JPH04350181A - Method and device of controlling degreasing solution for aluminum can - Google Patents

Method and device of controlling degreasing solution for aluminum can

Info

Publication number
JPH04350181A
JPH04350181A JP289791A JP289791A JPH04350181A JP H04350181 A JPH04350181 A JP H04350181A JP 289791 A JP289791 A JP 289791A JP 289791 A JP289791 A JP 289791A JP H04350181 A JPH04350181 A JP H04350181A
Authority
JP
Japan
Prior art keywords
degreasing
degreasing liquid
aluminum
acidic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP289791A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishikawa
博康 石川
Tsutomu Takahashi
務 高橋
Takako Abe
貴子 阿部
Toshio Kikuchi
菊池 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP289791A priority Critical patent/JPH04350181A/en
Publication of JPH04350181A publication Critical patent/JPH04350181A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To drastically improve the corrosion resistance of the Al can by removing Cu<2+> as copper sulfide and reducing the amt. of Cu to be deposited. CONSTITUTION:A degreasing soln. is sprayed into an airtight vessel 1 from in atomization port 3A, and hydrogen sulfide gas is introduced from an inlet 2. The Cu<2+> contained in the soln. reacts with the hydrogen sulfide gas to form copper sulfide. The soln. discharged from an outlet 1A is pressurized by a pump 5 a passed through a filter 6 to remove the precipitated copper sulfide. The process is conducted continuously or intermittently during the progress of degreasing to keep the Cu<2+> concn. in the acidic degreasing soln. at <=3ppm, and the black spotted corrosion on the surface of the Al can is prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、清涼飲料やビール等の
容器となるアルミニウム製缶体を脱脂するための酸性脱
脂液の管理方法および装置に係わり、特に、缶体の外面
に形成される化成皮膜の耐食性を高めるための改良に関
する。
[Industrial Application Field] The present invention relates to a method and apparatus for managing acidic degreasing liquid for degreasing aluminum can bodies used as containers for soft drinks, beer, etc. This invention relates to improvements for increasing the corrosion resistance of chemical conversion coatings.

【0002】0002

【従来の技術】一般にアルミニウム缶は、有底円筒状の
缶胴と、この缶胴の上端開口部に嵌合される円形の缶蓋
とから構成されており、この明細書中では、これら缶胴
と缶蓋をそれぞれ缶体と称する。
2. Description of the Related Art Aluminum cans generally consist of a cylindrical can body with a bottom and a circular can lid that fits into the upper opening of the can body. The body and the can lid are each called the can body.

【0003】前記缶胴は、アルミ板を深絞り成形した後
、成形時に付着した潤滑油や汚れを脱脂工程で除去し、
化成処理を施して表面に耐食性および塗装性を高めるた
めの化成皮膜を形成したうえ、内面および外面を塗装し
て製造されている。また缶蓋は、化成皮膜および塗装を
予めアルミ板に施した後、このアルミ板を打抜成形して
製造されている。
[0003] The can body is formed by deep drawing an aluminum plate, and then removing lubricating oil and dirt that adhered during the forming process in a degreasing process.
They are manufactured by applying chemical conversion treatment to form a chemical conversion film on the surface to improve corrosion resistance and paintability, and then painting the inner and outer surfaces. In addition, can lids are manufactured by applying a chemical conversion coating and painting to an aluminum plate in advance, and then punching and forming the aluminum plate.

【0004】これら缶体の材質としては、従来より主に
、JISA3004、JISA5182等のアルミニウ
ム合金が使用されている。これら合金はAl を主組成
物とし、その他にMg,Mn,Cu を添加したもので
、Cu の含有量は0.2〜0.25wt%程度である
[0004] Conventionally, aluminum alloys such as JISA3004 and JISA5182 have been mainly used as the material for these can bodies. These alloys have Al as the main composition, and Mg, Mn, and Cu are also added thereto, and the Cu content is approximately 0.2 to 0.25 wt%.

【0005】従来使用されている酸性脱脂液の主なもの
は、硫酸と鉄イオン、硫酸と弗酸あるいはリン酸と硫酸
を主組成物とした水溶液であり、例えば特公昭50−2
1147号公報では、リン酸と硫酸を主組成物とし、界
面活性剤を適宜添加した脱脂液が開示されている。
The main acidic degreasing solutions conventionally used are aqueous solutions containing sulfuric acid and iron ions, sulfuric acid and hydrofluoric acid, or phosphoric acid and sulfuric acid.
Japanese Patent No. 1147 discloses a degreasing liquid containing phosphoric acid and sulfuric acid as main compositions and appropriately adding a surfactant.

【0006】一方、化成処理は通常、クロムまたはジル
コニウムのリン酸塩系溶液を用いて行なわれ、これによ
り厚さ数10〜数100オングストローム程度のリン酸
クロム系(Cr量8〜50mg/m2)またはリン酸ジ
ルコニウム系(Zr量5〜20mg/m2)の化成皮膜
が缶体の表面に形成される。
On the other hand, chemical conversion treatment is usually carried out using a chromium or zirconium phosphate solution, which produces a chromium phosphate solution (Cr content: 8 to 50 mg/m2) with a thickness of about 10 to 100 angstroms. Alternatively, a zirconium phosphate-based chemical conversion film (Zr content: 5 to 20 mg/m2) is formed on the surface of the can body.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来のアル
ミニウム缶では、前記化成皮膜の耐食性が期待されるほ
ど高くなく、充填した内容物を加熱水で殺菌した際に、
缶底外面に黒色斑点状の腐食を生ずるなどの問題が指摘
されていた。このため、各種の分析法を用いてアルミニ
ウム缶の化学分析が行なわれてきたが、原因は判然とし
なかった。
[Problems to be Solved by the Invention] However, in conventional aluminum cans, the corrosion resistance of the chemical conversion coating is not as high as expected, and when the filled contents are sterilized with heated water,
Problems such as black spots of corrosion on the outer surface of the bottom of the can were pointed out. For this reason, chemical analyzes of aluminum cans have been carried out using various analytical methods, but the cause has not been determined.

【0008】本発明者らは、この原因を調べるために、
従来この種の研究にはあまり使用されていないXPS分
析(X線光電子分光分析法)を採用し、アルミニウム缶
の化成皮膜の構成元素の深さ方向分布を高精度に調べた
[0008] In order to investigate the cause of this, the present inventors
Using XPS analysis (X-ray photoelectron spectroscopy), which has not previously been used in this type of research, the depth distribution of the constituent elements of the chemical conversion coating on aluminum cans was investigated with high precision.

【0009】その結果、化成皮膜の表層部おおよび近傍
に、起源が不明なCuが比較的高濃度に含まれ、このC
u により化成皮膜の耐食性が阻害されている可能性が
あることを発見した。例えば、通常のアルミニウム缶の
化成皮膜をXPSで分析した場合、その素材の清浄表面
においてCuの光電子カウント数は800〜2000c
psであるのに対し、化成皮膜の表層部ではその3〜4
倍に達するカウント数のCuが検出された。
As a result, a relatively high concentration of Cu of unknown origin is contained in and near the surface layer of the chemical conversion coating.
It was discovered that the corrosion resistance of chemical conversion coatings may be inhibited by u. For example, when the chemical conversion coating of a regular aluminum can is analyzed by XPS, the photoelectron count of Cu on the clean surface of the material is 800 to 2000c.
ps, whereas in the surface layer of the chemical conversion film, it is 3 to 4
A double count of Cu was detected.

【0010】そこで本発明者らは、缶体の成形から化成
処理に至る過程を全て再検討し、この化成皮膜中のCu
がどの過程に由来するものであるのかを詳細に調べた。 その結果、化成処理前の脱脂工程において、缶体から溶
出して蓄積したと考えられる極微量 (8〜35ppm
)のCu2+ が酸性脱脂液中に検出され、このCu2
+ が缶体の表面に再び析出を生じ、化成処理過程にお
いて化成皮膜がこのCu を取り込んだ形で形成される
という新規な事実が明らかになった。このようなCu 
の混入により、化成皮膜の緻密性が阻害され、さらに缶
体のAlとCuが内部電池を形成することにより耐食性
が低下する原因となっていたのである。
[0010] Therefore, the present inventors reexamined the entire process from molding of the can body to chemical conversion treatment, and determined that the Cu in the chemical conversion coating was
We investigated in detail what process this originates from. As a result, a trace amount (8 to 35 ppm
) was detected in the acidic degreasing solution, and this Cu2+
A new fact has been revealed that Cu is precipitated again on the surface of the can body, and a chemical conversion film is formed incorporating this Cu in the chemical conversion treatment process. Such Cu
The contamination of the can impairs the density of the chemical conversion coating, and furthermore, the Al and Cu of the can form an internal battery, causing a decrease in corrosion resistance.

【0011】そこで本発明者らはさらに、脱脂液中のC
u2+を低減することにより化成皮膜中のCu 濃度を
低下させる実験を試み、酸性脱脂液中のCu2+ 濃度
を3ppm以下に低下させるとCuの析出量が大幅に低
減されることを見出だした。
[0011] Therefore, the present inventors further investigated the effect of C in the degreasing solution.
We conducted an experiment to reduce the Cu concentration in the chemical conversion coating by reducing u2+, and found that when the Cu2+ concentration in the acidic degreasing solution was lowered to 3 ppm or less, the amount of Cu precipitation was significantly reduced.

【0012】本発明はこの知見に基づいてなされたもの
で、化成皮膜の耐食性を高めることができるアルミニウ
ム製缶体用脱脂液の管理方法および管理装置を提供する
ことを課題としている。
The present invention has been made based on this knowledge, and an object of the present invention is to provide a method and device for managing a degreasing liquid for aluminum can bodies, which can improve the corrosion resistance of a chemical conversion coating.

【0013】[0013]

【課題を解決するための手段】以下、本発明に係わるア
ルミニウム製缶体用脱脂液の管理方法および装置を具体
的に説明する。図1は、本発明の管理装置の一例を示す
概略図である。図中符号1は気密容器で、その上部には
、図示しない硫化水素ガス供給手段にバルブ2Aを介し
て接続されたガス導入口2が形成されている。また、気
密容器1の上部には脱脂液導入管(脱脂液導入口)3が
水平に挿入され、この脱脂液導入管3の下面には、複数
の噴霧口3Aが形成されている。脱脂液導入管3は、ア
ルミニウム製缶体の脱脂工程における脱脂液の循環路に
接続されており、脱脂処理に使用された後の脱脂液が噴
霧口3Aから気密容器1の内部に噴霧される。
[Means for Solving the Problems] Hereinafter, a method and apparatus for managing a degreasing liquid for aluminum can bodies according to the present invention will be explained in detail. FIG. 1 is a schematic diagram showing an example of a management device of the present invention. Reference numeral 1 in the figure is an airtight container, and a gas inlet 2 is formed in the upper part of the container, which is connected to a hydrogen sulfide gas supply means (not shown) via a valve 2A. Further, a degreasing liquid inlet pipe (degreasing liquid inlet) 3 is horizontally inserted into the upper part of the airtight container 1, and a plurality of spray ports 3A are formed on the lower surface of this degreasing liquid inlet pipe 3. The degreasing liquid inlet pipe 3 is connected to a degreasing liquid circulation path in the degreasing process of aluminum can bodies, and the degreasing liquid used in the degreasing process is sprayed into the airtight container 1 from the spray port 3A. .

【0014】一方、気密容器1の下部は下方に向けてテ
ーパ状にすぼめられ、その下端には導出口1Aが形成さ
れている。この導出口1Aは、ポンプ5およびフィルタ
6を介して前記循環路に再び接続されている。
On the other hand, the lower part of the airtight container 1 is tapered downward, and an outlet 1A is formed at the lower end. This outlet 1A is again connected to the circulation path via a pump 5 and a filter 6.

【0015】気密容器1の内部には、所定の液レベルに
達するまで多数のスペーサ4が入れられている。これら
スペーサ4は、脱脂液と硫化水素ガスの接触効率を高め
るためのもので、例えば樹脂製の円筒体などが使用され
る。
A large number of spacers 4 are placed inside the airtight container 1 until a predetermined liquid level is reached. These spacers 4 are for increasing the contact efficiency between the degreasing liquid and the hydrogen sulfide gas, and are made of, for example, a cylindrical body made of resin.

【0016】次に、上記装置を用いたアルミニウム製缶
体用脱脂液の管理方法の一例を説明する。この管理方法
では、脱脂工程に使用された脱脂液を噴霧口3Aから気
密容器1内に噴霧するとともに、バルブ2Aを開いてガ
ス導入口2から硫化水素ガスを一定圧力で気密容器1内
に導入する。
Next, an example of a method for managing degreasing liquid for aluminum can bodies using the above-mentioned apparatus will be explained. In this control method, the degreasing liquid used in the degreasing process is sprayed into the airtight container 1 from the spray port 3A, and at the same time, the valve 2A is opened and hydrogen sulfide gas is introduced into the airtight container 1 from the gas inlet 2 at a constant pressure. do.

【0017】すると、噴霧された脱脂液は細粒となって
硫化水素ガスと接触し、脱脂液に含まれるCu2+ が
硫化水素ガスと反応して硫化銅を生成する。この反応は
、脱脂液がスペーサ4間を流れる間も進行し、導出口1
Aから流出する時点では略完全にCu2+ が硫化銅に
転換される。
Then, the sprayed degreasing liquid becomes fine particles and comes into contact with the hydrogen sulfide gas, and Cu2+ contained in the degreasing liquid reacts with the hydrogen sulfide gas to produce copper sulfide. This reaction continues while the degreasing liquid flows between the spacers 4, and
At the time of flowing out from A, Cu2+ is almost completely converted to copper sulfide.

【0018】次に、導出口1Aから流出した脱脂液をポ
ンプ5で加圧し、フィルタ6を通して沈殿した硫化銅を
除去し、再び脱脂工程の脱脂液循環路に戻す。以上の処
理を、脱脂作業中に連続的または間欠的に行なうことに
より、脱脂処理中に缶体から酸性脱脂液へ溶出するCu
2+ を難溶性の硫化銅に転換して除去し、常に酸性脱
脂液中のCu2+ 濃度を3ppm 以下に維持するこ
とが可能である。
Next, the degreasing liquid flowing out from the outlet 1A is pressurized by the pump 5, the precipitated copper sulfide is removed through the filter 6, and the degreasing liquid is returned to the degreasing liquid circuit in the degreasing process. By performing the above treatment continuously or intermittently during the degreasing process, Cu eluted from the can body into the acidic degreasing liquid during the degreasing process can be removed.
It is possible to remove Cu2+ by converting it into sparingly soluble copper sulfide, and to always maintain the Cu2+ concentration in the acidic degreasing solution at 3 ppm or less.

【0019】これにより、脱脂中にCu2+ がアルミ
ニウム製缶体の表面へ析出することが著しく低減され、
脱脂後に形成される化成皮膜中に取り込まれるCuの量
が低下するため、化成皮膜の耐食性、ひいてはアルミニ
ウム製缶体の耐食性が、従来の脱脂液で処理されたアル
ミニウム製缶体よりも大幅に改善される。したがって、
脱脂後のアルミニウム缶へ内容物を充填した後、加熱水
殺菌工程(パステライザー)を行なう際に、未塗装の缶
底部(ボトム部)に従来発生していた黒色のしみ状腐食
が効果的に防止できる。
[0019] This significantly reduces the precipitation of Cu2+ on the surface of the aluminum can body during degreasing.
Because the amount of Cu incorporated into the chemical conversion coating formed after degreasing is reduced, the corrosion resistance of the chemical conversion coating and, by extension, the corrosion resistance of the aluminum can body is significantly improved compared to aluminum can bodies treated with conventional degreasing solutions. be done. therefore,
After filling degreased aluminum cans with contents, the heated water sterilization process (pastelizer) effectively eliminates the black stain-like corrosion that previously occurred on the unpainted can bottoms. It can be prevented.

【0020】また、上記の装置では、装置外に硫化水素
ガスが漏れないため、硫化水素ガスの使用効率が高く、
処理コストが安いうえ、環境を悪化させない利点がある
[0020] Furthermore, in the above device, hydrogen sulfide gas does not leak outside the device, so the efficiency of using hydrogen sulfide gas is high;
It has the advantage of being low in processing cost and not causing environmental damage.

【0021】なお、本発明の管理装置は前述した図1の
装置に限定されず、その他様々な変形例が可能である。 例えば、脱脂液をガス中で噴霧する代わりに、脱脂液中
に硫化水素ガスを吹き込む構成なども実施可能である。
The management device of the present invention is not limited to the device shown in FIG. 1 described above, and various other modifications are possible. For example, instead of spraying the degreasing liquid in a gas, it is also possible to implement a configuration in which hydrogen sulfide gas is blown into the degreasing liquid.

【0022】また、本発明の管理方法および装置は、従
来から使用されているいかなる組成の酸性脱脂液へも適
用できる。以下に酸性脱脂液の一般的な組成を数例挙げ
ておく。
Furthermore, the management method and apparatus of the present invention can be applied to acidic degreasing liquids of any composition that have been conventionally used. Below are some examples of common compositions of acidic degreasing liquids.

【0023】a.硫酸: 0.5〜2wt%リン酸: 
0.5〜1wt% 界面活性剤: 0.01〜0.2wt%
a. Sulfuric acid: 0.5-2wt% phosphoric acid:
0.5-1wt% Surfactant: 0.01-0.2wt%

【0024】b
.低温タイプ(処理液温50℃)SO42−: 600
0ppm F: 100ppm 界面活性剤: 1200ppm インヒビター (Cr6+): 100ppm
[0024]b
.. Low temperature type (processing liquid temperature 50℃) SO42-: 600
0ppm F: 100ppm Surfactant: 1200ppm Inhibitor (Cr6+): 100ppm

【002
5】c.中温タイプ(処理液温70℃)SO42−: 
16000ppm NO3−: 1000ppm Fe: 1200ppm 界面活性剤: 2000ppm
002
5]c. Medium temperature type (processing liquid temperature 70℃) SO42-:
16000ppm NO3-: 1000ppm Fe: 1200ppm Surfactant: 2000ppm

【0026】d.中温タイプ(処理液温70℃)SO4
2−: 6500ppm PO43−: 6500ppm Fe: 200ppm 界面活性剤: 1500ppm
d. Medium temperature type (processing liquid temperature 70℃) SO4
2-: 6500ppm PO43-: 6500ppm Fe: 200ppm Surfactant: 1500ppm

【0027】e.高温タイプ(処理液温80℃)SO4
2−: 3700ppm 界面活性剤: 100ppm インヒビター(Cr6+): 80ppm
[0027] e. High temperature type (processing liquid temperature 80℃) SO4
2-: 3700ppm Surfactant: 100ppm Inhibitor (Cr6+): 80ppm

【0028】
また、上記管理方法の処理条件は、脱脂処理と並行して
行えるように脱脂条件と同じでよい。例えば、前記aに
示した硫酸−リン酸系脱脂液の脱脂条件は、脱脂液温度
:40〜90℃、望ましくは65〜75℃とされる。ま
た、前記b〜eの脱脂液に関しては記載の温度で処理す
ればよい。
[0028]
Further, the processing conditions of the above-mentioned management method may be the same as the degreasing conditions so that it can be carried out in parallel with the degreasing treatment. For example, the degreasing conditions for the sulfuric acid-phosphoric acid degreasing solution shown in a above are such that the degreasing solution temperature is 40 to 90°C, preferably 65 to 75°C. Furthermore, the degreasing liquids b to e may be treated at the temperatures described.

【0029】さらに、脱脂対象となる缶体の材質は、従
来使用されているいかなるものでもよく、例えば前述し
たJISA3004やJISA5182が好適である。 例えばJISA3004は、以下の組成からなる。 Al: 95.5〜98.2wt% Mg: 0.8〜1.3wt% Mn: 1.0〜1.5wt% Cu: 0.25wt%以下
Further, the material of the can body to be degreased may be any conventionally used material, and for example, the above-mentioned JISA 3004 and JISA 5182 are suitable. For example, JISA3004 has the following composition. Al: 95.5-98.2wt% Mg: 0.8-1.3wt% Mn: 1.0-1.5wt% Cu: 0.25wt% or less

【0030】また、脱脂後の缶体に形成される化成皮膜
としては、従来と同様に、リン酸クロムまたはリン酸ジ
ルコニウム皮膜が好適であり、その皮膜量は厚さで10
0〜500オングストローム、蛍光X線による測定値に
よればCrあるいはZrとして3〜20mg/m2の皮
膜量であることが望ましい。
Furthermore, as the chemical conversion coating formed on the can body after degreasing, a chromium phosphate or zirconium phosphate coating is suitable as in the past, and the coating amount is 10% in thickness.
It is preferable that the film has a thickness of 0 to 500 angstroms, and a coating amount of 3 to 20 mg/m2 of Cr or Zr as measured by fluorescent X-rays.

【0031】本発明の脱脂液管理方法および装置で処理
された酸性脱脂液を脱脂に使用することにより、母材の
アルミニウムと再析出した銅との間に形成される極部電
池作用による耐食性の劣化が除かれ、また化成皮膜が緻
密化して耐食性が向上するため、従来の脱脂液を用いた
場合には最低でも250オングストローム(=12mg
/m2)必要であった化成皮膜量を、8mg/m2以下
に低減することも可能である。
By using the acidic degreasing liquid treated with the degreasing liquid management method and apparatus of the present invention for degreasing, corrosion resistance is improved due to the polar cell action formed between the base material aluminum and the redeposited copper. Deterioration is removed and the chemical conversion film becomes denser and corrosion resistance is improved, so when conventional degreasing liquid is used, at least 250 angstroms (= 12 mg
/m2) It is also possible to reduce the required amount of chemical conversion coating to 8 mg/m2 or less.

【0032】なお、このような化成皮膜は数十〜数百オ
ングストロームの極薄膜であるが、その構成元素および
不純物含有量は、X線光電子分光法 (XPS)により
定量可能である。以下にXPSによる化成皮膜中のCu
量の求め方を説明する。
[0032] Although such a chemical conversion coating is an extremely thin film of several tens to hundreds of angstroms, its constituent elements and impurity content can be quantified by X-ray photoelectron spectroscopy (XPS). The following shows Cu in the chemical conversion film by XPS.
Explain how to find the quantity.

【0033】光電子強度は、原子の存在密度に比例する
値である。本発明者らは、X線源としてMgKαを使用
し、試料をArイオンにより一定速度でエッチングしつ
つ光電子強度を測定することにより、深さ方向の構成元
素の分布を調べた。
The photoelectron intensity is a value proportional to the density of atoms. The present inventors investigated the distribution of constituent elements in the depth direction by measuring the photoelectron intensity while etching a sample at a constant rate with Ar ions using MgKα as an X-ray source.

【0034】化成皮膜中のCuの存在量は、Cuの光電
子強度 (単位はcps)の最大値と、この時のバルク
(缶体の材質自体)のAlの光電子強度の比で表される
。このように表すのは、Cu原子は化成皮膜の一定深さ
で最大光電子強度すなわち最大存在量を示すが、その深
さは脱脂条件、化成条件、表面分析方法および測定条件
、試料面積等によって種々異なるからである。
The amount of Cu present in the chemical conversion film is expressed as the ratio of the maximum photoelectron intensity (unit: cps) of Cu to the photoelectron intensity of Al in the bulk (can body material itself) at this time. Expressed in this way, Cu atoms exhibit the maximum photoelectron intensity, that is, the maximum abundance, at a certain depth of the chemical conversion coating, but that depth varies depending on the degreasing conditions, chemical formation conditions, surface analysis method and measurement conditions, sample area, etc. This is because they are different.

【0035】本発明者らの実験によると、化成皮膜の耐
食性が良好であるCu/Al光電子強度比の最大値は0
.3以下、望ましくは0.2以下であることが判明して
いる。
According to experiments conducted by the present inventors, the maximum value of the Cu/Al photoelectron intensity ratio at which the chemical conversion coating has good corrosion resistance is 0.
.. It has been found that it is 3 or less, preferably 0.2 or less.

【0036】[0036]

【実施例】次に、実施例をあげて本発明の効果を説明す
る。 (比較例1)JISA3004材を用いて成形した缶胴
を、表1の組成からなる4種の脱脂液を用いて70℃で
60秒浸漬脱脂した。
[Example] Next, the effects of the present invention will be explained by giving examples. (Comparative Example 1) A can body molded using JISA 3004 material was degreased by immersion at 70° C. for 60 seconds using four kinds of degreasing liquids having the compositions shown in Table 1.

【0037】[0037]

【表1】[Table 1]

【0038】次いでXPS分析装置を用い、缶胴のボト
ム部外面をArイオンでエッチングしつつ、Cu、Al
、O、Cの光電子強度を表2の条件で測定した。
Next, using an XPS analyzer, while etching the outer surface of the bottom part of the can body with Ar ions, Cu, Al
, O, and C were measured under the conditions shown in Table 2.

【0039】[0039]

【表2】[Table 2]

【0040】表1のNo.4の脱脂液を用いた場合の結
果を図2に示す。この図から明らかなようにCuの光電
子強度は、Arイオンでエッチング開始数分後で極大値
をとり、Cu/Alの光電子強度比は0.9に達した。
[0040] No. in Table 1. The results obtained when using the degreasing solution No. 4 are shown in FIG. As is clear from this figure, the photoelectron intensity of Cu reached its maximum value several minutes after the start of etching with Ar ions, and the photoelectron intensity ratio of Cu/Al reached 0.9.

【0041】(比較例2)比較例1と同じ脱脂処理を行
った缶胴を、表3に示すZr化成処理液に35℃で30
秒浸漬し、リン酸Zr系化成皮膜をZr量15mg/m
2の厚さで形成した。
(Comparative Example 2) A can body that had been subjected to the same degreasing treatment as in Comparative Example 1 was soaked in the Zr chemical conversion treatment solution shown in Table 3 at 35°C for 30 minutes.
After dipping for seconds, apply Zr phosphate conversion coating to 15 mg/m of Zr.
It was formed with a thickness of 2.

【0042】[0042]

【表3】[Table 3]

【0043】次いでXPS分析装置を用い、缶胴のボト
ム部の外面をArイオンでエッチングしつつ、Cu、A
l、Zr、F、Pの光電子強度を表2の条件で測定した
。表1のNo.4の脱脂液による結果を図3に示す。 この図から明らかなように、Cuの光電子強度はAr+
 イオンによるエッチング開始数分後で極大値をとり、
Cu/Al の光電子強度比は0.9に達した。
Next, using an XPS analyzer, while etching the outer surface of the bottom part of the can body with Ar ions, Cu, Al
The photoelectron intensities of L, Zr, F, and P were measured under the conditions shown in Table 2. No. of Table 1 The results obtained using the degreasing solution No. 4 are shown in FIG. As is clear from this figure, the photoelectron intensity of Cu is Ar+
It reaches its maximum value a few minutes after the start of etching with ions,
The photoelectron intensity ratio of Cu/Al reached 0.9.

【0044】次に、上記の処理を行ったアルミニウム缶
胴のボトム部を75℃において30分間加熱水中に浸漬
し、黒色しみ状の腐食の発生状態を調べた。結果を表4
に示す。脱脂液中のCuイオン濃度が10ppmを越え
た条件では、明らかに耐食性の著しい低下がみとめられ
た。
Next, the bottom portion of the aluminum can body subjected to the above treatment was immersed in heated water at 75° C. for 30 minutes, and the occurrence of corrosion in the form of black stains was examined. Table 4 shows the results.
Shown below. Under conditions where the Cu ion concentration in the degreasing solution exceeded 10 ppm, a significant decrease in corrosion resistance was clearly observed.

【0045】[0045]

【表4】[Table 4]

【0046】(比較例3)比較例1と同じ脱脂処理を行
った缶胴を、表5に示すリン酸Cr化成処理液に35℃
で30秒浸漬し、リン酸Cr系化成皮膜をCrとして1
5mg/m2の厚さで形成した。
(Comparative Example 3) A can body that had been subjected to the same degreasing treatment as in Comparative Example 1 was soaked in a phosphoric acid chromium conversion treatment solution shown in Table 5 at 35°C.
The phosphoric acid Cr-based chemical conversion coating was immersed in
It was formed with a thickness of 5 mg/m2.

【0047】[0047]

【表5】[Table 5]

【0048】次いでXPS分析装置を用い、缶胴のボト
ム部外面を、Arイオンでエッチングしつつ、Cu、A
l、Cr、F、Pの光電子強度を表2の条件で測定した
。上記の処理を行ったアルミニウム缶胴ボトム部を、7
5℃において30分間加熱水中に浸漬し、黒色しみ状の
腐食の発生状態を調べた。結果を表6に示す。脱脂液中
のCuイオン濃度が10ppmを越えた条件では、明ら
かに耐食性の著しい低下がみとめられた。
Next, using an XPS analyzer, while etching the outer surface of the bottom part of the can body with Ar ions, Cu, Al
The photoelectron intensities of L, Cr, F, and P were measured under the conditions shown in Table 2. The bottom part of the aluminum can body that has undergone the above treatment is
The specimens were immersed in heated water at 5° C. for 30 minutes, and the occurrence of corrosion in the form of black stains was examined. The results are shown in Table 6. Under conditions where the Cu ion concentration in the degreasing solution exceeded 10 ppm, a significant decrease in corrosion resistance was clearly observed.

【0049】[0049]

【表6】[Table 6]

【0050】(比較例4)JISA3004材を用いて
成形した缶胴を、表7の組成からなる脱脂液を用いて7
0℃で60秒間脱脂した。
(Comparative Example 4) A can body formed using JISA3004 material was treated with a degreasing liquid having the composition shown in Table 7.
Degreasing was performed at 0°C for 60 seconds.

【0051】[0051]

【表7】[Table 7]

【0052】次いで、表3に示したZr化成処理液に3
5℃で30秒浸漬し、リン酸Zr系化成皮膜をZn量1
5mg/m2の厚さに形成した。さらにXPS分析装置
を用い、缶胴のボトム部外面をArイオンでエッチング
しつつCu、Al、O、Zr、F、Pの光電子強度を表
2の条件で測定した。
Next, 3 was added to the Zr chemical conversion treatment solution shown in Table 3.
Immerse for 30 seconds at 5°C to apply a Zr phosphate chemical conversion film with a Zn content of 1.
It was formed to a thickness of 5 mg/m2. Furthermore, using an XPS analyzer, the photoelectron intensities of Cu, Al, O, Zr, F, and P were measured under the conditions shown in Table 2 while etching the outer surface of the bottom part of the can body with Ar ions.

【0053】上記の処理を行ったアルミニウム缶胴ボト
ム部を、75℃において30分間加熱水中に浸漬し、黒
色しみ状の腐食の発生状態を調べた。結果を表8に示す
。脱脂液中のCuイオン濃度が10ppmを越えた条件
では、明らかに耐食性の著しい低下がみとめられた。
The bottom portion of the aluminum can body subjected to the above treatment was immersed in heated water at 75° C. for 30 minutes, and the occurrence of corrosion in the form of black stains was examined. The results are shown in Table 8. Under conditions where the Cu ion concentration in the degreasing solution exceeded 10 ppm, a significant decrease in corrosion resistance was clearly observed.

【0054】[0054]

【表8】[Table 8]

【0055】(実施例)比較例1と同じ組成の酸性脱脂
液を、図1に示した前述の装置に連続的に供給し、脱脂
液中のCu2+をCuSとして沈殿除去しつつ缶胴の脱
脂処理を行なった。次に、脱脂した缶胴を表3に示した
Zr化成処理液に35℃で20秒浸漬し、リン酸Zr系
化成皮膜をZr量8mg/m2の厚さで形成した。さら
にXPS分析装置を用い、缶胴のボトム部外面をArイ
オンでエッチングしつつCu、Al、Zr、F、Pの光
電子強度を表2の条件で測定した。結果を表9に示す。 また、上記の処理を行ったアルミニウム缶胴ボトム部を
75℃において30分間加熱水中に浸漬し、黒色しみ状
の腐食の発生状態を調べた。
(Example) An acidic degreasing solution having the same composition as Comparative Example 1 was continuously supplied to the above-mentioned apparatus shown in FIG. 1, and the can body was degreased while Cu2+ in the degreasing solution was precipitated and removed as CuS. processed. Next, the degreased can body was immersed in the Zr chemical conversion treatment solution shown in Table 3 at 35° C. for 20 seconds to form a Zr phosphate chemical conversion film with a thickness of 8 mg/m 2 of Zr. Further, using an XPS analyzer, the photoelectron intensities of Cu, Al, Zr, F, and P were measured under the conditions shown in Table 2 while etching the outer surface of the bottom part of the can body with Ar ions. The results are shown in Table 9. Further, the bottom portion of the aluminum can body subjected to the above treatment was immersed in heated water at 75° C. for 30 minutes, and the occurrence of corrosion in the form of black stains was examined.

【0056】その結果を併せて表9に示す。この結果か
ら当初はCu2+を10ppm以上含む脱脂液であって
も、Cu2+ を硫化物として除去し、脱脂液中のCu
2+濃度を低減することにより、脱脂中におけるアルミ
缶表面への銅の再析出が防止でき、最終的に化成皮膜中
の銅量を著しく低減できるため、アルミ缶の耐食性が向
上することが明らかになった。
The results are also shown in Table 9. From this result, even if the degreasing solution contains 10 ppm or more of Cu2+, Cu2+ can be removed as sulfide, and Cu2+ in the degreasing solution can be removed.
It is clear that by reducing the 2+ concentration, redeposition of copper on the surface of the aluminum can can be prevented during degreasing, and the amount of copper in the final chemical conversion coating can be significantly reduced, improving the corrosion resistance of the aluminum can. became.

【0057】[0057]

【表9】[Table 9]

【0058】[0058]

【発明の効果】以上説明したように、本発明に係わるア
ルミニウム製缶体用脱脂液の管理方法および管理装置に
よれば、脱脂時に缶体表面からのAlの溶出に伴い缶体
材料中から溶出するCu2+ を、難溶性の硫化銅とし
て除去するため、脱脂液中のCu2+濃度の上昇を防ぎ
、脱脂中の缶体表面へのCu析出量を低減することが可
能である。これにより、脱脂後の化成処理工程において
化成皮膜にCu原子が混入することによる化成皮膜の物
性劣化を防いで、最終的に得られるアルミニウム製缶体
の耐食性が大幅に向上できる。
As explained above, according to the method and device for managing degreasing liquid for aluminum can bodies according to the present invention, Al is eluted from the can material as Al is eluted from the can surface during degreasing. Since the Cu2+ is removed as poorly soluble copper sulfide, it is possible to prevent an increase in the Cu2+ concentration in the degreasing solution and reduce the amount of Cu deposited on the can surface during degreasing. This prevents deterioration of the physical properties of the chemical conversion film due to the incorporation of Cu atoms into the chemical conversion film in the chemical conversion treatment step after degreasing, and significantly improves the corrosion resistance of the aluminum can body finally obtained.

【0059】また、化成皮膜の耐食性を高めた分、化成
皮膜を従来品よりも薄くして、アルミニウム製缶体の製
造コストが低下できる可能性も有する。
Furthermore, since the corrosion resistance of the chemical conversion coating is improved, the chemical conversion coating can be made thinner than conventional products, and there is a possibility that the manufacturing cost of aluminum can bodies can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係わるアルミニウム製缶体用脱脂液の
管理装置の一例を示す概略図である。
FIG. 1 is a schematic diagram showing an example of a degreasing liquid management device for aluminum can bodies according to the present invention.

【図2】本発明の効果を説明するためのグラフである。FIG. 2 is a graph for explaining the effects of the present invention.

【図3】本発明の効果を説明するためのグラフである。FIG. 3 is a graph for explaining the effects of the present invention.

【符号の説明】[Explanation of symbols]

1  気密容器 2  硫化水素ガス導入口 3  脱脂液導入管(脱脂液導入口) 4  スペーサ 5  ポンプ 6  フィルタ 1 Airtight container 2 Hydrogen sulfide gas inlet 3 Degreasing liquid introduction pipe (Degreasing liquid inlet) 4 Spacer 5 Pump 6 Filter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  アルミニウム製缶体を脱脂するために
使用される酸性脱脂液の管理方法であって、硫化水素ガ
スを前記酸性脱脂液に間欠的または連続的に吹き込むと
ともに、生じたCuS を酸性脱脂液から分離除去する
ことにより、酸性脱脂液中のCu2+ 濃度を3ppm
 以下に維持することを特徴とするアルミニウム製缶体
用脱脂液の管理方法。
1. A method for managing an acidic degreasing liquid used for degreasing an aluminum can body, the method comprising: intermittently or continuously blowing hydrogen sulfide gas into the acidic degreasing liquid; and acidifying the CuS produced. By separating and removing Cu2+ from the degreasing solution, the concentration of Cu2+ in the acidic degreasing solution can be reduced to 3 ppm.
A method for managing a degreasing liquid for aluminum can bodies, characterized by maintaining the following:
【請求項2】  前記酸性脱脂液は、リン酸、硫酸、お
よびFe3+ を含有するリン酸系酸性脱脂液であるこ
とを特徴とする請求項1記載のアルミニウム製缶体用脱
脂液の管理方法。
2. The method for managing a degreasing liquid for aluminum cans according to claim 1, wherein the acidic degreasing liquid is a phosphoric acid-based acidic degreasing liquid containing phosphoric acid, sulfuric acid, and Fe3+.
【請求項3】  前記酸性脱脂液は、さらに界面活性剤
を含有することを特徴とする請求項1または2記載のア
ルミニウム製缶体用脱脂液の管理方法。
3. The method for managing a degreasing liquid for aluminum can bodies according to claim 1, wherein the acidic degreasing liquid further contains a surfactant.
【請求項4】  アルミニウム製缶体用の酸性脱脂液の
循環路に介装される脱脂液の管理装置であって、前記循
環路から酸性脱脂液が導入される脱脂液導入口、および
前記循環路へ酸性脱脂液を排出する導出口を有する気密
容器と、前記気密容器内に硫化水素ガスを供給し、前記
酸性脱脂液と硫化水素ガスとを接触させるガス供給手段
と、硫化水素ガスと接触した後の酸性脱脂液を濾過し、
酸性脱脂液から沈殿物を除去するフィルタとを具備した
ことを特徴とするアルミニウム製缶体用脱脂液の管理装
置。
4. A degreasing liquid management device interposed in an acidic degreasing liquid circulation path for an aluminum can body, comprising: a degreasing liquid inlet into which the acidic degreasing liquid is introduced from the circulation path; an airtight container having an outlet for discharging the acidic degreasing liquid into the airtight container; a gas supply means for supplying hydrogen sulfide gas into the airtight container and bringing the acidic degreasing liquid into contact with the hydrogen sulfide gas; Filter the acidic degreasing solution after
1. A degreasing liquid management device for aluminum can bodies, characterized by comprising a filter for removing precipitates from an acidic degreasing liquid.
JP289791A 1991-01-14 1991-01-14 Method and device of controlling degreasing solution for aluminum can Withdrawn JPH04350181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP289791A JPH04350181A (en) 1991-01-14 1991-01-14 Method and device of controlling degreasing solution for aluminum can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP289791A JPH04350181A (en) 1991-01-14 1991-01-14 Method and device of controlling degreasing solution for aluminum can

Publications (1)

Publication Number Publication Date
JPH04350181A true JPH04350181A (en) 1992-12-04

Family

ID=11542148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP289791A Withdrawn JPH04350181A (en) 1991-01-14 1991-01-14 Method and device of controlling degreasing solution for aluminum can

Country Status (1)

Country Link
JP (1) JPH04350181A (en)

Similar Documents

Publication Publication Date Title
CN100393914C (en) Plasma treatment for purifying copper or nickel
JP2002519179A (en) Immersion processing method and apparatus for semiconductors and other equipment
CN104818474B (en) The manufacturing method of steel plate for container
CN101965642B (en) Method for manufacturing a silicon surface with pyramidal texture
US20150225678A1 (en) Electrolytic copper foil, cleaning fluid composition and method for cleaning copper foil
US6146468A (en) Semiconductor wafer treatment
CZ300236B6 (en) Process for making polymer coated aluminum alloy sheet suitable for shaping into a food or beverage container and polymer coated aluminum alloy sheet per se
NO329293B1 (en) Method, apparatus and line for the ecological treatment of the surface of a metal container by combining a chemical action and a mechanical action
CN1295630A (en) Method for developing enhanced oxide coating on component formed from stainless steel or nickel alloy steel
JPH04350181A (en) Method and device of controlling degreasing solution for aluminum can
US4294627A (en) Treatment of tinplate surfaces
US3034933A (en) Method and means for treating metallic surfaces bearing protective coatings
JP3343843B2 (en) Pre-electrodeposition treatment method for car bodies
JP2006053130A (en) Inspection method and apparatus of chemical coating film
CN110938852B (en) Passivation process of tin-plated steel plate
JP3067310B2 (en) Method for degreasing aluminum can body and management device used in the method
JPH04173989A (en) Method for degreasing can body made of aluminum
JPS62182291A (en) Method for washing aluminum
JPH04176885A (en) Degreasing solution for can body made of aluminum
US4363673A (en) Process for the removal of carbon from solid surfaces
CN113046737A (en) Method for treating metal surface by using hydroxylamine zinc phosphating solution
JP2982263B2 (en) Aluminum can and manufacturing method thereof
JPH055193A (en) Degreasing liquid for aluminum can body
CN110241429A (en) A kind of cleaner for metal and its cleaning method
GB2121073A (en) Aqueous fluoride-free aluminium cleaning composition

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514