JPH04351301A - Controller for hydraulic circuit - Google Patents

Controller for hydraulic circuit

Info

Publication number
JPH04351301A
JPH04351301A JP15097291A JP15097291A JPH04351301A JP H04351301 A JPH04351301 A JP H04351301A JP 15097291 A JP15097291 A JP 15097291A JP 15097291 A JP15097291 A JP 15097291A JP H04351301 A JPH04351301 A JP H04351301A
Authority
JP
Japan
Prior art keywords
flow rate
coefficient
calculating
hydraulic
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15097291A
Other languages
Japanese (ja)
Inventor
Takeshi Ichiyanagi
健 一柳
Masami Ochiai
落合 正己
Takashi Kanai
隆史 金井
Toichi Hirata
東一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP15097291A priority Critical patent/JPH04351301A/en
Publication of JPH04351301A publication Critical patent/JPH04351301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To provide a controller capable of accurately controlling operation of a hydraulic circuit with good stability and rapid responsiveness according to operation of operating means. CONSTITUTION:A ratio of a required total flow rate on the basis of an operating quantity of operating levers 9a, 9b to a maximum dischargeable flow rate based on a discharge pressure is calculated. If the ratio is 1 or more, a coefficient is set in 1 while if it is less than 1, the coefficient is set in a value of the ratio. Main valves 6a, 6b are controlled on the basis of a value obtained by multiplying the operating quantity by the coefficient, and an inclining rotation quantity is calculated based on a value obtained by multiplying the maximum dischargeable flow rate by the coefficient. The inclining rotation quantity is corrected according to an inclining rotation quantity on the basis of a deflection between a differential pressure between the discharge pressure and a maximum load pressure, and a specific value of the differential pressure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は可変容量油圧ポンプを油
圧源とする油圧回路の動作を制御する油圧回路の制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit control device for controlling the operation of a hydraulic circuit using a variable displacement hydraulic pump as a hydraulic power source.

【0002】0002

【従来の技術】可変容量油圧ポンプ(以下、単に油圧ポ
ンプという。)を用いて複数の油圧アクチュエータを駆
動する油圧回路の制御手段としては、従来から種々の手
段が提案されている。その最も典型的な例として、例え
ば、米国特許第4712376号等に示される流量比較
形制御手段がある。この手段は、各油圧アクチュエータ
を駆動制御する各操作レバーの入力信号の和からその時
点での総消費流量(要求総流量)を求め、一方、油圧ポ
ンプの吐出圧力を検出しこの検出値からその時点での油
圧ポンプの最大吐出可能流量を求める。そして、要求総
流量が最大吐出可能流量以下であれば要求総流量に基づ
いて油圧ポンプのおしのけ容積可変機構(以下、これを
斜板で代表させる。)を駆動して吐出流量を制御し、又
、要求総流量が最大吐出可能流量を超える場合には、各
操作レバーの入力信号に、最大吐出可能流量を要求総流
量で除した値を乗算し、この結果得られた総流量に基づ
いて斜板を駆動する。これにより各油圧アクチュエータ
には操作レバーの操作量および油圧ポンプの最大吐出可
能流量に見合った流量の圧油が供給されることになる。
2. Description of the Related Art Various means have been proposed in the past as control means for a hydraulic circuit that drives a plurality of hydraulic actuators using a variable displacement hydraulic pump (hereinafter simply referred to as a hydraulic pump). The most typical example thereof is a flow rate comparison type control means shown in, for example, US Pat. No. 4,712,376. This means calculates the total consumed flow rate (required total flow rate) at that point from the sum of the input signals of each operating lever that drives and controls each hydraulic actuator, and on the other hand, detects the discharge pressure of the hydraulic pump and calculates the amount from this detected value. Find the maximum dischargeable flow rate of the hydraulic pump at the time. If the required total flow rate is less than or equal to the maximum dischargeable flow rate, the displacement volume variable mechanism (hereinafter represented by a swash plate) of the hydraulic pump is driven based on the required total flow rate to control the discharge flow rate, and If the required total flow rate exceeds the maximum dischargeable flow rate, the input signal of each control lever is multiplied by the value obtained by dividing the maximum dischargeable flow rate by the required total flow rate, and the slope is adjusted based on the total flow rate obtained as a result. Drive the board. As a result, each hydraulic actuator is supplied with pressure oil at a flow rate commensurate with the operating amount of the operating lever and the maximum dischargeable flow rate of the hydraulic pump.

【0003】0003

【発明が解決しようとする課題】上記流量比較形制御手
段は、サーボループを構成しないので安定性があり、又
、各操作レバーが操作されると直ちに要求総流量が得ら
れるので速応性に優れている。しかしながら、当該要求
総流量はあくまで予測値に過ぎず、油の温度やその他の
種々の条件により、得られる要求総流量の精度は満足す
べきものではない。このため、予測した要求総流量が大
きいと油圧ポンプの吐出圧が上昇して吐出油はリリーフ
し、逆に、予測した要求総流量が小さいと油圧ポンプの
吐出圧が低下して流量に不足を生じることになる。本発
明の目的は、上記従来技術における課題を解決し、安定
性、速応性に優れ、しかも高精度の制御を行うことがで
きる油圧回路の制御装置を提供するにある。
[Problems to be Solved by the Invention] The above-mentioned flow rate comparison type control means is stable because it does not constitute a servo loop, and has excellent quick response because the required total flow rate can be obtained immediately when each operating lever is operated. ing. However, the required total flow rate is only a predicted value, and the accuracy of the obtained required total flow rate may not be satisfactory depending on the temperature of the oil and various other conditions. Therefore, if the predicted total required flow rate is large, the discharge pressure of the hydraulic pump will increase and the discharged oil will be relieved; conversely, if the predicted total required flow rate is small, the hydraulic pump discharge pressure will decrease and the flow rate will be insufficient. will occur. SUMMARY OF THE INVENTION An object of the present invention is to provide a hydraulic circuit control device that solves the above-mentioned problems in the prior art, has excellent stability and quick response, and is capable of highly accurate control.

【0004】0004

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、おしのけ容積可変機構の傾転量に応じた
圧油を吐出する可変容量油圧ポンプと、この可変容量油
圧ポンプにより駆動される複数の油圧アクチュエータと
、これら各油圧アクチュエータの駆動をそれぞれ制御す
る操作手段と、これら各操作手段の操作量に基づく開度
指令値により作動して対応する油圧アクチュエータへの
流量を制御する制御弁とを備えた油圧回路において、前
記各操作手段の操作量に基づいて圧油の要求総流量を演
算する第1の演算手段と、前記可変容量油圧ポンプの吐
出圧に基づいて最大吐出可能流量を演算する第2の演算
手段と、前記最大吐出可能流量と前記要求総流量との比
が1以上のとき1を、1未満のとき当該比をそれぞれ係
数として定める係数演算手段と、前記開度指令値を前記
係数で補正する開度指令値補正手段と、前記最大吐出可
能流量を前記係数で補正した吐出流量指令値に基づいて
前記傾転量を求める第3の演算手段と、前記可変容量油
圧ポンプの吐出圧と前記各油圧アクチュエータの最大負
荷圧との差圧と、規定された差圧との偏差に基づいて前
記第3の演算手段により求められた傾転量の補正値を演
算する第4の演算手段と、前記第3の演算手段の演算値
と前記第4の演算手段の演算値と基づいて前記おしのけ
容積可変機構の傾転指令値を演算する第5の演算手段と
を設けたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a variable displacement hydraulic pump that discharges pressure oil according to the amount of tilting of a variable displacement mechanism, and a variable displacement hydraulic pump that is driven by the variable displacement hydraulic pump. a plurality of hydraulic actuators, operating means for controlling the drive of each of these hydraulic actuators, and control for controlling the flow rate to the corresponding hydraulic actuator by operating according to an opening command value based on the operation amount of each of these operating means. a first calculation means for calculating a required total flow rate of pressurized oil based on the operation amount of each of the operation means; and a maximum dischargeable flow rate based on the discharge pressure of the variable displacement hydraulic pump. a second calculation means for calculating the ratio of the maximum dischargeable flow rate and the required total flow rate; a coefficient calculation means for determining 1 as a coefficient when the ratio of the maximum dischargeable flow rate and the required total flow rate is 1 or more; and a coefficient calculation means that determines the ratio as a coefficient when the ratio is less than 1; opening command value correction means for correcting the command value by the coefficient; third calculation means for calculating the tilting amount based on the discharge flow rate command value obtained by correcting the maximum dischargeable flow rate by the coefficient; and the variable capacity. Calculating a correction value for the amount of tilting determined by the third calculating means based on the difference between the discharge pressure of the hydraulic pump and the maximum load pressure of each of the hydraulic actuators and a prescribed differential pressure. a fourth calculation means; and a fifth calculation means for calculating a tilting command value of the variable displacement mechanism based on the calculation value of the third calculation means and the calculation value of the fourth calculation means. It is characterized by:

【0005】[0005]

【作用】操作手段が操作されると、油圧アクチュエータ
で必要とされる要求総流量が演算され、同時に、油圧ポ
ンプの吐出圧に基づいて油圧ポンプの最大吐出可能流量
が演算される。ここで、最大吐出可能流量を要求総流量
で除算し、除算値が1以上であれば係数を1とし、1未
満であれば係数を当該除算値とする。このように係数を
決めた後、制御弁に対しては当該係数を用いて補正した
開度指令値を出力する。同時に、おしのけ容積可変機構
に対しては、最大吐出可能流量を当該係数で補正した吐
出流量指令値に基づいてその傾転量を求めるとともに、
この傾転量を、油圧ポンプの吐出圧と各油圧アクチュエ
ータの最大負荷圧との差圧と、予め規定された差圧との
偏差に基づいて得られた補正値により補正し、補正され
た傾転量を適正な傾転量として出力する。
[Operation] When the operating means is operated, the required total flow rate required by the hydraulic actuator is calculated, and at the same time, the maximum dischargeable flow rate of the hydraulic pump is calculated based on the discharge pressure of the hydraulic pump. Here, the maximum dischargeable flow rate is divided by the required total flow rate, and if the division value is 1 or more, the coefficient is set to 1, and if it is less than 1, the coefficient is set to the division value. After determining the coefficient in this manner, an opening command value corrected using the coefficient is output to the control valve. At the same time, for the variable displacement mechanism, the amount of tilting is determined based on the discharge flow rate command value obtained by correcting the maximum dischargeable flow rate by the relevant coefficient, and
This amount of tilting is corrected by a correction value obtained based on the difference between the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of each hydraulic actuator, and a predefined differential pressure, and the corrected tilting amount is Outputs the amount of rotation as an appropriate amount of tilting.

【0006】[0006]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の実施例に係る油圧回路の制御装置
を用いた油圧回路図である。図で、1は油圧ポンプ、1
aは油圧ポンプ1の斜板、2は斜板1aを傾転駆動する
レギュレータ、3a、3bはレギュレータ2の駆動を制
御する電磁弁、4は斜板1aの傾転量を検出する傾転量
検出器である。5a、5bは油圧ポンプ1の圧油により
駆動される油圧シリンダ、6a、6bはそれぞれ油圧シ
リンダ5a、5bへの流量を制御する主弁、7a、7b
は主弁6a、6bと機械的に連結された方向切換弁、8
a、8bは主弁6a、6bと方向切換弁7a、7bとの
間に介在する圧力補償弁である。9a、9bはそれぞれ
油圧シリンダ5a、5bを操作する操作レバー、10a
、10bは各操作レバーの操作量に比例した電気信号を
出力する操作量検出器である。11はアンロード弁、1
2は油圧ポンプ1の吐出圧を検出する圧力センサを示す
。13は油圧シリンダ5a5bのうちの高い方の圧力を
選択して出力するシャトル弁である。14は差圧センサ
であり、油圧ポンプ1の吐出圧とシャトル弁13で選択
された圧力(最大負荷圧)との差圧を検出しこれに比例
した電気信号を出力する。15は各種信号を入力し、所
要の演算制御を行ってその結果を指令値として出力する
コントローラである。ここで、上記圧力補償弁8a、8
bの機能を説明しておく。図示のように、圧力補償弁8
a、8bの一方のパイロットポートにはシャトル弁13
で選択された最大負荷圧が、又、他方のパイロットポー
トには主弁6a、6bの出力側圧力が入力され、これに
より当該入力側圧力をほぼ最大負荷圧と等しくする機能
を有する。したがって、主弁6aと主弁6bの前後に生
じる差圧は等しくなり、圧油の供給流量は主弁6a、6
bのストロークに応じた値となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments. FIG. 1 is a hydraulic circuit diagram using a hydraulic circuit control device according to an embodiment of the present invention. In the figure, 1 is a hydraulic pump;
a is a swash plate of the hydraulic pump 1; 2 is a regulator that drives the swash plate 1a; 3a and 3b are solenoid valves that control the drive of the regulator 2; 4 is a tilt amount that detects the amount of tilt of the swash plate 1a. It is a detector. 5a and 5b are hydraulic cylinders driven by the pressure oil of the hydraulic pump 1; 6a and 6b are main valves that control the flow to the hydraulic cylinders 5a and 5b, respectively; 7a and 7b
8 is a directional control valve mechanically connected to the main valves 6a and 6b;
A and 8b are pressure compensation valves interposed between the main valves 6a and 6b and the directional control valves 7a and 7b. 9a and 9b are operating levers 10a for operating the hydraulic cylinders 5a and 5b, respectively;
, 10b is a manipulated variable detector that outputs an electric signal proportional to the manipulated variable of each operating lever. 11 is an unload valve, 1
2 indicates a pressure sensor that detects the discharge pressure of the hydraulic pump 1. 13 is a shuttle valve that selects and outputs the higher pressure of the hydraulic cylinders 5a5b. A differential pressure sensor 14 detects the differential pressure between the discharge pressure of the hydraulic pump 1 and the pressure (maximum load pressure) selected by the shuttle valve 13, and outputs an electric signal proportional to the differential pressure. 15 is a controller that inputs various signals, performs necessary arithmetic control, and outputs the results as command values. Here, the pressure compensation valves 8a, 8
Let me explain the function of b. As shown, the pressure compensation valve 8
A shuttle valve 13 is installed in one of the pilot ports of a and 8b.
The maximum load pressure selected in , and the output side pressure of the main valves 6a, 6b are input to the other pilot port, thereby having the function of making the input side pressure approximately equal to the maximum load pressure. Therefore, the differential pressure generated before and after the main valves 6a and 6b becomes equal, and the flow rate of pressure oil supplied to the main valves 6a and 6b becomes equal.
The value corresponds to the stroke of b.

【0007】次に、本実施例の動作を図2、3を参照し
ながら説明する。図2はコントローラ15の機能を説明
するブロック図、図3は主弁のスプール変位と流量との
関係を示す特性図である。油圧シリンダ5a、5bを駆
動すべく、操作レバー9a、9bを操作すると、その操
作量がコントローラ15に入力される。コントローラ1
5はこれら操作量に基づき要求総流量演算部151にお
いて要求総流量Qvaを演算し、又、圧力センサ12の
出力信号に基づき最大流量演算部152において油圧ポ
ンプ1の最大吐出可能流量Qpmaxを演算する。これ
らの値は係数演算部153に入力され、係数αが決定さ
れる。 この係数αは、要求総流量Qvaを最大吐出可能流量Q
pmaxで除し、その除算値が1以上であれば、α=1
、1未満であれば、α=除算値、と定められる。一方、
操作レバー9a、9bの操作量には乗算器154で上記
係数αが乗算され、これら乗算値は変位量変換部155
に入力される。各変位量変換部155は入力された乗算
値に基づいてそれぞれの流量Q5a、Q5bを演算し、
これら流量から図3に示す特性により主弁6a、6bの
ストローク量X5a、X5bを求める。ここで、上記特
性はコントローラ15の記憶部に格納されており、図3
のG5aはシリンダ5aの特性、G5bはシリンダ5b
の特性を示す。これらの特性は、主弁6a、6bにおけ
る前記前後差圧の設定値に対して実測により作成したも
のであるが、機構上の種々の誤差や油温の変化が存在す
るので、ある範囲でのばらつきを避けることは不可能で
あり、この意味で流量予測値ということができる。コン
トローラ15は、このような特性に基づいて得られたス
トローク量X5a、X5bに応じた開度指令信号を主弁
6a、6bに出力する。主弁6a、6bはこの出力に応
じて駆動され、上記流量Q5a、Q5bを流す。さらに
、要求総流量Qvaには係数αが乗算され、この乗算値
はその時点での流量Qp と比較され、その偏差が傾転
指令発生部157に入力される。傾転指令発生部157
は、入力された偏差に応じて、不感帯fを有する所定の
特性に従った数値を出力し、この数値に設定部158に
設定された値(60/Dp ・N)が乗算され傾転量Y
2 が得られる。ただし、Dp は油圧ポンプ1の容量
、Nは油圧ポンプ1の回転数である。又、傾転指令発生
部157の特性もコントローラ15の記憶部に格納され
ている。なお、上記流量Qp は後述する傾転量Yに値
(Dp ・N/60)を乗算することにより得られる。
Next, the operation of this embodiment will be explained with reference to FIGS. 2 and 3. FIG. 2 is a block diagram explaining the functions of the controller 15, and FIG. 3 is a characteristic diagram showing the relationship between the spool displacement of the main valve and the flow rate. When the operating levers 9a, 9b are operated to drive the hydraulic cylinders 5a, 5b, the amount of the operation is input to the controller 15. Controller 1
5 calculates the required total flow rate Qva in the required total flow rate calculating section 151 based on these manipulated variables, and calculates the maximum dischargeable flow rate Qpmax of the hydraulic pump 1 in the maximum flow rate calculating section 152 based on the output signal of the pressure sensor 12. . These values are input to the coefficient calculating section 153, and the coefficient α is determined. This coefficient α is calculated from the total required flow rate Qva to the maximum dischargeable flow rate Q
divided by pmax, and if the division value is 1 or more, α=1
, is less than 1, it is determined that α=divider value. on the other hand,
The operation amounts of the operation levers 9a and 9b are multiplied by the coefficient α in a multiplier 154, and these multiplied values are converted into a displacement amount converter 155.
is input. Each displacement converter 155 calculates the respective flow rates Q5a and Q5b based on the input multiplication value,
From these flow rates, the stroke amounts X5a and X5b of the main valves 6a and 6b are determined based on the characteristics shown in FIG. Here, the above characteristics are stored in the storage section of the controller 15, and are shown in FIG.
G5a is the characteristic of cylinder 5a, G5b is the characteristic of cylinder 5b
shows the characteristics of These characteristics were created by actual measurements for the set values of the differential pressures before and after the main valves 6a and 6b, but since there are various errors in the mechanism and changes in oil temperature, they may vary within a certain range. It is impossible to avoid variations, and in this sense it can be called a predicted flow rate value. The controller 15 outputs an opening command signal to the main valves 6a, 6b according to the stroke amounts X5a, X5b obtained based on such characteristics. The main valves 6a, 6b are driven according to this output, and flow the above-mentioned flow rates Q5a, Q5b. Further, the required total flow rate Qva is multiplied by a coefficient α, this multiplied value is compared with the flow rate Qp at that time, and the deviation is inputted to the tilt command generation section 157. Tilt command generation unit 157
outputs a numerical value according to a predetermined characteristic having a dead zone f according to the input deviation, and this numerical value is multiplied by the value (60/Dp ・N) set in the setting section 158 to obtain the tilting amount Y.
2 is obtained. However, Dp is the capacity of the hydraulic pump 1, and N is the rotation speed of the hydraulic pump 1. Further, the characteristics of the tilting command generating section 157 are also stored in the storage section of the controller 15. Note that the flow rate Qp is obtained by multiplying the amount of tilting Y, which will be described later, by a value (Dp·N/60).

【0008】上記傾転量Y2 は、操作レバー9a、9
bが操作されると、安定して(ハンチングを生じること
なく)迅速に算出される。そして当該傾転量Y2 がコ
ントローラ15から電磁弁3a、3bに出力されると、
斜板1aはこれに従って駆動され、油圧ポンプ1は飽和
を生じることなく要求総流量Qvaの変化に迅速に追尾
できることとなる。しかしながら、要求総流量Qvaに
基づいて実際に得られる流量は図3に示す特性の説明か
ら明らかなように必ずしも正確ではなく予測値にすぎな
い。このため、本実施例では、公知のロードセンシング
制御と称される手段を採用して精度の高い傾転量を得る
ものである。このため、コントローラ15は差圧センサ
14から油圧ポンプ1の吐出圧Psと最大負荷圧PLm
axとの差圧ΔPLsを入力し、加算部156で当該差
圧(実際の差圧)と予め定められた差圧の規定値ΔPL
s0 との偏差を演算し、この偏差に所定の定数Kを乗
算して傾転量Y1 を算出する。このフィードバック制
御により、差圧ΔPLsが規定値ΔPLs0 より大き
いと(上記偏差が負の値だと)油圧ポンプ1の吐出流量
が大きすぎると判断し、傾転量Y1 が負の値となるこ
とにより、さきに得られた傾転量Y2 を加算器156
において低下させ、逆に、差圧ΔPLsが規定値ΔPL
s0 より小さいと(上記偏差が正の値だと)油圧ポン
プ1の吐出流量が小さすぎると判断し、傾転量Y1 が
正の値となることにより、さきに得られた傾転量Y2 
を加算器156において増加させる。この場合の傾転量
Y1 は、さきの制御により求められた傾転量Y2 を
補正する補正値として用いられるので、このロードセン
シング制御系ではゲインを大きくする必要はなく、した
がって、ハンチングを生じるおそれはない。 逆に、ロードセンシング制御からみれば、ハンチングの
おそれがないので、機械的ダンパを設置する必要はなく
なりコスト低減となる。かくして、両制御系により得ら
れた傾転量Y1 、Y2 は加算器156で加算され、
補正された傾転量Yとしてコントローラ15から電磁弁
3a、3bへ出力され、その結果、油圧ポンプ1はその
時点の油温等の条件の如何にかかわらず高精度で所要の
流量を吐出することができる。なお、上記実施例の説明
では、主弁と方向切換弁とを機械的に連結した構成のも
のについて説明したが、これを通常のコントロール弁に
置換えることもできる。又、負荷は油圧シリンダに限ら
ず、油圧モータであってもよいのは明らかである。
[0008] The above-mentioned tilting amount Y2 is determined by the operation levers 9a, 9
When b is manipulated, it is calculated stably (without hunting) and quickly. Then, when the tilting amount Y2 is outputted from the controller 15 to the solenoid valves 3a and 3b,
The swash plate 1a is driven accordingly, and the hydraulic pump 1 can quickly follow changes in the required total flow rate Qva without saturation. However, as is clear from the description of the characteristics shown in FIG. 3, the flow rate actually obtained based on the required total flow rate Qva is not necessarily accurate and is only a predicted value. Therefore, in this embodiment, a known means called load sensing control is employed to obtain a highly accurate tilting amount. Therefore, the controller 15 detects the discharge pressure Ps of the hydraulic pump 1 and the maximum load pressure PLm from the differential pressure sensor 14.
The differential pressure ΔPLs with respect to
The deviation from s0 is calculated, and this deviation is multiplied by a predetermined constant K to calculate the tilting amount Y1. Through this feedback control, if the differential pressure ΔPLs is larger than the specified value ΔPLs0 (if the above deviation is a negative value), it is determined that the discharge flow rate of the hydraulic pump 1 is too large, and the tilting amount Y1 becomes a negative value. , the previously obtained tilting amount Y2 is added to the adder 156
conversely, the differential pressure ΔPLs is reduced to the specified value ΔPL
If it is smaller than s0 (if the above deviation is a positive value), it is determined that the discharge flow rate of the hydraulic pump 1 is too small, and since the tilting amount Y1 becomes a positive value, the previously obtained tilting amount Y2
is incremented in adder 156. The amount of tilting Y1 in this case is used as a correction value to correct the amount of tilting Y2 found by the previous control, so there is no need to increase the gain in this load sensing control system, and therefore hunting may occur. That's not it. Conversely, from the perspective of load sensing control, there is no risk of hunting, so there is no need to install a mechanical damper, resulting in cost reduction. Thus, the tilting amounts Y1 and Y2 obtained by both control systems are added by the adder 156,
The corrected tilting amount Y is output from the controller 15 to the solenoid valves 3a and 3b, and as a result, the hydraulic pump 1 can discharge the required flow rate with high accuracy regardless of the conditions such as oil temperature at that time. Can be done. In addition, in the description of the above embodiment, a configuration in which the main valve and the directional switching valve are mechanically connected has been described, but this can also be replaced with a normal control valve. Furthermore, it is clear that the load is not limited to a hydraulic cylinder, but may also be a hydraulic motor.

【0009】[0009]

【発明の効果】以上述べたように、本発明では、流量比
較形の制御にいわゆるロードセンシング制御を組合わせ
、前者の要求総流量(予測値)に基づく傾転量を後者の
フィードバック制御により補正するようにしたので、前
者の特徴である安定性、速応性を保持しつつ、その不正
確を後者の特徴である高精度制御で補うことができ、油
圧回路の動作を優れた安定性、速応性をもち、しかも高
精度で制御することができる。さらに、後者の制御結果
を前者の制御結果の補正として用いるようにしたことに
より、後者のゲインを小さくすることができ、ハンチン
グの発生を防止することができる。
As described above, in the present invention, so-called load sensing control is combined with flow comparison type control, and the tilting amount based on the required total flow rate (predicted value) of the former is corrected by the feedback control of the latter. As a result, while maintaining the stability and quick response characteristics of the former, the inaccuracies can be compensated for with the high precision control that is the characteristic of the latter, and the operation of the hydraulic circuit can be controlled with excellent stability and speed. It is highly responsive and can be controlled with high precision. Furthermore, by using the latter control result as a correction for the former control result, the latter gain can be reduced, and hunting can be prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る油圧回路の制御装置を用
いた油圧回路図である。
FIG. 1 is a hydraulic circuit diagram using a hydraulic circuit control device according to an embodiment of the present invention.

【図2】図1に示すコントローラの機能を説明するブロ
ック図である。
FIG. 2 is a block diagram illustrating the functions of the controller shown in FIG. 1.

【図3】図1に示す主弁のストロークに対する流量の特
性図である。
FIG. 3 is a characteristic diagram of flow rate versus stroke of the main valve shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1  油圧ポンプ 1a  斜板 2  レギュレータ 3a  電磁弁 3b  電磁弁 5a  油圧シリンダ 5b  油圧シリンダ 6a  主弁 6b  主弁 7a  方向切換弁 7b  方向切換弁 8a  電圧補償弁 8b  電圧補償弁 9a  操作レバー 9b  操作レバー 12  圧力センサ 13  シャトル弁 14  差圧センサ 15  コントローラ 1 Hydraulic pump 1a Swash plate 2 Regulator 3a Solenoid valve 3b Solenoid valve 5a Hydraulic cylinder 5b Hydraulic cylinder 6a Main valve 6b Main valve 7a Directional switching valve 7b Directional switching valve 8a Voltage compensation valve 8b Voltage compensation valve 9a Operation lever 9b Operation lever 12 Pressure sensor 13 Shuttle valve 14 Differential pressure sensor 15 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  おしのけ容積可変機構の傾転量に応じ
た圧油を吐出する可変容量油圧ポンプと、この可変容量
油圧ポンプにより駆動される複数の油圧アクチュエータ
と、これら各油圧アクチュエータの駆動をそれぞれ制御
する操作手段と、これら各操作手段の操作量に基づく開
度指令値により作動して対応する油圧アクチュエータへ
の流量を制御する制御弁とを備えた油圧回路において、
前記各操作手段の操作量に基づいて圧油の要求総流量を
演算する第1の演算手段と、前記可変容量油圧ポンプの
吐出圧に基づいて最大吐出可能流量を演算する第2の演
算手段と、前記最大吐出可能流量と前記要求総流量との
比が1以上のとき1を、1未満のとき当該比をそれぞれ
係数として定める係数演算手段と、前記開度指令値を前
記係数で補正する開度指令値補正手段と、前記最大吐出
可能流量を前記係数で補正した吐出流量指令値に基づい
て前記傾転量を求める第3の演算手段と、前記可変容量
油圧ポンプの吐出圧と前記各油圧アクチュエータの最大
負荷圧との差圧と、規定された差圧との偏差に基づいて
前記第3の演算手段により求められた傾転量の補正値を
演算する第4の演算手段と、前記第3の演算手段の演算
値と前記第4の演算手段の演算値と基づいて前記おしの
け容積可変機構の傾転指令値を演算する第5の演算手段
とを設けたことを特徴とする油圧回路の制御装置。
Claim 1: A variable capacity hydraulic pump that discharges pressure oil according to the amount of tilting of a variable displacement mechanism, a plurality of hydraulic actuators driven by the variable capacity hydraulic pump, and a drive system for each of these hydraulic actuators. In a hydraulic circuit comprising operating means for controlling, and a control valve operating according to an opening command value based on the operating amount of each of these operating means to control the flow rate to a corresponding hydraulic actuator,
a first calculation means for calculating a required total flow rate of pressure oil based on the operation amount of each of the operation means; a second calculation means for calculating a maximum dischargeable flow rate based on the discharge pressure of the variable displacement hydraulic pump; , a coefficient calculation means that sets 1 as a coefficient when the ratio of the maximum dischargeable flow rate and the required total flow rate is 1 or more, and sets the ratio as a coefficient when it is less than 1; and an opening that corrects the opening command value with the coefficient. degree command value correction means; third calculating means for calculating the tilting amount based on the discharge flow rate command value obtained by correcting the maximum dischargeable flow rate by the coefficient; and the discharge pressure of the variable displacement hydraulic pump and the respective hydraulic pressures. a fourth calculation means for calculating a correction value for the tilting amount obtained by the third calculation means based on a deviation between a pressure difference between the maximum load pressure of the actuator and a prescribed pressure difference; a fifth calculating means for calculating a tilting command value of the variable displacement mechanism based on the calculated value of the third calculating means and the fourth calculating means; Control device.
JP15097291A 1991-05-28 1991-05-28 Controller for hydraulic circuit Pending JPH04351301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15097291A JPH04351301A (en) 1991-05-28 1991-05-28 Controller for hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15097291A JPH04351301A (en) 1991-05-28 1991-05-28 Controller for hydraulic circuit

Publications (1)

Publication Number Publication Date
JPH04351301A true JPH04351301A (en) 1992-12-07

Family

ID=15508470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15097291A Pending JPH04351301A (en) 1991-05-28 1991-05-28 Controller for hydraulic circuit

Country Status (1)

Country Link
JP (1) JPH04351301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536599A (en) * 1999-02-05 2002-10-29 マンネスマン レックスロート アクチエンゲゼルシヤフト Control unit for at least two hydraulic consumers and differential pressure valve for said control unit
EP3660330A4 (en) * 2018-03-28 2021-04-28 Hitachi Construction Machinery Tierra Co., Ltd. Construction machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536599A (en) * 1999-02-05 2002-10-29 マンネスマン レックスロート アクチエンゲゼルシヤフト Control unit for at least two hydraulic consumers and differential pressure valve for said control unit
JP4739529B2 (en) * 1999-02-05 2011-08-03 マンネスマン レックスロート アクチエンゲゼルシヤフト Control unit for at least two hydraulic consumers and differential pressure valve for the control unit
EP3660330A4 (en) * 2018-03-28 2021-04-28 Hitachi Construction Machinery Tierra Co., Ltd. Construction machine

Similar Documents

Publication Publication Date Title
JP3228931B2 (en) Hydraulic drive
US4967557A (en) Control system for load-sensing hydraulic drive circuit
EP0462589B1 (en) Control system for load sensing hydraulic drive circuit
KR100674696B1 (en) Method and device for controlling pump torque for hydraulic construction machine
US5303551A (en) Flow rate control apparatus for oil-hydraulic pump
WO1993018308A1 (en) Hydraulically driving system
KR19990087335A (en) Control device of hydraulic drive machine
JPH0251076B2 (en)
JP3497031B2 (en) Hydraulic pump control device
EP0879968B1 (en) Hydraulic drive apparatus
KR100225422B1 (en) Method of output correction for control apparatus, the control apparatus, and hydraulic pump control apparatus
US6772590B2 (en) Hydraulic driving device
US11214940B2 (en) Hydraulic drive system for construction machine
JPH04351301A (en) Controller for hydraulic circuit
JP4773989B2 (en) Torque control device for 3-pump system for construction machinery
JP4376047B2 (en) Control equipment for hydraulic construction machinery
JPH08219106A (en) Hydraulic drive circuit
US20220112688A1 (en) Hydraulic control circuit for working machine
JP3192054B2 (en) Tilt angle control device for hydraulic pump
JPH0988902A (en) Pump capacity control method and its device
JPH04351304A (en) Hydraulic driving device
JPH06117404A (en) Control device for oil pressure circuit
JP3673003B2 (en) Control device for hydraulic drive machine
JPH07208403A (en) Oil-pressure drive device
JP3723270B2 (en) Control device for hydraulic drive machine