JPH04350574A - Electric field sensor using electrooptical effect - Google Patents

Electric field sensor using electrooptical effect

Info

Publication number
JPH04350574A
JPH04350574A JP3149248A JP14924891A JPH04350574A JP H04350574 A JPH04350574 A JP H04350574A JP 3149248 A JP3149248 A JP 3149248A JP 14924891 A JP14924891 A JP 14924891A JP H04350574 A JPH04350574 A JP H04350574A
Authority
JP
Japan
Prior art keywords
electric field
crystal
electro
light
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3149248A
Other languages
Japanese (ja)
Other versions
JP3114104B2 (en
Inventor
Nobuo Kuwabara
伸夫 桑原
Kimihiro Tajima
公博 田島
Fujio Amamiya
不二雄 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03149248A priority Critical patent/JP3114104B2/en
Publication of JPH04350574A publication Critical patent/JPH04350574A/en
Application granted granted Critical
Publication of JP3114104B2 publication Critical patent/JP3114104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To improve the temp. characteristics in an electric field sensor using an electro-optical crystal. CONSTITUTION:In an electric field sensor, a pair of conductor rods 6 are arranged so as to provide a gap therebetween anda light intensity modulator having a polarizer, an optical crystal 7 having electro-optical effect and a Babinet-Soleil compensator is arranged to the gap and a modulating electric field is applied across a pair of the conductor rods 6 and the intensity of an electric field is measured on the basis of the intensity of the output light from the modulator of the light applied to the light intensity modulator. An enclosing member 15 almost uniform in the coefficient of linear expansion is provided so as to surround the light non-transmitting side surface of the optical crystal 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空間のある一点の電界
強度を正確に測定するため、センサを挿入することによ
り周囲の電磁界分布を乱さないことを目的として、電界
を検出する電極以外は全て非金属で構成された電界セン
サに関するものである。
[Industrial Application Field] In order to accurately measure the electric field strength at a certain point in space, the present invention aims to prevent the surrounding electromagnetic field distribution from being disturbed by inserting a sensor. relates to an electric field sensor made entirely of non-metals.

【0002】0002

【従来の技術】オートマチック車の暴走問題に代表され
るように、近年、電灯のスイッチから放射される妨害波
等によりデジタル処理回路が誤動作を起こす現象が問題
となっている。この問題に対処するためには、このよう
なインパルス性の妨害波のレベルを測定するためのアン
テナが必要である。
2. Description of the Related Art In recent years, as typified by the problem of automatic cars running out of control, the phenomenon of digital processing circuits malfunctioning due to interference waves emitted from light switches has become a problem. To address this problem, an antenna is needed to measure the level of such impulsive interference.

【0003】インパルス性の電磁界を測定するためのア
ンテナとして現在は、微小ダイポールアンテナ、円錐ア
ンテナやホーンアンテナが使用されている。しかし、こ
れらのアンテナはアンテナと信号の受信機間の接続に同
軸ケーブルを使用しているため、受信した電磁界の特性
にケーブルの影響が出てしまい、測定レベルがケーブル
の引回しの状況で変化するので、再現性に優れた測定は
困難であった。そのため、電磁界を検出するセンサ部と
受信機間を光ファイバで結ぶ電界センサが検討されてい
る。この種の電界センサは、その機構により、センサ内
部にレーザダイオード等の発光素子を内蔵するものと、
LiNbO3等の電気光学効果を持つ結晶を用いた光変
調器を内蔵するものに分類される。
Currently, micro dipole antennas, conical antennas, and horn antennas are used as antennas for measuring impulsive electromagnetic fields. However, since these antennas use coaxial cables for the connection between the antenna and the signal receiver, the characteristics of the received electromagnetic field are affected by the cable, and the measured level may vary depending on the cable routing situation. Because of this change, it has been difficult to measure with excellent reproducibility. Therefore, an electric field sensor that connects a sensor unit that detects an electromagnetic field and a receiver using an optical fiber is being considered. Due to its mechanism, this type of electric field sensor has a built-in light emitting element such as a laser diode inside the sensor.
It is classified as having a built-in optical modulator using a crystal with an electro-optic effect such as LiNbO3.

【0004】これら2種類のアンテナのうち、後者は、
前者に比べ感度では劣るが、バッテリーを内蔵する必要
がないので、デジタル装置の誤動作の原因となるような
、強い電磁界パルスの長時間観測には有効である。後者
のセンサ装置の基本的全体構成を図5に示す。
[0004] Of these two types of antennas, the latter is
Although it is less sensitive than the former, since it does not require a built-in battery, it is effective for long-term observation of strong electromagnetic field pulses that can cause digital equipment to malfunction. The basic overall configuration of the latter sensor device is shown in FIG.

【0005】図5で、1は光源、2はグレーデッドイン
デックスレンズ、3−1は偏波面保持光ファイバ、3−
2はシングルモードファイバ、4はグレーデッドインデ
ックスレンズ(入力用)、5は偏光子、6はセンサロッ
ド、7は電気光学効果を持つ結晶、8はバビネソウレイ
ユ位相補償器、9は検光子、10はグレーデッドインデ
ックスレンズ(出力用)、11は光検出器、12は受信
機である。
In FIG. 5, 1 is a light source, 2 is a graded index lens, 3-1 is a polarization-maintaining optical fiber, and 3-
2 is a single mode fiber, 4 is a graded index lens (for input), 5 is a polarizer, 6 is a sensor rod, 7 is a crystal with an electro-optic effect, 8 is a Babinet-Sourail phase compensator, 9 is an analyzer, and 10 is a A graded index lens (for output), 11 a photodetector, and 12 a receiver.

【0006】このセンサ装置は光源として波長1.3μ
mのレーザダイオードを、電気光学効果を持つ結晶7と
して1mm×1mm×10mmのLiNbO3を2本使
用している。レーザダイオード1を出た光波は偏波面保
持ファイバ3−1を伝搬して、センサ4〜10に達する
。センサに達した光波はグレーデッドインデックスレン
ズ4で平行光線に変換された後、偏光子5で直線偏光成
分のみにされる。直線偏光の状態で結晶7に入射した光
は、電界ベクトルと同じ方向の結晶軸の複屈折率が変化
するので、印加された電界ベクトルの方向と同方向の偏
光成分のみ光波の伝搬速度が変化する。そのため、結晶
を出射する光波の偏光は楕円偏光となる。結晶を出射し
た光波はバビネソウレイユ位相補償器8によって結晶の
出射端で電界が印加されていない状態において円偏光と
なるように位相補償される。この光波の楕円偏光の形状
は印加電界の強さにより変化するので、検光子9を用い
て特定な偏光面のみを取り出すと、強度変調された光信
号が得られる。
This sensor device uses a wavelength of 1.3μ as a light source.
Two 1 mm x 1 mm x 10 mm LiNbO3 crystals are used as crystals 7 having an electro-optic effect. The light wave exiting the laser diode 1 propagates through the polarization maintaining fiber 3-1 and reaches the sensors 4-10. The light waves that have reached the sensor are converted into parallel light beams by a graded index lens 4, and then converted into only linearly polarized light components by a polarizer 5. When light enters the crystal 7 in a linearly polarized state, the birefringence of the crystal axis in the same direction as the electric field vector changes, so the propagation speed of the light wave changes only for the polarized component in the same direction as the applied electric field vector. do. Therefore, the polarization of the light wave exiting the crystal becomes elliptically polarized light. The light wave emitted from the crystal is phase-compensated by the Babinet-Sourail phase compensator 8 so that it becomes circularly polarized light when no electric field is applied at the output end of the crystal. Since the shape of the elliptically polarized light wave changes depending on the strength of the applied electric field, if only a specific plane of polarization is extracted using the analyzer 9, an intensity-modulated optical signal can be obtained.

【0007】この時の、7への印加電界Eと変調信号V
mの関係は式(1)で表される。       Vm=αI0 [1−cos (δB +
δ0 +πβE/V0 )]  (1)      δ
0 =(2π/λ)(n0 −ne )(L1 −L2
 )                       
   V0 =λd/(ne3γc L1 )    
                         
               γc =γ33−(n
0 /ne )3 γ13             
                     ここで、 V0 :半波長電圧 I0 :光信号の振幅 δB :バビネソウレイユ位相補償器による位相補正値
d  :結晶の厚さ ne :電界が印加される方向の屈折率n0 :電界が
印加される方向と垂直方向の屈折率γ33,γ13:電
気光学定数 L1 ,L2 :結晶の長さ λ:光の波長 である。
At this time, the electric field E applied to 7 and the modulation signal V
The relationship between m is expressed by equation (1). Vm=αI0 [1-cos (δB +
δ0 + πβE/V0 )] (1) δ
0 = (2π/λ) (n0 - ne ) (L1 - L2
)
V0 = λd/(ne3γc L1)

γc = γ33-(n
0 /ne )3 γ13
Here, V0: Half-wave voltage I0: Amplitude of optical signal δB: Phase correction value by Babinet-Souleille phase compensator d: Thickness of crystal ne: Refractive index in the direction in which the electric field is applied n0: In the direction in which the electric field is applied Vertical refractive index γ33, γ13: Electro-optic constants L1, L2: Crystal length λ: Wavelength of light.

【0008】センサ部分の構造を図6に示す。図6に於
いて、13は光変調器を取りつけるための基盤、14は
光を反射させるためのプリズム、である。図に示すよう
に、2本の金属棒(長さ15cm)の中心に変調器が設
置される。このセンサを用いるとDC〜約700MHz
の周波数範囲で、1V/mの電界強度を観測可能である
FIG. 6 shows the structure of the sensor portion. In FIG. 6, 13 is a base for attaching the optical modulator, and 14 is a prism for reflecting light. As shown in the figure, the modulator is installed at the center of two metal rods (15 cm long). Using this sensor, DC ~ about 700MHz
An electric field strength of 1 V/m can be observed in the frequency range of .

【0009】このセンサを通過する光電力(光ファイバ
3−1に入射する光電力と光ファイバー3−2から出射
する光電力の比)の温度依存性を図7に示す。測定では
、センサを恒温槽に入れ、恒温槽の外部に安定化光源を
置いて光電力をセンサの3−1に入力し3−2から出て
くる出力レベルを光パワーメータで測定した。図7は電
界センサの周囲温度を変化させた時の通過光電力の変動
を表している。同図に示すように、周囲温度を0度〜4
0度変化させた場合、通過光電力は最大で25dB程度
変動していることがわかる。式(1)に示すように、電
界センサの感度は通過光電力(光信号振幅)に比例する
から、この電界センサは周囲温度による感度変動が非常
に大きい欠点があることがわかる。
FIG. 7 shows the temperature dependence of the optical power passing through this sensor (the ratio of the optical power entering the optical fiber 3-1 and the optical power exiting from the optical fiber 3-2). In the measurement, the sensor was placed in a thermostatic oven, a stabilized light source was placed outside the thermostatic oven, optical power was input to the sensor 3-1, and the output level output from the sensor 3-2 was measured using an optical power meter. FIG. 7 shows the fluctuation of the passing optical power when the ambient temperature of the electric field sensor is changed. As shown in the figure, the ambient temperature should be set between 0 degrees and 4 degrees.
It can be seen that when changing by 0 degrees, the transmitted optical power fluctuates by about 25 dB at maximum. As shown in Equation (1), the sensitivity of the electric field sensor is proportional to the passing optical power (optical signal amplitude), so it can be seen that this electric field sensor has the drawback of very large sensitivity fluctuations depending on the ambient temperature.

【0010】0010

【発明が解決しようとする課題】本発明は、これらの問
題点を解決して、周囲温度による感度変動が少ない、電
気光学効果を用いた電界センサ装置を実現することを目
的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems and to realize an electric field sensor device using electro-optic effect, which has little sensitivity fluctuation due to ambient temperature.

【0011】[0011]

【課題を解決するための手段】本発明の特徴は、1対の
導体棒(6)を空隙をもって配置し、該空隙の間に偏光
子と電気光学効果をもつ光学結晶(7)とバビネソウレ
イユ位相補償器を有する光強度変調器(100)を配置
し、前記1対の導体棒(6)の間に変調用電界を印加し
、前記光強度変調器(100)に印加した光の当該変調
器からの出力光の強度により電界強度を測定する電界セ
ンサ装置において、前記光学結晶(7)の、光が通過し
ない側面をかこむ線膨張係数がほぼ一様な包囲部材がも
うけられる電気光学効果を用いた電解センサ装置にある
[Means for Solving the Problems] A feature of the present invention is that a pair of conductor rods (6) are arranged with a gap between them, and between the gap, a polarizer, an optical crystal (7) having an electro-optic effect, and a Babinet-Souleille phase A light intensity modulator (100) having a compensator is arranged, a modulating electric field is applied between the pair of conductor rods (6), and the light applied to the light intensity modulator (100) is modulated by the modulator. In an electric field sensor device that measures electric field intensity based on the intensity of output light from the optical crystal (7), an electro-optic effect is used in which an enclosing member having a substantially uniform coefficient of linear expansion that surrounds the side surface of the optical crystal (7) through which light does not pass is created. It is in the electrolytic sensor device that was used.

【0012】0012

【作用】図7に示す温度変動の原因として、■LiNb
O3等の電気光学効果を持つ結晶の屈折率、電気光学定
数が温度により変動する、■結晶に加わる温度歪みによ
り、屈折率、電気光学定数が変動する、が考えられる。 そこで、どちらの要因により、透過光電力の変動が生じ
ているか検討を行った。
[Effect] ■LiNb
It is conceivable that the refractive index and electro-optic constant of a crystal with an electro-optic effect, such as O3, fluctuate depending on the temperature. (2) The refractive index and electro-optic constant fluctuate due to temperature strain applied to the crystal. Therefore, we investigated which factors caused the fluctuations in transmitted light power.

【0013】図8にLiNbO3の屈折率、電気光学定
数の温度変動による通過光電力変動を示す。図8で黒点
はLiNbO3結晶に温度歪みが加わらない状態で測定
を行ったときの測定値である。また、実線は文献で報告
されている屈折率および電気光学定数の温度依存性をも
とに計算した通過光電力の温度変動である。図に示すよ
うに、理論値と測定値はほぼ一致していることと温度変
動による透過光電力変動は±0.2dB以下であること
から、■の屈折率、電気光学定数の温度依存性は透過光
電力変動の要因ではないことがわかる。従って、通過光
電力変動の要因は、■の結晶に加わる温度歪みによる屈
折率、電気光学定数の変動であることがわかる。
FIG. 8 shows fluctuations in the power of transmitted light due to temperature fluctuations in the refractive index and electro-optic constant of LiNbO3. In FIG. 8, the black dots are measured values obtained when measurements were performed in a state where no temperature strain was applied to the LiNbO3 crystal. Moreover, the solid line is the temperature fluctuation of the transmitted optical power calculated based on the temperature dependence of the refractive index and electro-optic constant reported in the literature. As shown in the figure, the theoretical value and the measured value are almost in agreement, and the transmitted light power fluctuation due to temperature fluctuation is less than ±0.2 dB, so the temperature dependence of the refractive index and electro-optic constant of (■) is It can be seen that this is not a factor in the fluctuation of transmitted light power. Therefore, it can be seen that the cause of the power fluctuation of the transmitted light is the fluctuation of the refractive index and electro-optical constant due to the temperature strain applied to the crystal (2).

【0014】本発明の特徴と従来技術との差異を図1と
図9に示す。これらの図において15は電気光学効果を
持つ結晶を乗せる台、16は光変調器を構成する光学系
が組立られている台である。本発明の特徴は、従来は図
9に示すように結晶7の一面のみを台座15に接着剤で
固定していたのに対して、図1に示すように、光変調器
を構成する電気光学効果を持つ結晶7の周囲を線膨張係
数が小さく一様な材料17で囲んだことである。このよ
うな構成にすることにより、結晶の周囲を線膨張係数が
等しい材料で囲んでいるため、結晶に加わる温度歪みが
一様になり、電界センサ感度の温度依存性が小さくでき
る利点がある。
The features of the present invention and the differences from the prior art are shown in FIGS. 1 and 9. In these figures, 15 is a table on which a crystal having an electro-optic effect is placed, and 16 is a table on which an optical system constituting an optical modulator is assembled. The feature of the present invention is that, while conventionally only one side of the crystal 7 was fixed to the pedestal 15 with adhesive as shown in FIG. 9, as shown in FIG. This is because the effective crystal 7 is surrounded by a material 17 having a small and uniform coefficient of linear expansion. With this configuration, since the crystal is surrounded by a material having the same coefficient of linear expansion, the temperature strain applied to the crystal becomes uniform, and there is an advantage that the temperature dependence of the electric field sensor sensitivity can be reduced.

【0015】以上の結果より、本発明は、従来報告され
ているセンサの欠点である感度の温度依存性を改善した
ため、周囲温度が変動しても、感度の変動が小さい、安
定で実用的な電界センサが実現できる利点がある。
[0015] From the above results, the present invention improves the temperature dependence of sensitivity, which is a drawback of conventionally reported sensors. There are advantages that electric field sensors can achieve.

【0016】[0016]

【実施例】本発明の具体的な実施例を図2に示す。図2
で17は図1に示す周囲を線膨張係数の等しい材料で囲
んだ電気光学効果を持つ結晶であり、18(a)はアン
テナロッドと結晶7を結ぶリード線である。図3に示す
ように本実施例では長さ10mm,幅1mm,厚さ1m
mの結晶を2本、光軸が互いに直行するようにならべ、
その周囲を長さ20mm,幅3.5mm,厚さ2.5m
mの石英ガラスを張りつけている。図3で18は光変調
器の電極であり、本実施例ではこの部分にCr−Au合
金を蒸着している。
[Embodiment] A specific embodiment of the present invention is shown in FIG. Figure 2
Reference numeral 17 is a crystal having an electro-optical effect surrounded by a material having an equal linear expansion coefficient as shown in FIG. 1, and 18(a) is a lead wire connecting the antenna rod and the crystal 7. As shown in Figure 3, in this example, the length is 10 mm, the width is 1 mm, and the thickness is 1 m.
Arrange two crystals of m so that their optical axes are perpendicular to each other,
The circumference is 20mm long, 3.5mm wide, and 2.5m thick.
It is covered with m quartz glass. In FIG. 3, reference numeral 18 indicates an electrode of the optical modulator, and in this embodiment, a Cr--Au alloy is deposited on this portion.

【0017】ここで、図3に示す構造において、電気光
学効果を持つ結晶の寸法とその結晶を囲む線膨張係数の
小さい材料の寸法の関係について述べる。たとえば、電
気光学効果を有する結晶が長さL,厚さa,幅bの直方
体の場合、長さL,厚さc,幅c+aの線膨張係数の小
さな材料2本と長さL,厚さc,幅c+bの線膨張係数
の小さな材料2本を、図3のように組み合わせれば、図
3に示すように、この結晶の光が通過しない4つの面に
隙間ができないように密着させることができる。
Here, in the structure shown in FIG. 3, the relationship between the dimensions of a crystal having an electro-optic effect and the dimensions of a material having a small coefficient of linear expansion surrounding the crystal will be described. For example, if a crystal having an electro-optic effect is a rectangular parallelepiped with length L, thickness a, and width b, two materials with small linear expansion coefficients of length L, thickness c, and width c+a and a material with a length L and thickness If two materials with small coefficients of linear expansion with width c and width c+b are combined as shown in Figure 3, they can be brought into close contact with each other so that there are no gaps between the four surfaces of the crystal through which light does not pass, as shown in Figure 3. Can be done.

【0018】次に、図2を用いて、本実施例の動作を説
明する。偏波面保持ファイバ3−1から入射した光波は
グレーデッドインデックスレンズ4により平行光線に変
換され、偏光子5によりLiNbO3の結晶光軸に対し
て45度傾いた直線偏光成分にされる。本実施例では偏
光子5としてラミポールを使用して、光変調器の小型化
を図っている。また、光コネクタ部とグレーデッドイン
デックスレンズ、偏光板を一体化し、図6に比べて組立
の簡易化を図っている。偏光板を通過した光はLiNb
O3結晶7を通り、バビネソウレイユ位相補償器8によ
り、電圧が印加されない状態で円偏波となるように位相
補償され、検光子9を通り、グレーデッドインデックス
レンズ10によりシングルモードファイバ3−2に入射
される。
Next, the operation of this embodiment will be explained using FIG. 2. A light wave incident from the polarization-maintaining fiber 3-1 is converted into a parallel light beam by a graded index lens 4, and converted into a linearly polarized light component tilted by 45 degrees with respect to the optical axis of the LiNbO3 crystal by a polarizer 5. In this embodiment, a lamipole is used as the polarizer 5 to reduce the size of the optical modulator. Furthermore, the optical connector part, graded index lens, and polarizing plate are integrated, making assembly easier than in FIG. 6. The light that passed through the polarizing plate is LiNb
The wave passes through the O3 crystal 7, is phase-compensated by the Babinet Soureil phase compensator 8 to become a circularly polarized wave with no voltage applied, passes through the analyzer 9, and enters the single mode fiber 3-2 through the graded index lens 10. be done.

【0019】[0019]

【発明の効果】本実施例の通過光電力の温度依存性を図
4に示す。図4は電界センサの周囲温度を変化させた時
の電界センサを通過する光電力の変動を表している。図
に示すように、周囲温度を0度〜40度変化させた場合
、通過光電力変動は最大で1dB程度であり、図7に示
す従来品に比べて大幅に温度特性が改善されていること
がわかる。
FIG. 4 shows the temperature dependence of the transmitted light power in this embodiment. FIG. 4 shows the variation in optical power passing through the electric field sensor when the ambient temperature around the electric field sensor is changed. As shown in the figure, when the ambient temperature is changed from 0 degrees to 40 degrees, the maximum variation in the transmitted light power is about 1 dB, and the temperature characteristics are significantly improved compared to the conventional product shown in Figure 7. I understand.

【0020】通過電力変動は感度変動に比例するから、
本実施例の電界センサは、周囲温度が変化しても従来品
に比べ感度変動が非常に小さいことがわかる。以上の結
果より、本発明は、従来報告されているセンサの欠点で
ある感度の温度依存性を改善した、周囲温度が変動して
も、感度の変動が小さい、安定で実用的な電界センサが
実現できる利点がある。
Since the passing power fluctuation is proportional to the sensitivity fluctuation,
It can be seen that the electric field sensor of this example exhibits extremely small sensitivity fluctuations compared to conventional products even when the ambient temperature changes. Based on the above results, the present invention has developed a stable and practical electric field sensor that improves the temperature dependence of sensitivity, which is a drawback of conventionally reported sensors, and has small fluctuations in sensitivity even when the ambient temperature fluctuates. There are benefits that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による結晶の実装構造を示す図である。FIG. 1 is a diagram showing a mounting structure of a crystal according to the present invention.

【図2】本発明の具体的な実施例を示す図である。FIG. 2 is a diagram showing a specific embodiment of the present invention.

【図3】電気光学結晶を包囲部材でかこんだ状態を示す
図である。
FIG. 3 is a diagram showing a state in which an electro-optic crystal is surrounded by a surrounding member.

【図4】本発明における温度依存性を示す図である。FIG. 4 is a diagram showing temperature dependence in the present invention.

【図5】従来のセンサ装置の構成を示す。FIG. 5 shows the configuration of a conventional sensor device.

【図6】従来の装置におけるセンサ部材を示す。FIG. 6 shows a sensor member in a conventional device.

【図7】従来の技術における出射光電力の温度依存性を
示す。
FIG. 7 shows the temperature dependence of emitted light power in a conventional technique.

【図8】結晶の屈折率および電気光学定数の温度依存性
のみを考慮した時の出射光電力の温度依存性を示す。
FIG. 8 shows the temperature dependence of the output optical power when considering only the temperature dependence of the refractive index and electro-optic constant of the crystal.

【図9】結晶の実装構造の従来の技術を示す。FIG. 9 shows a conventional technique of a crystal mounting structure.

【符号の説明】[Explanation of symbols]

1  光源 2  グレーデッドインデックスレンズ3  偏光面保
持光ファイバ 3’  シングルモード光ファイバ 4  グレーデッドインデックスレンズ(入力用)5 
 偏光子 6  センサ電極 7  電気光学効果をもつ結晶 8  バビネソウレイユ位相補償器 9  検光子 10  グレーデッドインデックスレンズ(出力用)1
1  光検出器 12  受信機 13  光変調器をとりつけるための基板14  プリ
ズム 15  結晶をのせる台 16  光変調器を構成する光学系が組立てられている
台17  結晶を包囲部材で囲んだ組立体18  光変
調器の電極 100  光強度変調器組立体
1 Light source 2 Graded index lens 3 Polarization maintaining optical fiber 3' Single mode optical fiber 4 Graded index lens (for input) 5
Polarizer 6 Sensor electrode 7 Crystal with electro-optic effect 8 Babinet Soureil phase compensator 9 Analyzer 10 Graded index lens (for output) 1
1 Photodetector 12 Receiver 13 Substrate 14 for mounting the optical modulator Prism 15 Table 16 on which the crystal is placed Table 17 on which the optical system constituting the optical modulator is assembled Assembly 18 in which the crystal is surrounded by a surrounding member Optical modulator electrode 100 Optical intensity modulator assembly

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  1対の導体棒(6)を空隙をもって配
置し、該空隙の間に偏光子と電気光学効果をもつ光学結
晶(7)とバビネソウレイユ位相補償器を有する光強度
変調器(100)を配置し、前記1対の導体棒(6)の
間に変調用電界を印加し、前記光強度変調器(100)
に印加した光の当該変調器からの出力光の強度により電
界強度を測定する電界センサ装置において、前記光学結
晶(7)の、光が通過しない側面をかこむ線膨張係数が
ほぼ一様な包囲部材がもうけられることを特徴とする、
電気光学効果を用いた電界センサ装置。
Claim 1: A light intensity modulator (100) in which a pair of conductor rods (6) are arranged with a gap between them, and between the gap there is a polarizer, an optical crystal (7) having an electro-optic effect, and a Babinet-Sourail phase compensator. ), a modulation electric field is applied between the pair of conductor rods (6), and the light intensity modulator (100)
In an electric field sensor device that measures electric field intensity based on the intensity of output light from the modulator, an enclosing member having a substantially uniform coefficient of linear expansion surrounds a side surface of the optical crystal (7) through which light does not pass. is characterized by being able to generate
Electric field sensor device using electro-optic effect.
【請求項2】  請求項1記載の電界センサ装置に於い
て、光変調器を構成する電気光学効果を持つ結晶として
長さL,厚さa,幅bの直方体の結晶を用い、長さL,
厚さc,幅c+aの線膨張係数のほぼ一様な材料2本と
長さL,厚さc,幅c+bの線膨張係数のほぼ一様な材
料2本を、この結晶の光が通過しない4つの面に隙間が
できないように密着させたことを特徴とする、電気光学
効果を用いた電界センサ装置。
2. In the electric field sensor device according to claim 1, a rectangular parallelepiped crystal having a length L, a thickness a, and a width b is used as a crystal having an electro-optic effect constituting the optical modulator. ,
The light of this crystal does not pass through two materials with almost uniform linear expansion coefficients of thickness c and width c + a and two materials with almost uniform linear expansion coefficients of length L, thickness c and width c + b. An electric field sensor device using an electro-optical effect, characterized in that four surfaces are brought into close contact with each other so that no gaps are formed.
【請求項3】  請求項1記載の電界センサ装置に於い
て、電気光学効果を有する結晶に密着させる包囲部材と
して、石英ガラスを用いていることを特徴とする電気光
学効果を用いた電界センサ装置。
3. The electric field sensor device according to claim 1, wherein quartz glass is used as a surrounding member that is brought into close contact with the crystal having the electro-optic effect. .
JP03149248A 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect Expired - Lifetime JP3114104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03149248A JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03149248A JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Publications (2)

Publication Number Publication Date
JPH04350574A true JPH04350574A (en) 1992-12-04
JP3114104B2 JP3114104B2 (en) 2000-12-04

Family

ID=15471114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03149248A Expired - Lifetime JP3114104B2 (en) 1991-05-27 1991-05-27 Electric field sensor device using electro-optic effect

Country Status (1)

Country Link
JP (1) JP3114104B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207318A (en) * 2013-03-11 2013-07-17 北京航空航天大学 Quasi-reciprocal optical closed-loop lithium niobate optical waveguide alternating electric field/voltage sensor
US20160085120A1 (en) * 2014-09-23 2016-03-24 Boe Technology Group Co., Ltd. Display panel and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207318A (en) * 2013-03-11 2013-07-17 北京航空航天大学 Quasi-reciprocal optical closed-loop lithium niobate optical waveguide alternating electric field/voltage sensor
US20160085120A1 (en) * 2014-09-23 2016-03-24 Boe Technology Group Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
JP3114104B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US5963034A (en) Electro-optic electromagnetic field sensor system with optical bias adjustment
EP0664460B1 (en) Electric field sensor
US10393785B2 (en) Optical sensing device for two-dimensional electric field measurement
US5210407A (en) Electric field intensity detecting device having a condenser-type antenna and a light modulator
GB2068137A (en) Voltage and electric field measuring device
US4933629A (en) Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects
Ogawa et al. A guided-wave optical electric field sensor with improved temperature stability
CN107390146A (en) A kind of integrated light guide magnetic field measurement system and method
JP2619981B2 (en) Electromagnetic field strength measuring device
Chu et al. Optical voltage sensors based on integrated optical polarization-rotated reflection interferometry
EP0458255B1 (en) Polarimetric directional field sensor
JP3253621B2 (en) Method and sensor for measuring voltage and / or electric field strength
Masterson et al. Photonic probes for the measurement of electromagnetic fields over broad bandwidths
JPH04350574A (en) Electric field sensor using electrooptical effect
JP3049190B2 (en) Electric field sensor device
JPH0989961A (en) Electric field detecting device
US7102757B2 (en) Current measurement method and device based on a fiber optic in-line Sagnac interferometer
KR100606420B1 (en) Optical potential transformer interleaved detector
JPH02184772A (en) Electric field antenna using optical crystal
Dakin et al. A passive all-dielectric field probe for RF measurement using the electro-optic effect
KR102514006B1 (en) Electromagnetic Wave Measuring Apparatus Using A Polarization Maintaining Optical Fiber
Kijima et al. Electro-optical field sensor using single total internal reflection in electro-optical crystals
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JP3235301B2 (en) Light voltage sensor
JPH0829467A (en) Electric field sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070929

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11