JPH04350524A - Polarization measuring device - Google Patents

Polarization measuring device

Info

Publication number
JPH04350524A
JPH04350524A JP22543991A JP22543991A JPH04350524A JP H04350524 A JPH04350524 A JP H04350524A JP 22543991 A JP22543991 A JP 22543991A JP 22543991 A JP22543991 A JP 22543991A JP H04350524 A JPH04350524 A JP H04350524A
Authority
JP
Japan
Prior art keywords
light
polarization
color
measuring
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22543991A
Other languages
Japanese (ja)
Inventor
Katsuya Masao
政尾 克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22543991A priority Critical patent/JPH04350524A/en
Publication of JPH04350524A publication Critical patent/JPH04350524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable optical characteristics such as a dielectric thin film to be measured two-dimensionally by measuring a distribution of a polarization state within a flux of light for a polarization measuring device which measured polarization for measuring optical characteristics such as a dielectric thin film. CONSTITUTION:This device consists of a beam splitter 5 for separating a polarization which is in a specific polarization state into three fluxes of light, analyzers 6 with mutually different orientation angles, a dichroic mirror 8 for converting into each different color, a total reflection mirror 7 for changing them into a single flux of light, an image-forming lens 9, and a color CCD area sensor 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は偏光状態を測定する装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the state of polarization.

【0002】0002

【従来の技術】検光子の方位角を機械的、又は電気的に
回転させてその透過光量の全体から光束の偏光の状態を
測定していた。
2. Description of the Related Art The state of polarization of a luminous flux is measured from the total amount of transmitted light by mechanically or electrically rotating the azimuth of an analyzer.

【0003】0003

【発明が解決しようとしている課題】従来の技術は光束
内の偏光状態の分布を高速に測定できなかった。誘電体
薄膜などの光学特性(膜厚、屈折率など)を測定するた
めに偏光測定を行おうとするとき、従来の技術では薄膜
の二次元的特性を高速に測定することができなかった。
[Problems to be Solved by the Invention] Conventional techniques have not been able to measure the distribution of polarization states within a light beam at high speed. When attempting to perform polarization measurements to measure the optical properties (film thickness, refractive index, etc.) of dielectric thin films, etc., conventional techniques have not been able to measure the two-dimensional properties of the thin film at high speed.

【0004】0004

【課題を解決するための手段】互いに異なる方位角をも
った3枚の偏光子を通過した光束を、それぞれR.G.
B3色に対応させる色変換器を通過させた後、カラーセ
ンサー上に結像させる。
[Means for Solving the Problems] The light beams that have passed through three polarizers having different azimuth angles are divided into R. G.
After passing through a color converter that corresponds to the B3 color, the image is formed on a color sensor.

【0005】[0005]

【作用】楕円偏光の状態は3個のパラメーターによって
表現される。互いに異なる方位角を持った3枚の検光子
による透過光量を測定すれば楕円偏光の状態(主軸、楕
円率)は完全に規定される。色変換器によって3枚の検
光子の出力を3原色に対応させて、カラーセンサーによ
って3色の出力を個々に測定すれば検光子の各々を通過
した光量がわかり、従って楕円偏光の状態を測定するこ
とができる。光束をカラーエリアセンサー上に結像させ
れば光束内の偏光状態の二次元的分布を測定することが
できる。光束をカラーラインセンサー上に結像させれば
光束内の偏光状態の一次元的分布を測定することができ
る。誘電体薄膜に一定の偏光状態の光を適当な入射角で
照射してその反射光の偏光状態を測定すれば薄膜の光学
定数を知ることができる。一定の直線偏光を試料表面に
適当な入射角で照射して、反射光を互いに異なる方位角
の3枚の検光子を透過させ、さらにそれぞれを3色に色
変換してカラーセンサーによって光量を色ごとに測定す
れば反射光の偏光状態が判り、薄膜の光学定数を知るこ
とができる。異なる主軸と色を持った3色の偏光光束を
試料表面に適当な入射角で照射して、反射光を一定の方
位角を持った検光子を通してから、カラーセンサーによ
って3色の透過光量を個々に測定すれば、光学系の対称
の原理から同様に薄膜の光学定数を知ることができる。
[Operation] The state of elliptically polarized light is expressed by three parameters. The state of elliptically polarized light (principal axis, ellipticity) can be completely defined by measuring the amount of transmitted light using three analyzers having different azimuth angles. By using a color converter to match the output of the three analyzers to the three primary colors, and measuring the output of the three colors individually using a color sensor, we can determine the amount of light that has passed through each analyzer, and thus measure the state of elliptically polarized light. can do. By focusing the light beam on a color area sensor, it is possible to measure the two-dimensional distribution of the polarization state within the light beam. By focusing the light beam on a color line sensor, it is possible to measure the one-dimensional distribution of the polarization state within the light beam. The optical constants of a thin film can be determined by irradiating a dielectric thin film with light of a certain polarization state at an appropriate angle of incidence and measuring the polarization state of the reflected light. A fixed amount of linearly polarized light is irradiated onto the sample surface at an appropriate angle of incidence, and the reflected light is transmitted through three analyzers with different azimuth angles, each of which is converted into three colors, and the amount of light is determined by a color sensor. By measuring each time, the polarization state of the reflected light can be determined, and the optical constants of the thin film can be determined. Polarized light beams of three colors with different principal axes and colors are irradiated onto the sample surface at an appropriate angle of incidence, and the reflected light is passed through an analyzer with a certain azimuth angle, and then the amount of transmitted light of the three colors is measured individually by a color sensor. If measured, the optical constants of the thin film can be similarly determined from the principle of symmetry of the optical system.

【0006】[0006]

【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

【実施例1】光源(1)からの白色光またはR.G.B
3色を合成した光をコリメーターレンズ(2)を経由し
て、偏光子(3)によって直線偏光とする。それを適当
な入射角で試料(11)に照射し、反射光を集光レンズ
(4)を経由して、ビームスプリッター(5)によって
3本の光束に分離し、その各々をそれぞれ互いに異なる
方位角の検光子(6)、互いに異なる色透過特性をもつ
ダイクロイックミラー(8)を経由させる。これによっ
て異なる方位角の偏光はそれぞれ異なる色をもつことに
なる。これらの光束は全反射鏡(7)、結像レンズ(9
)によって単一の光束としてカラーCCDエリアセンサ
ー(10)上に結像される。エリアセンサー  (10
)上の各色の強度は反射された楕円偏光の、検光子(6
)の方位角に対応する強度に相当する。
[Example 1] White light from light source (1) or R. G. B
The combined light of the three colors passes through a collimator lens (2) and is converted into linearly polarized light by a polarizer (3). The light is irradiated onto the sample (11) at an appropriate angle of incidence, and the reflected light passes through the condenser lens (4) and is separated into three beams by the beam splitter (5), each of which is directed in a different direction. It passes through a corner analyzer (6) and a dichroic mirror (8) with different color transmission characteristics. As a result, polarized light with different azimuthal angles will have different colors. These light beams pass through a total reflection mirror (7) and an imaging lens (9).
) is imaged onto the color CCD area sensor (10) as a single beam of light. Area sensor (10
) is the intensity of each color on the reflected elliptically polarized light.
) corresponds to the intensity corresponding to the azimuth angle.

【実施例2】紫外光源(1)からの紫外光を、コリメー
ターレンズ(2)を経由して、偏光子(3)によって直
線偏光とする。それを適当な入射角で試料(11)に入
射し、その反射光を集光レンズ(4)を経由して、ビー
ムスプリッター(5)によつて異なる光束に分離し、そ
れぞれ異なる方位角の検光子(6)を通過させる。各検
光子(6)の後には紫外光を吸収してそれぞれR.G.
Bに波長変換する蛍光板(12)、及び発光スペクトル
をシャープにする為のR.G.Bの色フィルター(13
)を置く。これらを通過した光は、全反射鏡(7)、ビ
ームスプリッター(14)、結像レンズ(9)によって
単一の光束としてCCDカラーエリアセンサー(10)
上に結像させる。  エリアセンサー(10)上の各色
の強度は反射された楕円偏光の、検光子(6)の方位角
に対応する強度に相当する。この配置では実施例1、実
施例3の場合と異なり試料(11)の波長特性には関係
しない。
[Embodiment 2] Ultraviolet light from an ultraviolet light source (1) is linearly polarized by a polarizer (3) via a collimator lens (2). The light is incident on the sample (11) at an appropriate angle of incidence, and the reflected light passes through the condenser lens (4) and is separated into different beams by the beam splitter (5), each of which is detected at a different azimuth angle. Let photons (6) pass. After each analyzer (6), each R. G.
A fluorescent screen (12) for wavelength conversion to B and R for sharpening the emission spectrum. G. B color filter (13
). The light that has passed through these is converted into a single beam by a total reflection mirror (7), a beam splitter (14), and an imaging lens (9) and sent to a CCD color area sensor (10).
image on top. The intensity of each color on the area sensor (10) corresponds to the intensity of the reflected elliptically polarized light corresponding to the azimuth angle of the analyzer (6). In this arrangement, unlike in Examples 1 and 3, there is no relation to the wavelength characteristics of the sample (11).

【実施例3】白色光源(1)からの光を全反射鏡(7)
、互いに異なる色透過特性をもつダイクロイックミラー
(8)によって3色に分解し、それぞれ異なる方位角の
偏光子(3)を通過させる。これらの偏光子はそのジョ
ーンズ行列が互いに一次独立になるように(例えば+4
5°、0゜、−45°)選ばれる。これらの光束をビー
ムスプリッター(5)、コリメーターレンズ(2)を通
して平行光束として適当な入射角で試料(11)に照射
し、反射光は検光子(6)を通して直線偏光にした後、
集光レンズ(4)、結像レンズ(9)を経て、カラーC
CDエリアセンサー(10)上に結像させる。試料(1
1)と検光子(6)の特性行列を(M)、(N)、入射
光を(IRi)、(IGi)、(IBi)、反射光を(
IRo)、(IGo)、(IBo)、とする。 (IRo)=(N)(M)(IRi) (IGo)=(N)(M)(IGi) (IBo)=(N)(M)(IBi) 損失係数で行列を正規化すれば、(M)は2つの独立変
数をもつユニモジュラーな(2、2)行列であり、(N
)は既知で、センサーのR.G.Bの強度から(IRo
)、(IGo)、(IBo)が得られるので(M)を計
算することができる。
[Example 3] Totally reflecting mirror (7) for light from white light source (1)
The light is separated into three colors by a dichroic mirror (8) having different color transmission characteristics, and each color is passed through a polarizer (3) having a different azimuth angle. These polarizers are arranged so that their Jones matrices are linearly independent of each other (e.g. +4
5°, 0°, -45°) are selected. These light beams are passed through a beam splitter (5) and a collimator lens (2) to irradiate the sample (11) as parallel light beams at an appropriate angle of incidence, and the reflected light is converted into linearly polarized light through an analyzer (6).
Color C passes through the condensing lens (4) and the imaging lens (9).
An image is formed on the CD area sensor (10). Sample (1
1) and the characteristic matrix of the analyzer (6) are (M), (N), the incident light is (IRi), (IGi), (IBi), and the reflected light is (
IRo), (IGo), (IBo). (IRo) = (N) (M) (IRi) (IGo) = (N) (M) (IGi) (IBo) = (N) (M) (IBi) If the matrix is normalized by the loss coefficient, ( M) is a unimodular (2,2) matrix with two independent variables, and (N
) is known and the R. G. From the intensity of B (IRo
), (IGo), and (IBo) are obtained, so (M) can be calculated.

【実施例4】光源(1)からの白色光またはR.G.B
3色を合成した光をコリメーターレンズ(2)を経由し
て、偏光子(3)によって直線偏光とする。それを適当
な入射角で試料(11)に照射し、反射光を集光レンズ
(4)を経由して、ビームスプリッター(5)、偏光ビ
ームスプリッター(15)によって3本の光束に分離す
る。検光子(6)と偏光ビームスプリッター(15)と
は3本の光束が互いに異なる方位角をもつ偏光となるよ
うに設定する。結像レンズ(9)、R.G.Bの色フィ
ルター(13)を通してカラーCCDエリアセンサー(
10)上に結像させる。エリアセンサー  (10)上
の各色の強度は反射された楕円偏光の、異なった方位角
に対応する強度に相当する。このカラーセンサー(10
)の出力をディスプレイ上に表示すれば、偏光状態の二
次元的分布を直視することができる。
[Embodiment 4] White light from light source (1) or R. G. B
The combined light of the three colors passes through a collimator lens (2) and is converted into linearly polarized light by a polarizer (3). The sample (11) is irradiated with the light at an appropriate angle of incidence, and the reflected light is separated into three beams by a beam splitter (5) and a polarizing beam splitter (15) via a condenser lens (4). The analyzer (6) and the polarizing beam splitter (15) are set so that the three light beams become polarized lights having different azimuth angles. Imaging lens (9), R. G. The color CCD area sensor (
10) Image on. The intensity of each color on the area sensor (10) corresponds to the intensity of the reflected elliptically polarized light corresponding to different azimuthal angles. This color sensor (10
) can be displayed on a display to directly view the two-dimensional distribution of polarization states.

【0007】[0007]

【発明の効果】光束内の偏光状態の分布を高速に測定で
きる。
[Effects of the Invention] The distribution of polarization states within a light beam can be measured at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1における光学系の構成を示す
模式図。
FIG. 1 is a schematic diagram showing the configuration of an optical system in Example 1 of the present invention.

【図2】本発明の実施例2における光学系の構成を示す
模式図。
FIG. 2 is a schematic diagram showing the configuration of an optical system in Example 2 of the present invention.

【図3】本発明の実施例3における光学系の構成を示す
模式図。
FIG. 3 is a schematic diagram showing the configuration of an optical system in Example 3 of the present invention.

【図4】本発明の実施例4における光学系の構成を示す
模式図。
FIG. 4 is a schematic diagram showing the configuration of an optical system in Example 4 of the present invention.

【符合の説明】[Explanation of sign]

1      光源 2      コリメーターレンズ 3      偏光子 4      集光レンズ 5      ビームスプリッター 6      検光子 7      全反射鏡 8      ダイクロイックミラー 9      結像レンズ 10      カラーCCDエリアセンサー11  
    試料 12      蛍光板 13      色フィルター 14      ビームスプリッター
1 Light source 2 Collimator lens 3 Polarizer 4 Condensing lens 5 Beam splitter 6 Analyzer 7 Total reflection mirror 8 Dichroic mirror 9 Imaging lens 10 Color CCD area sensor 11
Sample 12 Fluorescent screen 13 Color filter 14 Beam splitter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  互いに異なる方位角を持った3枚の偏
光子を通過した光束のそれぞれをR.G.B3色に対応
させる色変換器を通過させた後、カラーセンサー上に結
像させることを特徴とする偏光測定装置。
Claim 1: Each of the light beams passing through three polarizers having different azimuth angles is R. G. A polarization measuring device characterized by passing through a color converter corresponding to B3 colors and then forming an image on a color sensor.
JP22543991A 1991-05-28 1991-05-28 Polarization measuring device Pending JPH04350524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22543991A JPH04350524A (en) 1991-05-28 1991-05-28 Polarization measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22543991A JPH04350524A (en) 1991-05-28 1991-05-28 Polarization measuring device

Publications (1)

Publication Number Publication Date
JPH04350524A true JPH04350524A (en) 1992-12-04

Family

ID=16829386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22543991A Pending JPH04350524A (en) 1991-05-28 1991-05-28 Polarization measuring device

Country Status (1)

Country Link
JP (1) JPH04350524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526269A (en) * 2009-05-07 2012-10-25 テールズ Method for identifying scenes from multiwavelength polarization images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526269A (en) * 2009-05-07 2012-10-25 テールズ Method for identifying scenes from multiwavelength polarization images

Similar Documents

Publication Publication Date Title
US6753961B1 (en) Spectroscopic ellipsometer without rotating components
KR100795253B1 (en) Image projection system with a polarizing beam splitter
CA2298562C (en) Optical apparatus for an imaging fourier spectrometer and method of operating it
US5910841A (en) Ellipsometer using an expanded beam
US20160154229A1 (en) Spectrally-encoded high-extinction polarization microscope and methods of use
JP2000515247A (en) Broadband spectral rotation compensator ellipsometer
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
CN112236666A (en) Instantaneous ellipsometer or scatterometer and related measuring method
CN211978676U (en) Spectrum-polarization imaging measurement system
US20050007591A1 (en) Instantaneous polarization measurement system and method
EP1947445B1 (en) System and process for analysing a sample
US11573428B2 (en) Imaging method and apparatus using circularly polarized light
US6441972B1 (en) Optical image separator
CN110715732B (en) Multifunctional Stokes-Mueller imaging and spectrum detection system and detection method
JP2002510808A (en) Scanning spot microscope using Fourier spectrum analysis and method for Fourier spectrum analysis
JP3365474B2 (en) Polarizing imaging device
WO2017099755A1 (en) Spectrally-encoded high-extinction polarization microscope and methods of use
JP3329898B2 (en) Multi-channel Fourier transform spectrometer
JPH04350524A (en) Polarization measuring device
JPH0530761U (en) Defect observation device
CN110763633A (en) Wide-range imaging type birefringence distribution measuring device and method
JPH06317518A (en) Dichroism dispersion meter
JPH01503589A (en) Thermal image forming device
JPH11101739A (en) Ellipsometry apparatus
JP2004117236A (en) Optical characteristic measuring device