステアリル(メ
タ)アクリレート、エチレングリコールジ(メタ)アク
リレート、グリシジル(メタ)アクリレート等の(メタ
)アクリル酸エステル;ブタジエン、イソプレン等の共
役ジオレフィン類等を挙げることができる。
Specific examples of hydrophobic monomers include, for example:
Styrene, α-methylstyrene, p-methylstyrene,
Aromatic vinyl monomers such as chloromethylstyrene, halogenated styrene, divinylbenzene; methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate , (meth)acrylic acid esters such as stearyl (meth)acrylate, ethylene glycol di(meth)acrylate, and glycidyl (meth)acrylate; and conjugated diolefins such as butadiene and isoprene.

【0016】これらの単量体は、通常、生成する重合体
のガラス転移温度が室温以上となるように、単独である
いは2種以上を組み合わせて使用する。これらの中でも
、特に芳香族ビニル単量体がより好ましく使用できる。
These monomers are usually used alone or in combination of two or more so that the glass transition temperature of the resulting polymer is higher than room temperature. Among these, aromatic vinyl monomers are particularly preferred.

【0017】(ポリメタクリル酸)本発明においては、
ポリメタクリル酸を分散安定剤として使用する。ポリメ
タクリル酸は、その製法により限定されないが、その2
0重量%水溶液のB型粘度計で測定した粘度(20℃、
ローター#2、60rpmで測定)が100〜500,
000cps、好ましくは50,000〜150,00
0cpsのものである。
(Polymethacrylic acid) In the present invention,
Polymethacrylic acid is used as a dispersion stabilizer. Polymethacrylic acid is not limited by its manufacturing method, but
Viscosity measured with a B-type viscometer of 0% by weight aqueous solution (20°C,
Rotor #2, measured at 60 rpm) is 100-500,
000cps, preferably 50,000-150,00
It is 0 cps.

【0018】使用するポリメタクリル酸の量は、疎水性
単量体成分100重量部に対して、通常1〜40重量部
、好ましくは5〜30重量部である。1重量部未満では
、重合中の重合安定性が悪くなり凝固物が多量に発生す
る。40重量部を超えて使用すると、不経済であること
、単量体濃度が低くなり生産性が低下すること、重合後
にポリメタクリル酸を除去する場合には、その操作が煩
雑になること等の問題が有る。
The amount of polymethacrylic acid used is usually 1 to 40 parts by weight, preferably 5 to 30 parts by weight, based on 100 parts by weight of the hydrophobic monomer component. If it is less than 1 part by weight, polymerization stability during polymerization will deteriorate and a large amount of coagulum will be generated. If more than 40 parts by weight is used, it will be uneconomical, the monomer concentration will be low and productivity will be reduced, and when polymethacrylic acid is removed after polymerization, the operation will be complicated, etc. There's a problem.

【0019】ポリメタクリル酸は、別途に重合したポリ
メタクリル酸を疎水性単量体とともに反応系に加えて重
合してもよいが、疎水性単量体の重合を行なう反応器中
で疎水性単量体の重合に先だってメタクリル酸単量体を
重合して得てもよい。
Polymethacrylic acid may be polymerized by adding separately polymerized polymethacrylic acid to the reaction system together with a hydrophobic monomer; It may be obtained by polymerizing a methacrylic acid monomer prior to polymerizing the methacrylic acid monomer.

【0020】(溶媒)本発明においては、溶媒として、
疎水性単量体、ポリメタクリル酸および重合開始剤を溶
解するが、得られた重合体粒子を溶解しない溶媒を使用
する。
(Solvent) In the present invention, as a solvent,
A solvent is used that dissolves the hydrophobic monomer, polymethacrylic acid and polymerization initiator, but does not dissolve the resulting polymer particles.

【0021】このような溶媒の具体例としては、メチル
アルコール、エチルアルコール、プロピルアルコール類
、ブチルアルコール類等の低級アルコール類;アセトン
、メチルエチルケトン等のケトン類;ピリジン、ピロー
ル、テトラヒドロフラン等のヘテロ環状化合物;n−ヘ
キサン、シクロヘキサン等の脂肪族炭化水素類;ベンゼ
ン、トルエン等の芳香族炭化水素類;塩化メチレン、ク
ロロホルム等のハロゲン化炭化水素類等の有機溶媒を挙
げることができる。これらの中でも低級アルコール類が
好ましい。これらの有機溶媒は、単独で使用してもよく
2種以上組み合わせて使用してもよい。また、場合によ
り、水を混合して使用してもよい。
Specific examples of such solvents include lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol; ketones such as acetone and methyl ethyl ketone; and heterocyclic compounds such as pyridine, pyrrole, and tetrahydrofuran. ; Aliphatic hydrocarbons such as n-hexane and cyclohexane; Aromatic hydrocarbons such as benzene and toluene; Organic solvents such as halogenated hydrocarbons such as methylene chloride and chloroform. Among these, lower alcohols are preferred. These organic solvents may be used alone or in combination of two or more. In addition, depending on the case, water may be used in combination.

【0022】溶媒の使用量は、特に限定されないが、通
常、疎水性単量体成分100重量部に対して100〜2
000重量部、好ましくは500〜2000重量部の範
囲である。溶媒の使用量が少な過ぎると、重合時の単量
体濃度が高いため、凝集物生成量が多く、多過ぎると経
済的に不利である。
The amount of the solvent used is not particularly limited, but is usually 100 to 2 parts by weight per 100 parts by weight of the hydrophobic monomer component.
000 parts by weight, preferably in the range of 500 to 2000 parts by weight. If the amount of solvent used is too small, the monomer concentration during polymerization will be high, resulting in a large amount of aggregate formation, while if it is too large, it will be economically disadvantageous.

【0023】(ラジカル重合開始剤)本発明で使用する
ラジカル重合開始剤は、使用される溶媒に可溶であって
ラジカルイオン発生能を有する化合物である。
(Radical Polymerization Initiator) The radical polymerization initiator used in the present invention is a compound that is soluble in the solvent used and has the ability to generate radical ions.

【0024】特開平1−249806号に開示されてい
るような過酸化ベンゾイル等の有機過酸化物系、あるい
はアゾビスイソブチロニトリル等のアゾニトリル系など
の通常のラジカル重合開始剤を用いると、比較的粒径の
大きな重合体粒子が得られ、本発明が目的としているよ
うな重合体微粒子を得ることができない。
When a conventional radical polymerization initiator such as an organic peroxide type such as benzoyl peroxide as disclosed in JP-A-1-249806 or an azonitrile type such as azobisisobutyronitrile is used, Polymer particles having a relatively large particle size are obtained, making it impossible to obtain polymer fine particles as the object of the present invention.

【0025】本発明で使用するラジカルイオン発生能を
有する化合物の具体例としては、例えば、過硫酸カリウ
ム、過硫酸アンモニウム等の過硫酸塩;4,4′−アゾ
ビス−4−シアノバレリアン酸、2,2′−アゾビス−
2−アミジノプロパン塩酸塩を挙げることができるが、
これらに限定されるものではない。
Specific examples of compounds having the ability to generate radical ions used in the present invention include persulfates such as potassium persulfate and ammonium persulfate; 4,4'-azobis-4-cyanovaleric acid, 2, 2'-Azobis-
Mention may be made of 2-amidinopropane hydrochloride,
It is not limited to these.

【0026】本発明において使用する重合開始剤の量は
、特に限定されず、目的とする重合体の分子量を考慮し
て適切に選べばよいが、疎水性単量体成分100重量部
に対して、通常0.1〜10重量部である。
[0026] The amount of the polymerization initiator used in the present invention is not particularly limited and may be selected appropriately taking into consideration the molecular weight of the desired polymer, but it is limited to 100 parts by weight of the hydrophobic monomer component. , usually 0.1 to 10 parts by weight.

【0027】(重合方法)本発明の方法においては、疎
水性単量体とポリメタクリル酸の両者を溶解する溶媒中
で、ラジカルイオン発生能を有する重合開始剤により、
該疎水性単量体の重合を行なう。各成分の添加順序は、
特に限定されないが、通常、疎水性単量体とポリメタク
リル酸を溶剤に溶解した溶液に重合開始剤を添加して重
合する。
(Polymerization method) In the method of the present invention, in a solvent that dissolves both the hydrophobic monomer and polymethacrylic acid, a polymerization initiator having a radical ion generating ability is used.
The hydrophobic monomer is polymerized. The order of addition of each component is
Although not particularly limited, polymerization is usually carried out by adding a polymerization initiator to a solution in which a hydrophobic monomer and polymethacrylic acid are dissolved in a solvent.

【0028】重合反応温度は、特に限定されず、使用す
る重合開始剤により適切に選定すればよいが、通常、2
0〜100℃の範囲である。
The polymerization reaction temperature is not particularly limited and may be appropriately selected depending on the polymerization initiator used.
It is in the range of 0 to 100°C.

【0029】重合反応終了後、濾過、遠心分離等の方法
で重合体微粒子を分離する。もし、必要ならば、重合体
微粒子表面のポリメタクリル酸を除去することができ、
これにより重合体微粒子表面は容易に親水性表面から重
合体微粒子自体の疎水性表面に変化する。そのための方
法としては、遠心分離、半透膜等を利用する透析、限外
濾過法等の通常の重合体粒子の精製法を採用すればよい
After the polymerization reaction is completed, the polymer particles are separated by filtration, centrifugation, or the like. If necessary, polymethacrylic acid on the surface of the polymer fine particles can be removed,
As a result, the surface of the polymer fine particles easily changes from a hydrophilic surface to a hydrophobic surface of the polymer fine particles themselves. As a method for this purpose, a conventional method for purifying polymer particles such as centrifugation, dialysis using a semipermeable membrane, ultrafiltration method, etc. may be employed.

【0030】重合体微粒子表面のポリメタクリル酸を完
全に除去するためには、重合体微粒子を水に懸濁させて
これを遠心分離する方法が好ましく、また、この場合、
粒子懸濁液のpHを水酸化ナトリウム等の塩基でアルカ
リ性側にしておくと、ポリメタクリル酸の溶解度が向上
するので好ましい。
In order to completely remove the polymethacrylic acid on the surface of the polymer particles, it is preferable to suspend the polymer particles in water and centrifuge the suspension.
It is preferable to adjust the pH of the particle suspension to the alkaline side using a base such as sodium hydroxide, since this improves the solubility of polymethacrylic acid.

【0031】この精製操作によりポリメタクリル酸が除
去されるのは、ポリメタクリル酸には通常グラフト点と
なるα−水素が存在しないので、ポリメタクリル酸と疎
水性単量体とは共重合しておらず、したがって、遠心分
離等により、粒子表面に存在する水溶性のポリメタクリ
ル酸が粒子から分離するためであると考えられる。
[0031] Polymethacrylic acid is removed by this purification operation because polymethacrylic acid does not normally have α-hydrogen, which serves as a grafting point, so polymethacrylic acid and hydrophobic monomer are not copolymerized. Therefore, it is thought that this is because the water-soluble polymethacrylic acid present on the particle surface is separated from the particle by centrifugation or the like.

【0032】なお、本発明の方法において、当初添加し
た疎水性単量体の重合終了後、新たに疎水性単量体(お
よび、必要ならば、重合開始剤を、単量体成分100重
量部に対して0.1〜10重量部の範囲)を追加して重
合を続行させることが可能である。
In the method of the present invention, after the initially added hydrophobic monomer has been polymerized, 100 parts by weight of the hydrophobic monomer (and, if necessary, a polymerization initiator) is added to the monomer component. (in the range of 0.1 to 10 parts by weight) to continue the polymerization.

【0033】追加添加する疎水性単量体は、当初使用し
た疎水性単量体と同じでも異なっていてもよいが、使用
する有機溶媒に可溶であることが必要である。その量は
、当初の重合で得られた重合体粒子100重量部に対し
、好ましくは150重量部以下、より好ましくは100
重量部以下である。150重量部を超えて後添加すると
、添加した単量体が新たに粒子を作り、重合体微粒子の
粒子径の単分散性が損なわれる。
The additionally added hydrophobic monomer may be the same as or different from the hydrophobic monomer originally used, but it must be soluble in the organic solvent used. The amount is preferably 150 parts by weight or less, more preferably 100 parts by weight, based on 100 parts by weight of the polymer particles obtained in the initial polymerization.
Parts by weight or less. If more than 150 parts by weight is added later, the added monomer creates new particles, impairing the monodispersity of the particle diameter of the polymer fine particles.

【0034】本発明の方法により、重量平均粒径/数平
均粒径が1.2未満の単分散粒子径分布を有し、かつ、
平均粒子径(重量平均粒径および数平均粒径)が0.0
5μm以上1μm未満の範囲内にある重合体微粒子が得
られる。
According to the method of the present invention, particles having a monodisperse particle size distribution with a weight average particle size/number average particle size of less than 1.2, and
Average particle size (weight average particle size and number average particle size) is 0.0
Polymer fine particles having a size in the range of 5 μm or more and less than 1 μm are obtained.

【0035】[0035]

【実施例】以下、本発明について、実施例および比較例
を挙げて具体的に説明するが、本発明は、これらの実施
例のみに限定されるものではない。なお、実施例中の部
および%は、特に断りのない限り重量基準である。
[Examples] The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Note that parts and percentages in the examples are based on weight unless otherwise specified.

【0036】物性の測定法は、下記のとおりである。 (1)重合転化率 重量法による。 (2)平均粒子径 特に断りのない限り、LPA3000/3100サブミ
クロン粒子径測定器(大塚電子社製)を用いて測定した
。 (3)粒子表面の酸基の量 重合体粒子2gを蒸留水48gに投入し、これに0.1
N水酸化ナトリウム溶液をpHが12になるまで添加し
て6分間撹拌した後、0.1N塩酸水溶液を0.5ミリ
リットルずつ30秒毎に添加した電導度滴定(京都電子
社製、CM−117電導度計使用)を行ない、滴定曲線
の変曲点に対応する塩酸消費量から計算する。 (4)熱重量変化 熱天秤(島津製作所社製;TGA−50)を使用して、
窒素雰囲気下、10℃/分の昇温速度で、重合体重量が
1%および5%減少する時の温度を測定した。
The method for measuring physical properties is as follows. (1) Polymerization conversion rate by weight method. (2) Average particle size Unless otherwise specified, the average particle size was measured using an LPA3000/3100 submicron particle size analyzer (manufactured by Otsuka Electronics). (3) Amount of acid groups on the particle surface 2 g of polymer particles were added to 48 g of distilled water, and 0.1
After adding N sodium hydroxide solution until the pH reached 12 and stirring for 6 minutes, conductivity titration (CM-117, manufactured by Kyoto Denshi Co., Ltd.) was performed by adding 0.5 ml of 0.1 N hydrochloric acid aqueous solution every 30 seconds. Calculate from the amount of hydrochloric acid consumed corresponding to the inflection point of the titration curve. (4) Using a thermogravimetric change thermobalance (manufactured by Shimadzu Corporation; TGA-50),
Under a nitrogen atmosphere, the temperature at which the polymer weight decreased by 1% and 5% was measured at a heating rate of 10° C./min.

【0037】[実施例1]撹拌器、冷却コンデンサー、
窒素ガス導入管および温度計を装着した2リットルの反
応器の内部を窒素置換し、この反応容器中に脱イオン水
360g、エチルアルコール840g、メタクリル酸1
3.3gおよび過硫酸カリウム0.95gを加えて30
分間撹拌して均一混合液とした。
[Example 1] Stirrer, cooling condenser,
The interior of a 2-liter reactor equipped with a nitrogen gas inlet tube and a thermometer was replaced with nitrogen, and 360 g of deionized water, 840 g of ethyl alcohol, and 1 liter of methacrylic acid were placed in the reaction container.
Add 3.3 g and 0.95 g of potassium persulfate to 30
The mixture was stirred for a minute to form a homogeneous mixture.

【0038】次いで、窒素で混合液のバブリングを行な
った後、70℃に反応器を加温して反応を開始させ、そ
のまま6時間保ち、メタクリル酸の重合を完了させた。 重合転化率は約100%であった。次に、反応器にスチ
レン66.7gを添加して(触媒は:過硫酸カリウム0
.5部)同温度で16時間、スチレンの重合を行なった
のち、反応混合物を室温まで冷却した。重合転化率は9
8.3%であった。
Next, after bubbling the mixed solution with nitrogen, the reactor was heated to 70° C. to initiate the reaction, which was maintained for 6 hours to complete the polymerization of methacrylic acid. The polymerization conversion rate was about 100%. Next, 66.7 g of styrene was added to the reactor (the catalyst was: potassium persulfate 0
.. 5 parts) After polymerizing styrene at the same temperature for 16 hours, the reaction mixture was cooled to room temperature. Polymerization conversion rate is 9
It was 8.3%.

【0039】得られたポリスチレン懸濁液を遠心分離器
にかけて重合体微粒子を沈殿させ、デカンテーションに
より重合体微粒子を分離した。この重合体微粒子を蒸留
水中に投入し十分撹拌した後、再度遠心分離を行なう精
製操作を2度繰り返した。
The resulting polystyrene suspension was centrifuged to precipitate the polymer particles, and the polymer particles were separated by decantation. The polymer particles were poured into distilled water, thoroughly stirred, and then centrifuged again, thereby repeating the purification operation twice.

【0040】得られたポリスチレン微粒子は、重量平均
粒径0.47μm、数平均粒径0.44μmの単分散粒
子径分布を持つ球状微粒子であった。また、重合体微粒
子表面にはポリメタクリル酸は検出されず、粒子表面が
ポリスチレンであることが確認された。
The obtained polystyrene fine particles were spherical fine particles having a monodisperse particle size distribution with a weight average particle size of 0.47 μm and a number average particle size of 0.44 μm. Furthermore, no polymethacrylic acid was detected on the surface of the polymer fine particles, confirming that the particle surface was polystyrene.

【0041】[比較例1]過硫酸カリウムに代えて2,
2′−アゾビスイソブチロニトリル0.95gを使用し
た以外は、実施例1と同様にして、重量平均粒径2.0
5μm、数平均粒径2.01μmの単分散粒子径分布を
持つ球状粒子を得た。なお、粒子径はコールターマルチ
サイザー(コールター社製)を使用して測定した。
[Comparative Example 1] In place of potassium persulfate, 2,
The weight average particle size was 2.0 in the same manner as in Example 1 except that 0.95 g of 2'-azobisisobutyronitrile was used.
Spherical particles having a monodisperse particle size distribution of 5 μm and a number average particle size of 2.01 μm were obtained. In addition, the particle diameter was measured using Coulter Multisizer (manufactured by Coulter).

【0042】[実施例2]実施例1でスチレンの重合が
終了した後、さらにスチレンを66.7gと過硫酸カリ
ウム0.5gとを添加して10時間重合を続行させた。 重合転化率は96.4%であった。その後、実施例1と
同様の精製操作を行なって、重量平均粒径0.58μm
、数平均粒径0.55μmの単分散粒子径分布を持つ球
状微粒子を得た。
[Example 2] After the polymerization of styrene was completed in Example 1, 66.7 g of styrene and 0.5 g of potassium persulfate were further added, and the polymerization was continued for 10 hours. The polymerization conversion rate was 96.4%. Thereafter, the same purification operation as in Example 1 was carried out to obtain a weight average particle size of 0.58 μm.
, Spherical fine particles having a monodisperse particle size distribution with a number average particle size of 0.55 μm were obtained.

【0043】[実施例3]実施例1でスチレンの重合が
終了した後、さらにスチレンを33.3g、ジビニルベ
ンゼン(和光純薬社製、純度55%)60.7gと過硫
酸カリウム0.5gとを添加して10時間重合を続行さ
せた。重合転化率は98.2%であった。その後、実施
例1と同様の精製操作を行なって、重量平均粒径0.6
0μm、数平均粒径0.58μmの単分散粒子径分布を
持つ球状微粒子を得た。
[Example 3] After the polymerization of styrene was completed in Example 1, 33.3 g of styrene, 60.7 g of divinylbenzene (manufactured by Wako Pure Chemical Industries, Ltd., purity 55%) and 0.5 g of potassium persulfate were added. was added, and the polymerization was continued for 10 hours. The polymerization conversion rate was 98.2%. Thereafter, the same purification operation as in Example 1 was carried out to obtain a weight average particle size of 0.6.
Spherical fine particles having a monodisperse particle size distribution of 0 μm and a number average particle size of 0.58 μm were obtained.

【0044】この重合体微粒子を真空乾燥した後、エチ
レングリコールおよびトルエン中に投入したが、いずれ
の場合も液が白濁し、重合体微粒子がこれらの溶媒に不
溶であることが確認された。
After vacuum-drying the polymer particles, they were poured into ethylene glycol and toluene, but in each case the liquid became cloudy, confirming that the polymer particles were insoluble in these solvents.

【0045】また、重合体微粒子の熱重量減少を測定し
たところ、1%重量減少温度が310℃で、5%重量減
少温度が360℃であった。
Further, when the thermal weight loss of the polymer fine particles was measured, the 1% weight loss temperature was 310°C, and the 5% weight loss temperature was 360°C.

【0046】[実施例4]過硫酸カリウムに代えて4,
4′−アゾビス−4−シアノバレリアン酸0.1gを使
用した以外は、実施例1と同様にして、重量平均粒径0
.86μm、数平均粒子径0.83μmの単分散粒子径
分布を持つ球状微粒子を得た。
[Example 4] In place of potassium persulfate, 4,
The weight average particle size was 0 in the same manner as in Example 1 except that 0.1 g of 4'-azobis-4-cyanovaleric acid was used.
.. Spherical fine particles having a monodisperse particle size distribution of 86 μm and a number average particle size of 0.83 μm were obtained.

【0047】[実施例5]過硫酸カリウムに代えて過硫
酸アンモニウム3.2gを使用した以外は、実施例1と
同様にして、重量平均粒径0.23μm、数平均粒径0
.21μmの単分散粒子径分布を持つ球状微粒子を得た
[Example 5] The same procedure as Example 1 was carried out, except that 3.2 g of ammonium persulfate was used in place of potassium persulfate, with a weight average particle size of 0.23 μm and a number average particle size of 0.
.. Spherical fine particles with a monodisperse particle size distribution of 21 μm were obtained.

【0048】[実施例6]脱イオン水の量を360g、
エチルアルコールの量を840gとした以外は、実施例
1と同様にして、重量平均粒径0.68μm、数平均粒
径0.65μmの単分散粒子径分布を持つ球状微粒子を
得た。
[Example 6] The amount of deionized water was 360 g,
Spherical fine particles having a monodisperse particle size distribution of a weight average particle size of 0.68 μm and a number average particle size of 0.65 μm were obtained in the same manner as in Example 1, except that the amount of ethyl alcohol was changed to 840 g.

【0049】[0049]

【発明の効果】本発明によれば、従来の製造方法に比べ
て、簡易な操作で、単分散粒子径分布を有する平均粒子
径が0.05μm以上1μm未満の範囲内にある重合体
微粒子を得ることができる。
Effects of the Invention According to the present invention, polymer fine particles having a monodisperse particle size distribution and an average particle size within the range of 0.05 μm or more and less than 1 μm can be produced with a simpler operation compared to conventional production methods. Obtainable.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  疎水性単量体をポリメタクリル酸の存
在下に、これらを溶解するが該疎水性単量体の重合体を
溶解しない溶媒中でラジカル重合開始剤を用いて重合を
行ない粒子状の重合体を製造する方法において、ラジカ
ル重合開始剤として該溶媒に可溶であってラジカルイオ
ン発生能を有する化合物を用いることを特徴とする単分
散粒子径分布を有し、かつ、平均粒子径が0.05μm
以上1μm未満の範囲内にある重合体微粒子の製造方法
[Claim 1] Hydrophobic monomers are polymerized in the presence of polymethacrylic acid using a radical polymerization initiator in a solvent that dissolves the hydrophobic monomers but does not dissolve the polymer of the hydrophobic monomers to form particles. A method for producing a polymer having a monodisperse particle size distribution and an average particle size distribution characterized by using as a radical polymerization initiator a compound that is soluble in the solvent and has the ability to generate radical ions. Diameter is 0.05μm
A method for producing polymer fine particles having a size of less than 1 μm.
JP3152464A 1991-05-28 1991-05-28 Method for producing polymer fine particles Expired - Fee Related JP2679453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152464A JP2679453B2 (en) 1991-05-28 1991-05-28 Method for producing polymer fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152464A JP2679453B2 (en) 1991-05-28 1991-05-28 Method for producing polymer fine particles

Publications (2)

Publication Number Publication Date
JPH04351605A true JPH04351605A (en) 1992-12-07
JP2679453B2 JP2679453B2 (en) 1997-11-19

Family

ID=15541085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152464A Expired - Fee Related JP2679453B2 (en) 1991-05-28 1991-05-28 Method for producing polymer fine particles

Country Status (1)

Country Link
JP (1) JP2679453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262331A (en) * 2006-03-29 2007-10-11 Jsp Corp Method for producing polymer particle
JP2011099706A (en) * 2009-11-04 2011-05-19 Mitsubishi Chemicals Corp Biological substance structure particle immobilizing carrier
JP2024052454A (en) * 2022-09-30 2024-04-11 積水メディカル株式会社 Method for producing latex particle and method for producing measurement reagent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249806A (en) * 1988-03-30 1989-10-05 Nippon Zeon Co Ltd Production of polymer particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249806A (en) * 1988-03-30 1989-10-05 Nippon Zeon Co Ltd Production of polymer particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262331A (en) * 2006-03-29 2007-10-11 Jsp Corp Method for producing polymer particle
JP2011099706A (en) * 2009-11-04 2011-05-19 Mitsubishi Chemicals Corp Biological substance structure particle immobilizing carrier
JP2024052454A (en) * 2022-09-30 2024-04-11 積水メディカル株式会社 Method for producing latex particle and method for producing measurement reagent

Also Published As

Publication number Publication date
JP2679453B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
GB2161170A (en) Production of polymer particles
NO170730B (en) PROCEDURE FOR THE PREPARATION OF CROSS-BOND POLYMER PARTICLES
JPS604501A (en) Preparation of polymer latex
JPH035405B2 (en)
JPS61215602A (en) Production of polymer particle
JP2679453B2 (en) Method for producing polymer fine particles
JP2000191818A (en) Preparation of porous particulate
JP4009752B2 (en) Self-activated polymer particles having a narrow particle size distribution and method for producing the same
CN110950989B (en) Method for producing monodisperse particles
WO2001070826A1 (en) Resin particle and process for producing the same
JPS62121701A (en) Production of polymer particle
JP2519083B2 (en) Method for producing polymer particles
US7163998B2 (en) Stabilized polymer beads and method of preparation
JPH0548245B2 (en)
JPH0692443B2 (en) Method for producing polymer particles
JPH01170854A (en) Production of carrier particle for immobilizing physiologically active material
JPH048710A (en) Production of amino group-containing polymer particle
JP3101022B2 (en) Method for producing polymer fine particles
JP5144982B2 (en) Method for producing monodisperse particles
JPS62215604A (en) Production of crosslinked polymer particle
KR100735769B1 (en) Production of vinyl polymer/silica composite particles by soap-free emulsion polymerization
JPS62209106A (en) Vinyl chloride polymer latex and production thereof
JP2003252912A (en) Monodispersed fine particle
Hayashi Preparations and Properties of Porous Poly (vinyl alcohol)-Poly (vinyl acetate) Composites
JPS63191808A (en) Manufacture of finely divided particle of monodisperse vinyl polymer

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees