JP2982263B2 - Aluminum can and manufacturing method thereof - Google Patents

Aluminum can and manufacturing method thereof

Info

Publication number
JP2982263B2
JP2982263B2 JP24653490A JP24653490A JP2982263B2 JP 2982263 B2 JP2982263 B2 JP 2982263B2 JP 24653490 A JP24653490 A JP 24653490A JP 24653490 A JP24653490 A JP 24653490A JP 2982263 B2 JP2982263 B2 JP 2982263B2
Authority
JP
Japan
Prior art keywords
aluminum
chemical conversion
degreasing
ppm
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24653490A
Other languages
Japanese (ja)
Other versions
JPH04125457A (en
Inventor
博康 石川
貴子 阿部
務 高橋
俊夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24653490A priority Critical patent/JP2982263B2/en
Publication of JPH04125457A publication Critical patent/JPH04125457A/en
Application granted granted Critical
Publication of JP2982263B2 publication Critical patent/JP2982263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、清涼飲料やビール等の容器として使用され
るアルミニウム缶に係わり、特に、缶体の外面に形成さ
れる化成皮膜の耐食性を高めるための改良に関する。
Description: FIELD OF THE INVENTION The present invention relates to an aluminum can used as a container for soft drinks, beer and the like, and particularly to enhance the corrosion resistance of a chemical conversion film formed on the outer surface of the can body. For improvement.

「従来の技術」 この種のアルミニウム缶は、一般に有底円筒状の缶胴
と、この缶胴の上端開口部に嵌合される円形の缶蓋とか
ら構成されており、この明細書中では、これら缶胴と缶
蓋を合わせて缶体と称する。
"Prior art" This type of aluminum can is generally composed of a bottomed cylindrical can body and a circular can lid fitted into an upper end opening of the can body. The can body and the can lid are collectively referred to as a can body.

前記缶胴は、アルミ板を深絞り成形した後、成形時に
付着した潤滑油や汚れを脱脂工程で除去し、化成処理を
施して表面に耐食性および塗膜密着性を高めるための化
成皮膜を形成したうえ、内面および外面を塗装して製造
されている。また缶蓋は、化成皮膜および塗装を予めア
ルミ板に施した後、このアルミ板を打抜成形して製造さ
れている。
After deep-drawing the aluminum plate, the can body removes lubricating oil and dirt adhering at the time of molding in a degreasing process and performs a chemical conversion treatment to form a chemical conversion film on the surface to enhance corrosion resistance and coating film adhesion. In addition, it is manufactured by painting the inner and outer surfaces. Also, the can lid is manufactured by applying a chemical conversion film and coating to an aluminum plate in advance, and then punching and forming the aluminum plate.

これら缶体の材質としては、従来より主に、JISA300
4、JISA5182等のアルミニウム合金が使用されている。
これら合金はAlを主組成物とし、その他にMg,Mn,Cuを添
加したもので、Cuの含有量は0.2〜0.25wt%程度であ
る。
Conventionally, as the material of these cans, JISA300
4. Aluminum alloy such as JISA5182 is used.
These alloys contain Al as a main composition, and additionally contain Mg, Mn, and Cu, and have a Cu content of about 0.2 to 0.25 wt%.

また、脱脂液としては、硫酸、あるいはリン酸と硫酸
を主組成物とした酸性タイプが一般に使用されており、
例えば特公昭50−21147号公報では、リン酸と硫酸を主
組成物とし、界面活性剤を適宜添加した酸性脱脂液が開
示されている。
As the degreasing solution, sulfuric acid or an acidic type having phosphoric acid and sulfuric acid as a main composition is generally used,
For example, Japanese Patent Publication No. 50-21147 discloses an acidic degreasing solution containing phosphoric acid and sulfuric acid as a main composition and appropriately adding a surfactant.

さらに化成処理は、通常、クロムまたはジルコニウム
のリン酸塩系溶液を用いて行なわれ、これにより厚さ数
10〜数100Å程度のリン酸クロム系またはリン酸ジルコ
ニウム系の化成皮膜が缶体の表面に形成される。
Further, the chemical conversion treatment is usually performed using a phosphate-based solution of chromium or zirconium, and the
A chromium phosphate-based or zirconium phosphate-based chemical conversion film of about 10 to several hundred degrees is formed on the surface of the can body.

「発明が解決しようとする課題」 ところで、従来のアルミニウム缶では、前記化成皮膜
の耐食性が期待されるほど高くなく、内容物充填後の殺
菌工程にて缶体の未塗装部である缶底外面のアルミニウ
ムが直接露出した部分において腐蝕による変色を生じる
ことがあり、問題になっていた。このため、各種の分析
法を用いてアルミニウム缶の化学分析が行なわれてきた
が、原因は判然としなかった。
[Problems to be Solved by the Invention] By the way, in the conventional aluminum can, the corrosion resistance of the chemical conversion film is not so high as expected, and the outer surface of the can bottom which is an unpainted portion of the can body in the sterilization process after filling the contents. In some cases, discoloration due to corrosion occurs in portions where the aluminum is directly exposed, which has been a problem. For this reason, chemical analysis of aluminum cans has been performed using various analytical methods, but the cause was not clear.

本発明者らは、この原因を調べるために、従来この種
の研究にはあまり使用されていないXPS分析(X線光電
子分光法)を採用し、アルミニウム缶の構成元素の深さ
方向分布を高精度で調べた。
The present inventors employed XPS analysis (X-ray photoelectron spectroscopy), which has been rarely used in this type of research, to increase the depth distribution of the constituent elements of the aluminum can in order to investigate the cause. The accuracy was checked.

その結果、化成皮膜中の表層部に、起源が不明なCuが
比較的高濃度に含まれ、このCuにより化成皮膜の耐食性
が阻害されている可能性があることを発見した。
As a result, it was found that Cu of unknown origin was contained in the surface layer portion of the chemical conversion film at a relatively high concentration, and that the corrosion resistance of the chemical conversion film might be inhibited by the Cu.

例えば、通常のアルミニウム缶の化成皮膜をXPS分析
で分析した場合、その素材の研摩後の清浄表面において
Cuの光電子カウント数は800〜2000cpsであるのに対し、
化成皮膜の表層部ではその3〜8倍に達するカウント数
のCuが検出された。
For example, when a chemical conversion coating on a normal aluminum can is analyzed by XPS analysis, the material on the clean surface after polishing is
While the photoelectron count of Cu is 800-2000 cps,
In the surface layer of the chemical conversion film, counts of Cu reaching 3 to 8 times that of the chemical conversion film were detected.

そこで本発明者らは、アルミニウム缶の成形から化成
処理に至る過程を全て再検討し、この化成皮膜中のCuが
どの過程に由来するものであるのかを詳細に調べた。そ
の結果、化成処理前の脱脂工程において、酸性脱脂液中
にアルミニウム缶から溶出し蓄積したと考えられるCu2+
が8〜35ppmという極微量検出され、このCu2+がアルミ
ニウム缶の表面に再び析出を生じ、化成処理過程におい
て化成皮膜がこのCuを取り込んだ形で形成されるという
新規な事実を突き止めた。
Then, the present inventors reexamined all the processes from the molding of the aluminum can to the chemical conversion treatment, and examined in detail which process Cu originated from this chemical conversion film. As a result, in the degreasing step before the chemical conversion treatment, it was considered that Cu 2+ was eluted and accumulated from the aluminum can in the acidic degreasing solution.
Was detected in an extremely small amount of 8 to 35 ppm, and the new fact that Cu 2+ was deposited again on the surface of the aluminum can and a chemical conversion film was formed in a form incorporating the Cu during the chemical conversion treatment was found.

このようなCuの混入により、化成皮膜の緻密性が阻害
されるとともに、Cuと缶体のAlが内部電池を形成するた
め、耐食性が低下する原因となっていたのである。
Such mixing of Cu impairs the denseness of the chemical conversion film and causes the deterioration of corrosion resistance because Cu and Al of the can form an internal battery.

本発明はこの知見に基づいてなされたもので、化成皮
膜の耐食性を高めたアルミニウム缶を提供することを課
題としている。
The present invention has been made based on this finding, and it is an object of the present invention to provide an aluminum can having improved corrosion resistance of a chemical conversion film.

「課題を解決するための手段」 本発明に係わるアルミニウム缶は、缶体を構成する缶
胴および缶蓋の少なくとも一方の表面に化成皮膜が形成
されたものであって、この化成皮膜中におけるCuの密度
が、このアルミニウム缶の材質そのものにおけるCuの密
度の最大値の2倍以下とされていること、さらに好まし
くは、化成皮膜中におけるX線光電子分光法によるCuの
光電子カウント数の最大値が、このアルミニウム缶の材
質そのものにおける前記カウント数の2倍以下で3000cp
s以下とされていることを特徴とする。
"Means for Solving the Problems" The aluminum can according to the present invention has a chemical conversion film formed on at least one surface of a can body and a can lid constituting a can body, and contains Cu in the chemical conversion film. Is not more than twice the maximum value of the density of Cu in the material itself of the aluminum can, more preferably, the maximum value of the number of photoelectron counts of Cu by X-ray photoelectron spectroscopy in the chemical conversion coating 3,000 cp at less than twice the count number in the material itself of this aluminum can
s or less.

缶胴および缶蓋には、内面塗装および/あるいは外面
塗装がその一部または全面に施されていてもよい。ま
た、アルミニウム缶の形状や寸法、肉厚はいずれも限定
されないし、缶胴または缶蓋が単体である場合も、本発
明の請求範囲に入るものとする。
An inner surface coating and / or an outer surface coating may be partially or entirely applied to the can body and the can lid. Further, the shape, dimensions, and thickness of the aluminum can are not limited, and the case of the can body or the can lid alone is also included in the claims of the present invention.

缶胴および缶蓋の材質は、従来この目的で使用されて
いるいかなる材質でもよく、例えば前述したJISA3004や
JISA5182が好適である。ちなみにJISA3004は、以下の組
成からなる。
The material of the can body and the can lid may be any material conventionally used for this purpose, for example, the above-mentioned JISA3004 or
JISA5182 is preferred. Incidentally, JISA3004 has the following composition.

Al:95.5〜98.2wt% Mg:0.8〜1.3wt% Mn:1.0〜1.5wt% Cu:0.25wt%以下 化成皮膜としては、従来と同様にリン酸クロム系皮膜
またはリン酸ジルコニウム系皮膜が好適である。それぞ
れの好適な化成皮膜量は、CrまたはZr含有量で表わす
と、Cr:4〜20mg/m2、Zr:5〜25mg/m2程度である。
Al: 95.5 to 98.2 wt% Mg: 0.8 to 1.3 wt% Mn: 1.0 to 1.5 wt% Cu: 0.25 wt% or less As the conversion coating, a chromium phosphate coating or a zirconium phosphate coating is suitable as in the past. is there. Each of the preferred conversion coating weight was represented by Cr or Zr content, Cr: 4~20mg / m 2, Zr: a 5 to 25 mg / m 2 or so.

従来品における化成皮膜量は、耐食性の観点より、リ
ン酸クロム系皮膜ではCrとして最低8mg/m2、リン酸ジル
コニウム系皮膜ではZrとして最低10mg/m2必要だった。
しかし本発明品では、それぞれCr:4mg/m2、Zr:5mg/m2
で低減できる。
From the viewpoint of corrosion resistance, the amount of the conversion coating in the conventional product required at least 8 mg / m 2 as Cr for the chromium phosphate coating and at least 10 mg / m 2 as Zr for the zirconium phosphate coating.
However, in the present invention product, respectively Cr: 4mg / m 2, Zr : it can be reduced to 5 mg / m 2.

一方、化成皮膜量がCr:20mg/m2、Zr:25mg/m2より大き
いと、塗膜密着性が低下したり、生産コストを増すのみ
で無駄である。
On the other hand, if the amount of the chemical conversion film is larger than Cr: 20 mg / m 2 and Zr: 25 mg / m 2 , the adhesion of the coating film is reduced or the production cost is increased, and it is useless.

前記光電子カウント数は、Cu原子の存在密度に比例す
る値で、ここではX線源としてMgKα線を使用し、アル
ゴンイオンにより化成皮膜の表面を一定速度でエッチン
グしつつ、化成皮膜の深さ方向の全域に亙ってCuの光電
子カウント数(単位はcps)の分布を求め、その最大値
を前記Cuの光電子カウント数の値として定義する。
The photoelectron count is a value proportional to the existing density of Cu atoms.Here, MgKα rays are used as an X-ray source, and the surface of the chemical conversion film is etched at a constant rate with argon ions, and the depth direction of the chemical conversion film is determined. The distribution of the photoelectron count number (unit: cps) of Cu is obtained over the entire region, and the maximum value is defined as the value of the photoelectron count number of Cu.

このように定義するのは、Cu原子の存在密度分布が化
成皮膜の表面側の一定深度の位置にピークを有し、その
深度は脱脂条件、並びに化成皮膜の形成条件等によって
異なるためである。
The reason for this definition is that the density distribution of Cu atoms has a peak at a certain depth position on the surface side of the chemical conversion film, and the depth varies depending on the degreasing conditions, the formation conditions of the chemical conversion film, and the like.

化成皮膜中のCuの光電子カウント数が、缶体材質の光
電子カウント数の2倍より大きいと、化成皮膜の耐食性
が低下して従来の問題が解決されない。より好ましい具
体値を挙げると、アルミ材質のCuの光電子カウント数が
1500cps以下、かつ化成皮膜の光電子カウント数が3000c
ps以下とされる。
If the photoelectron count of Cu in the chemical conversion film is larger than twice the photoelectron count of the material of the can body, the corrosion resistance of the chemical conversion film is reduced and the conventional problem cannot be solved. More specifically, the photoelectron count of Cu made of aluminum is
1500 cps or less and conversion film photoelectron count is 3000 c
ps or less.

このようなアルミニウム缶を製造するには、缶胴また
は/および缶蓋を、その金属表面を露出させた状態で、
硫酸、あるいはリン酸および硫酸を主組成物とする酸性
脱脂液に浸漬して脱脂を行なう際に、前記酸性脱脂液中
のCu2+濃度を3ppm以下に維持しておくことにより可能で
あることを本発明者らは見出だした。
To manufacture such an aluminum can, the can body or / and the can lid are exposed with their metal surfaces exposed.
When degreased by immersing in sulfuric acid or an acidic degreasing solution containing phosphoric acid and sulfuric acid as a main composition, it is possible to maintain Cu 2+ concentration in the acidic degreasing solution at 3 ppm or less. The present inventors have found.

さらに、そのためには次のような手段が可能であるこ
とを併せて見出だした。
Furthermore, they have also found that the following means are possible.

酸性脱脂液中にCu2+と選択的に反応または結合する
物質を予め混入しておく方法。
A method in which a substance which selectively reacts with or binds to Cu 2+ is mixed in an acidic degreasing solution in advance.

酸性脱脂液の循環過程において、酸性脱脂液をCu2+
と選択的に反応または結合する物質と接触させる方法。
In circulation process acidic degreasing solution, an acidic degreasing solution Cu 2+
Contacting with a substance that selectively reacts with or binds to

前記の具体例としては、ニトリロ三酢酸(NTA)、
グリシン等のような錯化剤を酸性脱脂液に添加してCu2+
を錯イオンに転換し、析出不能としたり、可溶性硫化物
あるいはオキシイオウ化合物(Sの酸化数は2〜4)を
酸性脱脂液に適宜添加し、Cu2+をCuS等の難溶塩に転換
して沈澱除去する方法などが挙げられる。
Specific examples of the above include nitrilotriacetic acid (NTA),
A complexing agent such as glycine is added to the acidic degreasing solution to add Cu 2+
Is converted to complex ions to make precipitation impossible, or soluble sulfide or oxysulfur compound (S oxidation number is 2 to 4) is appropriately added to the acidic degreasing solution to convert Cu 2+ to a hardly soluble salt such as CuS. To remove the precipitate.

また前記の具体例としては、脱脂液にH2Sガスを吹
き込んだり、Na2S2O4の添加により、CuSを沈澱させる方
法などが挙げられる。
Examples of the above specific examples include a method in which H 2 S gas is blown into the degreasing solution, and a method in which CuS is precipitated by adding Na 2 S 2 O 4 .

「実施例」 次に、実施例を挙げて本発明の効果を実証する。"Examples" Next, the effects of the present invention will be demonstrated with examples.

(実施例1) A3004を用いて成形した缶胴を、下記組成からなる70
℃の酸性脱脂液に60秒間浸漬して脱脂した。
(Example 1) A can body molded using A3004 was prepared by using the following composition 70
It was degreased by immersing it in an acidic degreasing solution at 60 ° C for 60 seconds.

主組成:リン酸:8000ppm 硫酸:8000ppm 界面活性剤:1000ppm 錯化剤(NTA):30ppm 全銅イオン(錯化したイオンも含む):15ppm 次いでXPS装置を用い、缶胴の外周面をAr+でエッチン
グしつつ、Cu,Al,O,Cの光電子カウント数をそれぞれ測
定した。測定条件を第1表に示す。
Main composition: phosphoric acid: 8000 ppm Sulfuric acid: 8000 ppm Surfactant: 1000 ppm Complexing agent (NTA): 30 ppm Total copper ions (including complexed ions): 15 ppm Then, using an XPS apparatus, the outer peripheral surface of the can body was Ar + , The photoelectron counts of Cu, Al, O, and C were measured. Table 1 shows the measurement conditions.

結果を第1図に示す。このグラフから明らかなよう
に、缶胴の外表面におけるCuの最大光電子カウント数
は、バルク(脱脂前の缶体)のCu光電子カウント数の2
倍であった。
The results are shown in FIG. As is clear from this graph, the maximum photoelectron count of Cu on the outer surface of the can body is 2 times the Cu photoelectron count of the bulk (can body before degreasing).
It was twice.

(比較例1) 脱脂液に錯化剤を含まない点以外は、全て実験例1と
同一の条件で、実験を行った。結果を第2図に示す。こ
のグラフから分かるように、缶胴の外表面におけるCuの
最大光電子カウント数は、バルクにおける同カウント数
の4倍以上に達した。
Comparative Example 1 An experiment was performed under the same conditions as in Experimental Example 1 except that the complexing agent was not included in the degreasing solution. The results are shown in FIG. As can be seen from this graph, the maximum photoelectron count of Cu on the outer surface of the can body reached more than four times the same count in bulk.

第1図および第2図から明らかなように、錯化剤を添
加することにより、脱脂後のアルミニウム缶表面のCu光
電子カウント数の極大値は、錯化剤を使用しなかった比
較例1では6000cps以上であったのに対し、錯化剤を使
用した実験例1では3000cps程度までに減少した。脱脂
前缶体と比較すると、約4倍から約2倍へと減少した。
すなわち、Cu2+の錯化により、脱脂処理におけるアルミ
ニウム缶表面へのCu析出を抑制することができた。
As is clear from FIGS. 1 and 2, by adding the complexing agent, the maximum value of the Cu photoelectron count on the surface of the aluminum can after degreasing was reduced in Comparative Example 1 in which no complexing agent was used. In contrast to 6000 cps or more, in Experimental Example 1 using the complexing agent, the value was reduced to about 3000 cps. As compared with the can before degreasing, the number decreased from about 4 times to about 2 times.
That is, by the complexation of Cu 2+, the precipitation of Cu on the surface of the aluminum can during the degreasing treatment could be suppressed.

(実施例2) 実施例1と同じ脱脂処理を行なった同じ缶胴を、下記
組成からなる化成処理液に35℃で30秒間浸漬し、リン酸
ジルコニウム系化成皮膜を、Zrとして15mg/m2の厚さで
形成した。
(Example 2) The same can body that had been subjected to the same degreasing treatment as in Example 1 was immersed in a chemical conversion treatment solution having the following composition at 35 ° C for 30 seconds, and a zirconium phosphate-based chemical conversion film was formed as Zr at 15 mg / m 2. The thickness was formed.

主組成:リン酸:60ppm フッ酸:100ppm ジルコニウム塩:40ppm 硝酸:200ppm 次いで、前記同様にXPSで化成皮膜の表面をAr+でエッ
チングしつつ、Cu,Zr,P,Fの光電子カウント数をそれぞ
れ測定した。結果を第3図に示す。
Main composition: phosphoric acid: 60 ppm, hydrofluoric acid: 100 ppm, zirconium salt: 40 ppm, nitric acid: 200 ppm Next, while the surface of the chemical conversion film was etched with Ar + by XPS, the photoelectron counts of Cu, Zr, P, and F were respectively measured. It was measured. The results are shown in FIG.

(比較例2) 比較例1と同じ脱脂処理を行った缶胴について実施例
2と同様の化成処理およびXPS分析を行った。結果を第
4図に示す。
(Comparative Example 2) The same chemical conversion treatment and XPS analysis as in Example 2 were performed on the can body that had been subjected to the same degreasing treatment as in Comparative Example 1. The results are shown in FIG.

第3図および第4図から明らかなように、脱脂により
缶体の表面に濃縮したCuは化成処理後も脱脂直後とほぼ
同じレベルで存在した。
As is clear from FIGS. 3 and 4, Cu concentrated on the surface of the can body by degreasing was present at almost the same level as immediately after degreasing even after the chemical conversion treatment.

したがって、脱脂液にCu2+の錯化剤を添加することに
より、Cuの再析出を抑制でき、その結果、化成処理後の
缶体の最外表面すなわち化成皮膜中のCu含有量が低減で
きた。
Therefore, by adding the complexing agent of Cu 2+ to the degreasing solution, reprecipitation of Cu can be suppressed, and as a result, the Cu content in the outermost surface of the can body after the chemical conversion treatment, that is, the chemical conversion film can be reduced. Was.

(実施例3) 実施例2と同様の脱脂および化成処理を施した缶胴10
個を、75℃×30分の加熱水試験に供し、黒変色の度合い
を評価した。
(Example 3) Can body 10 subjected to the same degreasing and chemical conversion treatment as in Example 2
The individual pieces were subjected to a heating water test at 75 ° C. for 30 minutes to evaluate the degree of black discoloration.

(比較例3) 一方、比較例2と同様の脱脂および化成処理を施した
缶胴10個についても、同じ試験を行った。
(Comparative Example 3) On the other hand, the same test was performed on 10 can bodies that had been subjected to the same degreasing and chemical conversion treatment as in Comparative Example 2.

これらの結果を第2表に示す。 Table 2 shows the results.

この表から明らかなように、Al缶体表面へのCu析出を
抑制することにより、缶体の耐食性が向上した。
As is clear from this table, the corrosion resistance of the can was improved by suppressing the precipitation of Cu on the surface of the Al can.

(実施例4) Cu2+濃度のみを変えた下記の組成(1)〜(4)から
なる脱脂液を調製し、これら脱脂液に、実施例1と同様
に缶胴をそれぞれ記載の温度で60秒間浸漬して脱脂を行
なった。
(Example 4) Degreasing liquids having the following compositions (1) to (4) were prepared by changing only the Cu 2+ concentration, and the can bodies were subjected to these degreasing liquids at the described temperatures in the same manner as in Example 1. It was degreased by immersion for 60 seconds.

次いでこれら缶胴に、実施例2と同じ化成処理を、処
理時間のみを20秒に変更して施し、リン酸ジルコニウム
系化成皮膜を形成した。皮膜の厚さはZrとして8mg/m2
あった。
Next, these can bodies were subjected to the same chemical conversion treatment as in Example 2 except that only the processing time was changed to 20 seconds to form a zirconium phosphate chemical conversion coating. The thickness of the film was 8 mg / m 2 as Zr.

こうして得られた缶胴10個を、75℃×30分の加熱水試
験に供し、黒変色の度合いを評価した。結果を第3表〜
第6表に示す。
The 10 can bodies thus obtained were subjected to a heating water test at 75 ° C. for 30 minutes to evaluate the degree of black discoloration. Table 3 ~
It is shown in Table 6.

これらの表から明らかなように、脱脂液のCu2+濃度が
3ppmを越えると、耐食性の著しい低下が認められた。
As is clear from these tables, the Cu 2+ concentration of the degreasing solution
If it exceeds 3 ppm, a significant decrease in corrosion resistance was observed.

(1)リン酸−硫酸系脱脂液 リン酸:9000ppm 硫酸:9000ppm 界面活性剤:1000ppm 脱脂温度:70℃ (2)硫酸−鉄系脱脂液 硫酸:20000ppm 硝酸:1500ppm 全Fe:1500ppm 界面活性剤:3000ppm 脱脂温度:70℃ (3)硫酸脱脂液 硫酸:5000ppm NH4 +:1000ppm 界面活性剤:200ppm 脱脂温度:80℃ (4)硫酸−フッ酸系脱脂液 硫酸:8000ppm フッ酸:200ppm 界面活性剤:1500ppm 脱脂温度:50℃ (実施例5) 実施例4に示した各濃度のCu2+を含有する脱脂液のそ
れぞれに、Na2S2O5を300mg/づつ添加し、それぞれ酸
性脱脂液中のCu2+濃度を0.1ppm以下とした。
(1) Phosphoric acid-sulfuric acid degreasing solution Phosphoric acid: 9000 ppm Sulfuric acid: 9000 ppm Surfactant: 1000 ppm Degreasing temperature: 70 ° C (2) Sulfuric acid-iron degreasing solution Sulfuric acid: 20000 ppm Nitric acid: 1500 ppm Total Fe: 1500 ppm Surfactant: 3000 ppm Degreasing temperature: 70 ° C (3) Sulfuric acid degreasing solution Sulfuric acid: 5000 ppm NH 4 + : 1000 ppm Surfactant: 200 ppm Degreasing temperature: 80 ° C (4) Sulfuric acid-hydrofluoric acid type degreasing solution Sulfuric acid: 8000 ppm Hydrofluoric acid: 200 ppm Surfactant : 1500ppm Degreasing temperature: 50 ℃ (Example 5) To each of the degreasing solutions containing Cu 2+ at each concentration shown in Example 4, 300 mg / Na 2 S 2 O 5 was added, and the Cu 2+ concentration in the acidic degreasing solution was determined. 0.1 ppm or less.

これらの脱脂液を用いて実施例4と全く同じ脱脂処理
を施し、水洗後、さらに実施例4と同じリン酸ジルコニ
ウム系化成処理を施した。
These degreasing solutions were subjected to the same degreasing treatment as in Example 4, washed with water, and further subjected to the same zirconium phosphate chemical conversion treatment as in Example 4.

このようにして作成した缶胴に対し、実施例4と同一
の加熱水試験を施した。その結果、いずれの処理による
缶胴も変色することはなかった。
The same heating water test as in Example 4 was performed on the can body thus produced. As a result, there was no discoloration of the can body by any of the treatments.

この結果から、脱脂液中のCu2+を除去することによ
り、脱脂および化成処理後のアルミニウム缶体の耐食性
が向上することがわかる。
From these results, it can be seen that by removing Cu 2+ in the degreasing solution, the corrosion resistance of the aluminum can body after the degreasing and chemical conversion treatment is improved.

「発明の効果」 以上説明したように、本発明に係わるアルミニウム缶
によれば、Cu原子の混入による化成皮膜の物性劣化を防
ぎ、アルミニウム缶の耐食性が大幅に向上できる。ま
た、化成皮膜の耐食性を高めたことにより、この化成皮
膜を従来品よりも薄くして、アルミニウム缶の製造コス
トが低下できる可能性を有する。
[Effect of the Invention] As described above, according to the aluminum can according to the present invention, deterioration of the physical properties of the chemical conversion film due to the incorporation of Cu atoms can be prevented, and the corrosion resistance of the aluminum can can be significantly improved. In addition, by increasing the corrosion resistance of the chemical conversion coating, there is a possibility that the chemical conversion coating can be made thinner than conventional products, and the production cost of aluminum cans can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第4図は、いずれも本発明の効果を説明す
るためのグラフである。
1 to 4 are graphs for explaining the effect of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊池 俊夫 静岡県駿東郡小山町菅沼1500番地 三菱 金属株式会社アルミ缶開発センター内 (58)調査した分野(Int.Cl.6,DB名) G01N 23/227 B65D 1/12 B65D 25/34 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshio Kikuchi 1500 Suganuma, Koyama-cho, Sunto-gun, Shizuoka Prefecture Inside the Aluminum Can Development Center Mitsubishi Metal Corporation (58) Field surveyed (Int. Cl. 6 , DB name) G01N 23 / 227 B65D 1/12 B65D 25/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】缶体の外面の少なくとも一部に化成皮膜を
形成したアルミニウム缶において、前記化成皮膜中にお
けるCuの密度が、このアルミニウム缶の材質そのものに
おけるCuの密度の最大値の2倍以下とされていることを
特徴とするアルミニウム缶。
1. An aluminum can having a conversion coating formed on at least a part of the outer surface of a can body, wherein the density of Cu in the conversion coating is not more than twice the maximum value of the density of Cu in the material of the aluminum can itself. An aluminum can, characterized in that:
【請求項2】缶体の外面の少なくとも一部に化成皮膜を
形成したアルミニウム缶において、前記化成皮膜中にお
けるX線光電子分光法によるCuの光電子カウント数の最
大値が、このアルミニウム缶の材質そのものにおける前
記カウント数の2倍以下で3000cps以下とされているこ
とを特徴とするアルミニウム缶。
2. In an aluminum can having a conversion coating formed on at least a part of the outer surface of a can body, the maximum value of the number of photoelectrons of Cu by X-ray photoelectron spectroscopy in the conversion coating is determined by the material of the aluminum can itself. Wherein the count is not more than twice the count number and not more than 3000 cps.
【請求項3】前記アルミニウム缶の材質がJISA3004また
はJISA5182であることを特徴とする請求項1または2記
載のアルミニウム缶。
3. The aluminum can according to claim 1, wherein the material of the aluminum can is JISA3004 or JISA5182.
【請求項4】缶体の外面の少なくとも一部に化成皮膜を
形成したアルミニウム缶を製造する方法において、アル
ミニウム缶の金属表面を露出させた状態で酸性脱脂液に
浸漬して脱脂を行うとともに、その際に酸性脱脂液中の
Cu2+濃度を3ppm以下に維持しておき、かかる脱脂の後に
化成皮膜を形成することを特徴とするアルミニウム缶の
製造方法。
4. A method for producing an aluminum can having a conversion coating formed on at least a part of the outer surface of a can body, wherein the aluminum surface is exposed to an acidic degreasing solution while the metal surface is exposed, and degreasing is performed. At that time, the acid degreasing solution
A method for producing an aluminum can, characterized in that a Cu 2+ concentration is maintained at 3 ppm or less and a chemical conversion film is formed after the degreasing.
JP24653490A 1990-09-17 1990-09-17 Aluminum can and manufacturing method thereof Expired - Fee Related JP2982263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24653490A JP2982263B2 (en) 1990-09-17 1990-09-17 Aluminum can and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24653490A JP2982263B2 (en) 1990-09-17 1990-09-17 Aluminum can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04125457A JPH04125457A (en) 1992-04-24
JP2982263B2 true JP2982263B2 (en) 1999-11-22

Family

ID=17149842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24653490A Expired - Fee Related JP2982263B2 (en) 1990-09-17 1990-09-17 Aluminum can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2982263B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI940194A1 (en) * 1994-02-03 1995-08-03 Paolo Granata & C S P A CHROME PLATING OR PHOSPHOCROME PLATING PROCESS AND PRODUCTS SUITABLE FOR THE IDENTIFICATION OF THE TREATMENT PROCESS
AU2003235440A1 (en) * 2002-05-31 2003-12-19 Kirin Brewery Company, Limited Surface-modified aluminum can and method for manufacture thereof

Also Published As

Publication number Publication date
JPH04125457A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
CN104818474B (en) The manufacturing method of steel plate for container
JP3315529B2 (en) Composition for surface treatment of aluminum-containing metal material and surface treatment method
US5622569A (en) Aluminum rigid container sheet cleaner and cleaning method
HU176364B (en) Aequous coating solutions of acidic reaction for aluminium surfaces
JP5727601B2 (en) Method for selectively phosphating a composite metal structure
EP0645473B1 (en) Chemical conversion method and surface treatment method for metal can
KR102186923B1 (en) Stainless steel member and its manufacturing method
JP2982263B2 (en) Aluminum can and manufacturing method thereof
KR101942202B1 (en) Chemical conversion treated steel sheet, and method for producing chemical conversion treated steel sheet
JP2006501372A (en) Method for coating a metal surface
Nelson et al. Characterisation of aluminium alloys after HNO3/HF–NaOH–HNO3/HF pretreatment
CN100577872C (en) Cast product having aluminum-based film and process for producing the same
US20180087172A1 (en) Steel sheet for container and method for producing steel sheet for container
EP1932946B1 (en) Magnesium alloy part and production method thereof
JP2004018992A (en) Nonchromium type aluminum underlayer treatment material having excellent coating film adhesion and acid elution resistance
US10563311B2 (en) Steel sheet for container and method for producing steel sheet for container
JP2943315B2 (en) Degreasing liquid for aluminum cans
US20030196728A1 (en) Nonchromate metallic surface-treating agent, nonchromate metallic surface-treating method, and aluminum or aluminum alloy
JP3742533B2 (en) Steel sheet for laminated containers with excellent can-making processability
JPH055193A (en) Degreasing liquid for aluminum can body
KR20050044515A (en) Method of surface treatment for magnesium and/or magnesium alloy, and magnesium and/or magnesium alloy product
JP4116614B2 (en) Surface treatment method for aluminum-based metal
US20190062926A1 (en) Corrosion mitigation of magnesium and magnesium alloys
JP4375827B2 (en) Alloy surface treatment method and alloy with excellent surface aging resistance
JPH10195683A (en) Treatment of alloy surface and alloy excellent in resistance to surface deterioration on aging

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees