JPH04349623A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH04349623A
JPH04349623A JP12150891A JP12150891A JPH04349623A JP H04349623 A JPH04349623 A JP H04349623A JP 12150891 A JP12150891 A JP 12150891A JP 12150891 A JP12150891 A JP 12150891A JP H04349623 A JPH04349623 A JP H04349623A
Authority
JP
Japan
Prior art keywords
gas
pipe
gas mixing
growth apparatus
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12150891A
Other languages
Japanese (ja)
Inventor
Yoshio Kosaka
小坂 好男
Akira Ishihara
石原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12150891A priority Critical patent/JPH04349623A/en
Publication of JPH04349623A publication Critical patent/JPH04349623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress substantially the opportunity of thin film contamination caused by reactive gas introduced into a horizontal reaction tube type vapor growth apparatus in which a thin film is built up on the surface of a substrate by a method wherein the bottom surface of a reaction container through which the introduced reactive gas composed of a plurality of compound gases is made to flow horizontally is positioned on the same plane as the substrate mounting surface of a susceptor and the susceptor is heated while the reactive gas is made to flow. CONSTITUTION:A gas mixing means 5 which has a gas mixing part whose gas flow path cross section is composed of a squeezing plate and a diffusion space and a rectifying part which forms the flow of the gas flowing out of the gas mixing part into a streamline flow is directly connected to the reactive gas inlet of the body of a reaction container. By mixing a plurality of compound gases immediately before the reaction container 14, even a very little quantity of a reaction product produced by the thermal decomposition of the compound is not contained in the reactive gas introduced into the reaction container 14. Moreover, a film having a uniform thickness and uniform quality can be formed by providing the gas mixing part and the rectifying part.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、主にGaAsなどの
化合物半導体膜を基板上に成長させる有機金属気相成長
(MOCVD)装置を対象としたものであり、装置の構
成として、導入された複数の化合物ガスからなる反応ガ
スが水平に流れる反応容器の底面が、被成膜基板が水平
に載置されるサセプタの基板載置面と同一平面に形成さ
れ、反応ガスを流しつつサセプタを加熱することにより
被成膜基板の表面に薄膜を成長させる気相成長装置に関
する。
[Industrial Application Field] The present invention is mainly aimed at a metal organic chemical vapor deposition (MOCVD) apparatus for growing a compound semiconductor film such as GaAs on a substrate, and the present invention is mainly directed to a metal organic chemical vapor deposition (MOCVD) apparatus for growing a compound semiconductor film such as GaAs on a substrate. The bottom surface of the reaction vessel through which the reaction gas consisting of multiple compound gases flows horizontally is formed on the same plane as the substrate mounting surface of the susceptor on which the substrate to be deposited is placed horizontally, and the susceptor is heated while the reaction gas is flowing. The present invention relates to a vapor phase growth apparatus for growing a thin film on the surface of a substrate to be film-formed.

【0002】0002

【従来の技術】複数の化合物ガスからなる反応ガスを、
加熱された基板と平行に流して基板上で熱分解させ、熱
分解生成物を基板上に堆積させて基板上に所定の組成を
有する薄膜を成長させる気相成長装置には、構造的に大
別して、バレル型と水平反応管型とがある。バレル型は
、図5に示すように、基板1を装着するサセプタ31が
バレル状に形成され、これを釣鐘状の反応容器32内に
反応容器32と同軸に配し、サセプタ31をその中心軸
まわりに回軸させつつサセプタ31と基板1とを加熱し
、かつ反応容器32のガス導入口32aから反応ガスを
導入しながら基板1の表面に薄膜を成長させるものであ
る。
[Prior Art] A reaction gas consisting of multiple compound gases is
Vapor phase growth equipment, in which a thin film having a predetermined composition is grown on the substrate by flowing the flow parallel to the heated substrate and causing thermal decomposition on the substrate and depositing the thermal decomposition products on the substrate, has a large structure. There are two types: barrel type and horizontal reaction tube type. In the barrel type, as shown in FIG. 5, the susceptor 31 on which the substrate 1 is mounted is formed in a barrel shape, and this is arranged coaxially with the reaction container 32 in a bell-shaped reaction container 32, and the susceptor 31 is aligned with the central axis of the reaction container 32. The susceptor 31 and the substrate 1 are heated while being rotated, and a thin film is grown on the surface of the substrate 1 while introducing a reaction gas from the gas inlet 32a of the reaction vessel 32.

【0003】一方、水平反応管型は、図8に示すように
、導入された反応ガスが水平に流れる反応容器3内で、
円板状または角型板状のサセプタ2に水平に載置されサ
セプタ2とともに加熱された基板1の表面に、反応ガス
の熱分解生成物を堆積させ、所定の組成の薄膜を成長さ
せるものである。基板1は、薄膜の膜厚,膜質を均一に
するためにその垂直軸まわりに回転させることがある。
On the other hand, in the horizontal reaction tube type, as shown in FIG. 8, in the reaction vessel 3, the introduced reaction gas flows horizontally.
A thin film having a predetermined composition is grown by depositing thermal decomposition products of a reaction gas on the surface of a substrate 1 that is placed horizontally on a disk-shaped or square plate-shaped susceptor 2 and heated together with the susceptor 2. be. The substrate 1 may be rotated about its vertical axis in order to make the thickness and quality of the thin film uniform.

【0004】本発明が対象としている気相成長装置は、
後者の水平反応管型のものであり、反応容器3の底面は
、サセプタ2の基板載置面と同一平面に形成され、反応
容器3内へ導入された反応ガスは、基板1の表面を層流
状態で通過し、通過の際に基板1,サセプタ2の熱によ
り熱分解し、分解生成物が基板1の表面に堆積する。
[0004] The vapor phase growth apparatus targeted by the present invention is
The latter is a horizontal reaction tube type, and the bottom surface of the reaction container 3 is formed on the same plane as the substrate mounting surface of the susceptor 2, and the reaction gas introduced into the reaction container 3 spreads over the surface of the substrate 1. It passes in a flowing state, and as it passes, it is thermally decomposed by the heat of the substrate 1 and susceptor 2, and decomposition products are deposited on the surface of the substrate 1.

【0005】[0005]

【発明が解決しようとする課題】以上のように構成され
る水平反応管型気相成長装置における問題点をより明ら
かにするために、まず、バレル型気相成長装置における
問題点と、その問題点解決のための、開示された手段に
つき説明する。
[Problems to be Solved by the Invention] In order to clarify the problems in the horizontal reaction tube type vapor phase growth apparatus configured as described above, first, we will first discuss the problems in the barrel type vapor growth apparatus and their problems. The disclosed means for point resolution will now be described.

【0006】バレル型気相成長装置においては、相対的
に細いガス導入管内をある速度で流れてきた反応ガスが
、ガス導入口から急激に広がる広い空間内へ流入するた
め、釣鐘状の反応容器の肩の部分に流れの澱みが生じる
。このため、反応ガスの種類を切り換えて別の組成の薄
膜をさきの薄膜上に成長させようとする場合、澱みに停
滞していたさきの反応ガスが、新たな反応ガスに混入し
、さきの薄膜と新たな薄膜との間に両者の中間の組成の
層が形成され、膜の組成が急峻に切り換わらないという
問題が生じる。
In a barrel-type vapor phase growth apparatus, the reaction gas that has flowed at a certain speed through a relatively thin gas introduction pipe flows into a wide space that rapidly expands from the gas introduction port, so the reaction vessel is shaped like a bell. The flow stagnates at the shoulder area. Therefore, when switching the type of reaction gas and growing a thin film with a different composition on top of the previous thin film, the previous reaction gas that was stagnant in the stagnation mixes with the new reaction gas, causing the previous reaction gas to grow. A layer having a composition intermediate between the two thin films is formed between the thin film and the new thin film, causing a problem that the composition of the film does not switch sharply.

【0007】この問題を解決するため、実開平1−10
0431号公報では、図6に示すように、バレル形サセ
プタ31上流側のドーム状キャップ34と釣鐘状反応容
器32の肩の部分との間に整流用リブを設け、リブのガ
ス流方向およびガス流と直角方向の断面を、ともに、両
側へ凸な凸レンズの断面に類似な形状とし、このリブの
ガス流に直角方向の厚みの変化により、ガスを、バレル
型サセプタと反応容器との中間部よりもサセプタ側およ
び反応容器側へ多く流して反応容器の肩の部分の澱みを
なくし、かつガス流方向のリブの厚みの変化により、リ
ブより上流側では乱流であったガス流を、リブを通過す
る際に層流化して、基板面を層流状態で通過させるよう
にしている。
[0007] In order to solve this problem,
In Publication No. 0431, as shown in FIG. 6, a rectifying rib is provided between the dome-shaped cap 34 on the upstream side of the barrel-shaped susceptor 31 and the shoulder portion of the bell-shaped reaction vessel 32, and the gas flow direction of the rib and the gas flow direction are adjusted. The cross section in the direction perpendicular to the gas flow is similar to the cross section of a convex lens that is convex on both sides, and by changing the thickness of this rib in the direction perpendicular to the gas flow, the gas is transferred to the intermediate part between the barrel-shaped susceptor and the reaction vessel. The gas flow, which was turbulent on the upstream side of the ribs, is reduced by changing the thickness of the ribs in the direction of the gas flow. When passing through the substrate, the flow becomes laminar, so that the flow passes over the substrate surface in a laminar state.

【0008】また、特開平2−278717号公報では
、図7に示すように、バレル状サセプタ上流側のドーム
状キャップ34と反応容器32のガス導入口との間を、
面積の大きい,細孔が均一に分散して形成されたディフ
ューザ36で仕切り、ディフューザ36上流側の空間に
反応ガスを一旦溜め、ディフューザ36から反応ガスを
一様に低速度で流出させ、これにより、反応容器32の
肩の部分の澱みを少なくするとともに、サセプタ31と
反応容器32との間に内管37を設け、反応ガスの種類
を切り換えたときに、反応容器32の肩の部分に停滞し
ていたさきの反応ガスが内管37の外側を流れるように
して、薄膜の組成を急峻に切り換えるようにしている。
Furthermore, in Japanese Patent Application Laid-Open No. 2-278717, as shown in FIG.
It is partitioned by a diffuser 36 with a large area and formed with uniformly distributed pores, the reaction gas is temporarily stored in the space upstream of the diffuser 36, and the reaction gas is uniformly flowed out from the diffuser 36 at a low speed. In addition to reducing stagnation in the shoulder part of the reaction vessel 32, an inner pipe 37 is provided between the susceptor 31 and the reaction vessel 32, so that when the type of reaction gas is switched, stagnation in the shoulder part of the reaction vessel 32 is reduced. The previously reacted reaction gas is made to flow outside the inner tube 37, so that the composition of the thin film is abruptly switched.

【0009】一方、本発明が対象としている,反応容器
の底面がサセプタの基板載置面と同一平面内にあって反
応ガスが基板面を層流状態で通過するように意図した水
平反応管型気相成長装置では、当然のことながら、基板
面を通過するガス流中に渦を巻き込むことのないよう、
反応容器全体が、反応容器内の全空間にわたり澱みを生
じないように形成される。すなわち、図8に示すように
、水平に置かれた反応容器3の反応ガス導入口3aから
流入した反応ガスは、流路断面が徐々に広がる,サセプ
タ2より上流側の反応容器部分で徐々に広がりながら流
路断面が一定の反応容器部分に入り、この部分で全量が
基板1と平行な流れとなって基板1を通過する。反応ガ
スは反応容器3の上流側で徐々に広がるため、流路断面
一定の下流側反応容器部分への移行部近傍でも澱みを作
らず、またサセプタ2の上面と反応容器3の底面とは同
一平面内にあるので、反応ガスは、サセプタ位置を渦を
含まない層流状態で通過する。従って、反応ガスの種類
を切り換えたとき、基板上の薄膜の組成は急峻に切り換
わる。
On the other hand, the present invention is directed to a horizontal reaction tube type in which the bottom surface of the reaction vessel is in the same plane as the substrate mounting surface of the susceptor so that the reaction gas passes over the substrate surface in a laminar flow state. Naturally, in a vapor phase growth apparatus, care must be taken to avoid swirling in the gas flow passing over the substrate surface.
The entire reaction vessel is constructed in such a way that no stagnation occurs throughout the entire space within the reaction vessel. That is, as shown in FIG. 8, the reaction gas flowing from the reaction gas inlet 3a of the reaction container 3 placed horizontally gradually expands in the reaction container portion upstream from the susceptor 2, where the flow path cross section gradually widens. As it expands, it enters a reaction vessel portion with a constant cross section of the flow path, and in this portion the entire flow becomes a flow parallel to the substrate 1 and passes through the substrate 1. Since the reaction gas gradually spreads on the upstream side of the reaction vessel 3, stagnation does not occur near the transition to the downstream reaction vessel portion where the cross section of the flow path is constant, and the top surface of the susceptor 2 and the bottom surface of the reaction vessel 3 are the same. Since it is in a plane, the reactant gas passes through the susceptor location in a laminar, vortex-free flow state. Therefore, when the type of reaction gas is changed, the composition of the thin film on the substrate changes abruptly.

【0010】ところで、従来の気相成長装置では、上記
いずれの装置でも、反応ガスを構成する複数の化合物ガ
スは、反応容器内へ導入される前に、別置のミキサによ
り混合され、このミキサから配管を介して反応容器に導
入されていた。化合物半導体膜を形成する際の化合物ガ
スの1つとなる,水素キャリアガスのバブリングによっ
てガス化される液状の有機金属(III 族元素のアル
キル化物)は、その所定の蒸気圧をもってV族元素の水
素化物と混合されるよう、貯溜槽内で数10℃の温度に
保たれ、短い配管を通してミキサへ送られる。そして、
ミキサ内でV族元素の水素化物と混合された後、配管を
通って反応容器に到達したときに所定の蒸気圧を保持す
るよう、配管の途中で加熱される。このため、配管内で
は極めて微量ながら、基板上と同様の反応が生じており
、長期間使用中に配管の内壁面に堆積した熱分解生成物
が剥離して、基板上の薄膜にパーティクル汚染をもたら
す恐れがある。また、配管の加熱系の異常により、この
現象が加速されることもありうる。
By the way, in any of the above-mentioned conventional vapor phase growth apparatuses, a plurality of compound gases constituting the reaction gas are mixed in a separate mixer before being introduced into the reaction vessel. was introduced into the reaction vessel via piping. The liquid organic metal (alkylated product of group III element), which is one of the compound gases used when forming a compound semiconductor film, is gasified by bubbling of hydrogen carrier gas, and the hydrogen of group V element is formed at a predetermined vapor pressure. It is kept at a temperature of several tens of degrees Celsius in a reservoir so that it can be mixed with chemical compounds, and then sent to a mixer through a short pipe. and,
After being mixed with a hydride of a group V element in a mixer, it is heated midway through the piping to maintain a predetermined vapor pressure when it passes through the piping and reaches the reaction vessel. For this reason, a reaction similar to that on the substrate occurs inside the piping, albeit in an extremely small amount, and thermal decomposition products that have accumulated on the inner wall of the piping during long-term use peel off, causing particle contamination to the thin film on the substrate. There is a risk that it may result. Furthermore, this phenomenon may be accelerated due to an abnormality in the piping heating system.

【0011】この発明の目的は、反応容器内へ導入され
る反応ガスにより基板上の薄膜が汚染されることのない
気相成長装置を提供することである。
An object of the present invention is to provide a vapor phase growth apparatus in which a thin film on a substrate is not contaminated by a reaction gas introduced into a reaction vessel.

【0012】0012

【課題を解決するための手段】上記課題を解決するため
に、この発明においては、本発明が対象とした気相成長
装置、すなわち、導入された複数の化合物ガスからなる
反応ガスが水平に流れる反応容器の底面が、被成膜基板
が水平に載置されるサセプタの基板載置面と同一平面に
形成され、反応ガスを流しつつサセプタを加熱すること
により被成膜基板の表面に薄膜を成長させる気相成長装
置を、該反応容器本体の反応ガス導入口に、流入したガ
スの流路断面を絞る絞り孔を有する絞り板と,絞り板の
絞り孔を通過したガスを拡散させる拡散空間とからなる
ガス混合部をガス流の方向に1段または多段に有すると
ともに最下流側ガス混合部の下流側に最下流側ガス混合
部から流出したガスを層流状の流れにする整流部を備え
たガス混合手段が直接接続している装置とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a vapor phase growth apparatus targeted by the present invention, in which a reaction gas consisting of a plurality of introduced compound gases flows horizontally. The bottom surface of the reaction vessel is formed on the same plane as the substrate mounting surface of the susceptor on which the substrate to be film-formed is placed horizontally, and a thin film is formed on the surface of the substrate to be film-formed by heating the susceptor while flowing a reaction gas. A vapor phase growth apparatus for growth is installed at the reaction gas inlet of the reaction vessel body, and includes a diaphragm plate having a diaphragm hole that narrows the flow path cross section of the inflowing gas, and a diffusion space that diffuses the gas that has passed through the diaphragm hole of the diaphragm plate. It has one or more stages of gas mixing parts in the direction of gas flow, and a rectifying part that makes the gas flowing out from the most downstream gas mixing part into a laminar flow on the downstream side of the most downstream gas mixing part. The equipment shall be directly connected to the gas mixing means provided.

【0013】さらに、このガス混合手段を、該ガス混合
手段が、パイプと,パイプ内の上流側にパイプの軸方向
に間隔をおいて1段または多段に配される1個または複
数個の絞り板と,パイプ内で最下流側の絞り板の下流側
に位置し底面が該絞り板と間隔をおいて対向する三角錐
等の錐状体とからなり、ガスが拡散する拡散空間が絞り
板相互間およびまたは絞り板と錐状体底面との間に形成
され、最下流側ガス混合部から流出したガスを層流状の
流れにする整流部が、錐状体の底面より下流側の錐状体
斜面とパイプの内壁面とで形成される構成とすれば好適
である。
[0013] Furthermore, the gas mixing means includes a pipe and one or more throttles disposed in one or more stages spaced apart in the axial direction of the pipe on the upstream side of the pipe. It consists of a plate and a pyramidal body such as a triangular pyramid, which is located downstream of the most downstream aperture plate in the pipe and whose bottom face faces the aperture plate at a distance. A rectifying section is formed between each other and/or between the aperture plate and the bottom surface of the cone, and makes the gas flowing out from the most downstream gas mixing section into a laminar flow. It is preferable that the structure be formed by the slope of the shaped body and the inner wall surface of the pipe.

【0014】さらに、この構成によるガス混合手段にお
いて、パイプ内の上流側に配される絞り板を1個とする
とともに、絞り板の絞り孔の総断面積を、絞り孔より上
流側の流路断面積の1/10以下としたガス混合手段と
すればさらに好適である。
Furthermore, in the gas mixing means having this configuration, the number of throttle plates disposed on the upstream side of the pipe is one, and the total cross-sectional area of the throttle holes of the throttle plate is set to be equal to the total cross-sectional area of the flow path upstream of the throttle hole. It is even more preferable to use a gas mixing means having a cross-sectional area of 1/10 or less.

【0015】また、上記構成によるガス混合手段は、目
的に応じ、パイプと,絞り板と,錐状体とを、石英ガラ
スからなる一体成形品中の部分として形成するか、絞り
板と錐状体とを金属を用いて一体に形成してこれを石英
ガラスからなるパイプに挿入したものとするかするよう
にすれば好適である。
[0015] In addition, the gas mixing means having the above structure may be formed by forming the pipe, the aperture plate, and the conical body as parts of an integrally molded product made of quartz glass, or by forming the pipe, the aperture plate, and the conical body as parts of an integrally molded product made of quartz glass. It is preferable that the body is formed integrally with metal and inserted into a pipe made of quartz glass.

【0016】[0016]

【作用】このように、気相成長装置を、ガス混合手段が
反応容器の反応ガス導入口に直接接続した装置とするこ
とにより、ガス混合手段から反応容器までの配管がなく
なり、反応容器の反応ガス導入口直前まで、化合物ガス
の熱分解に伴う反応生成物の生成がなく、基板上に形成
された薄膜のパーティクル汚染の機会が著しく少なくな
る。また、ガス混合手段に導入された複数の化合物ガス
は、絞り板の小さい絞り孔から背後の拡散空間内へ噴出
する際に四方へ急激に拡散して互いに混じり合い、ガス
の混合が効果的に行われ、基板表面に均一な組成の膜を
形成することができる。
[Function] By making the vapor phase growth apparatus such that the gas mixing means is directly connected to the reaction gas inlet of the reaction vessel, there is no piping from the gas mixing means to the reaction vessel, and the reaction in the reaction vessel is improved. There is no generation of reaction products due to thermal decomposition of the compound gas until immediately before the gas inlet, and the chance of particle contamination of the thin film formed on the substrate is significantly reduced. In addition, when the multiple compound gases introduced into the gas mixing means are ejected from the small aperture of the aperture plate into the diffusion space behind the aperture plate, they rapidly diffuse in all directions and mix with each other, resulting in effective gas mixing. It is possible to form a film with a uniform composition on the surface of the substrate.

【0017】しかし、一方、拡散空間内のガス中には、
その混合過程中に形成された多数の渦が含まれ、これが
直接反応容器内へ導入されると、品質の安定した薄膜を
得る上で好ましくない。そこで、最下流側のガス混合部
の下流側に整流部を配し、最下流側ガス混合部から流出
したガスを、渦を含まない層流として反応容器内へ送り
込むようにすれば、従来のミキサから反応容器に到る配
管のもつガス層流化の機能(配管がその長い道程により
渦のエネルギーを失わせる機能)を、ガス混合手段の整
流部に引き受けさせることができる。
However, on the other hand, in the gas within the diffusion space,
A large number of vortices formed during the mixing process are included, and if these are directly introduced into the reaction vessel, it is not preferable in terms of obtaining a thin film of stable quality. Therefore, if a rectifier is arranged downstream of the most downstream gas mixing part and the gas flowing out from the most downstream gas mixing part is sent into the reaction vessel as a laminar flow without vortices, it is possible to The gas laminarization function of the piping from the mixer to the reaction vessel (the function of the piping causing eddy energy to be lost due to its long path) can be taken over by the rectifying section of the gas mixing means.

【0018】そこで、この構成原理に基づくガス混合手
段の具体構造を、パイプと,パイプ内の上流側にパイプ
の軸方向に間隔をおいて1段または多段に配される1個
または複数個の絞り板と,パイプ内で最下流側の絞り板
の下流側に位置し底面が該絞り板と間隔をおいて対向す
る三角錐等の錐状体とで構成した構造とし、ガスが拡散
する拡散空間が絞り板相互間およびまたは絞り板と錐状
体底面との間に形成され、最下流側ガス混合部から流出
したガスを層流状の流れにする整流部が、錐状体の底面
より下流側の錐状体斜面とパイプの内壁面とで形成する
ようにすれば、拡散空間で渦を発生した反応ガスが、錐
状体底面周縁とパイプとの間の狭いリング状の流路から
反応容器へ向かって徐々に流路断面を拡げるから、リン
グ状の挟い流路を通ることにより渦が大半消滅した反応
ガスは、その流れの道程で残余の渦を消滅させつつ渦を
含まない層流状態で反応容器内へ流入する。
Therefore, the specific structure of the gas mixing means based on this principle of construction consists of a pipe and one or more gas mixtures arranged in one or more stages at intervals in the axial direction of the pipe on the upstream side of the pipe. The structure consists of a diaphragm plate and a pyramidal body such as a triangular pyramid, which is located downstream of the most downstream diaphragm plate in the pipe and whose bottom face faces the diaphragm plate at a distance. A space is formed between the diaphragm plates and/or between the diaphragm plate and the bottom of the cone. If it is formed by the slope of the cone on the downstream side and the inner wall surface of the pipe, the reaction gas that has generated a vortex in the diffusion space will flow from the narrow ring-shaped flow path between the periphery of the bottom of the cone and the pipe. Since the cross section of the flow path gradually expands toward the reaction vessel, the reaction gas, which has most of the vortices eliminated by passing through the ring-shaped sandwiched flow path, eliminates the remaining vortices along its flow path and does not contain any vortices. It flows into the reaction vessel in a laminar flow state.

【0019】そして、前述のガス混合手段の具体構造に
おいて、パイプ内の上流側に配される絞り板を1個とし
、かつ絞り板の絞り孔の総断面積を、絞り孔より上流側
の流路断面積の1/10以下とすれば、実施例の項で説
明するように、複数の化合物ガスが実用上十分均一に混
合される。従って、必要とする反応ガスの流量により、
ガス混合部を多段に形成することなく、ガス混合手段を
簡易な構造に形成することができる。
In the specific structure of the gas mixing means described above, the number of throttle plates disposed on the upstream side of the pipe is one, and the total cross-sectional area of the throttle holes in the throttle plate is equal to the flow upstream of the throttle holes. If it is 1/10 or less of the cross-sectional area of the path, a plurality of compound gases can be mixed sufficiently uniformly for practical purposes, as explained in the Examples section. Therefore, depending on the required flow rate of the reaction gas,
The gas mixing means can be formed into a simple structure without forming the gas mixing section in multiple stages.

【0020】気相成長装置では、できるだけ膜厚,膜質
の均一な膜形成を行わせるために、基板温度の均一化や
最適化、基板のその軸を中心とした回転および反応ガス
流量の最適化が行われるが、これらの条件が確定した後
、これらの条件の変更がないものでは、装置の各部材は
できるだけ構造が簡単で安価な部材とすることが望まし
い。ガス混合手段も、パイプ,絞り板,錐状体がそれぞ
れ、石英ガラスからなる一体成形品中の部分として形成
されるものとすれば、鋳型を利用して安価に製作するこ
とができる。
In the vapor phase growth apparatus, in order to form a film as uniform in thickness and quality as possible, it is necessary to equalize and optimize the substrate temperature, rotate the substrate around its axis, and optimize the reaction gas flow rate. However, if these conditions are not changed after these conditions have been determined, it is desirable that each member of the device be constructed as simply and inexpensively as possible. The gas mixing means can also be manufactured at low cost using a mold if the pipe, aperture plate, and cone are each formed as parts of an integrally molded product made of quartz glass.

【0021】また、絞り板と錐状体とを金属を用いて一
体に形成し、これを石英ガラスからなるパイプに挿入す
るガス混合手段とすれば、各種成膜条件の変更に対応し
た絞り孔の径や数、あるいは錐状体底面の大きさなどの
変更が容易に可能となる。
[0021] Furthermore, if the aperture plate and the conical body are integrally formed using metal and used as a gas mixing means that is inserted into a pipe made of quartz glass, the aperture hole can be adjusted to accommodate changes in various film forming conditions. It is possible to easily change the diameter and number of cones, or the size of the bottom surface of the cone.

【0022】[0022]

【実施例】図1に本発明による気相成長装置構成の一実
施例を示す。反応容器14は、外容器16と内容器15
とによる2重構成の容器として形成され、外容器16は
気密容器として、また内容器15は、反応ガス導入口1
4の側から流れの方向に幅が扇状に広がり、天井面が緩
やかな傾斜をもつ,流路断面が方形の内容器部分15A
と、流れの方向に一定の方形流路断面をもつ内容器部分
15Bとからなり、外容器16の底面上に両内容器部分
15A,15Bが突き合わされた状態で載置され、各内
容器部分は、装置運転中もその自重で載置位置を保持す
る。内容器15の底面上面は、基板1が載置されるサセ
プタ2の基板載置面と同一平面内にあり、また、サセプ
タ2はヒータ8の上面に取り付けられ、駆動モータ12
により、歯車11を介してヒータ8とともに回転駆動さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the structure of a vapor phase growth apparatus according to the present invention. The reaction container 14 includes an outer container 16 and an inner container 15.
The outer container 16 is an airtight container, and the inner container 15 is a reactant gas inlet 1.
The inner container portion 15A has a rectangular flow path cross section, with a fan-shaped width that spreads in the flow direction from the side of No. 4, and a ceiling surface that is gently sloped.
and an inner container portion 15B having a constant rectangular flow passage cross section in the direction of flow. maintains its mounting position by its own weight even while the device is in operation. The top surface of the bottom of the inner container 15 is in the same plane as the substrate placement surface of the susceptor 2 on which the substrate 1 is placed, and the susceptor 2 is attached to the top surface of the heater 8 and the drive motor 12
As a result, it is rotated together with the heater 8 via the gear 11.

【0023】反応容器14の反応ガス導入口14aには
、本発明によるガス混合手段5が接続され、このガス混
合手段5に、図示されないそれぞれの貯溜槽から、水素
キャリアガスによりガス化されたIII 族元素のアル
キル化物(ここではGa(CH3)3) とV族元素の
水素化物(ここではAsH3) とがそれぞれの管路を
通して供給される。 これらの化合物ガスは、ガス混合手段5により混合され
層流状態で内容器15内へ導入され、内容器15内を実
線の矢印の方向に層流状態で流れ、排気フランジ4の排
気口7から排出される。
A gas mixing means 5 according to the present invention is connected to the reaction gas inlet 14a of the reaction vessel 14, and to this gas mixing means 5, hydrogen is gasified by hydrogen carrier gas from respective storage tanks (not shown). An alkylated product of a group element (here Ga(CH3)3) and a hydride of a group V element (here AsH3) are supplied through respective conduits. These compound gases are mixed by the gas mixing means 5 and introduced into the inner container 15 in a laminar flow state, flow in the inner container 15 in the direction of the solid arrow in a laminar flow state, and are discharged from the exhaust port 7 of the exhaust flange 4. It is discharged.

【0024】成膜時には、サセプタ2をヒータ8で加熱
しながら駆動モータ12で回転駆動し、ガス混合手段5
で混合され層流に整流された化合物ガスを内容器15内
へ導入するとともに、スィープガスとして水素ガス,窒
素ガスあるいは不活性ガスを外容器16と内容器15と
の間に導入して、内容器15内を流れる反応ガスの内容
器外部への洩れ出しを防止する。反応ガスは内容器15
内で澱みや渦を作ることなく基板面を層流状態で通過し
、通過の際に加熱されて熱分解し、熱分解生成物が基板
上に堆積して所定の組成を有する薄膜を形成する。
During film formation, the susceptor 2 is rotated by the drive motor 12 while being heated by the heater 8, and the gas mixing means 5
The compound gas that has been mixed and rectified into a laminar flow is introduced into the inner container 15, and hydrogen gas, nitrogen gas, or an inert gas is introduced between the outer container 16 and the inner container 15 as a sweep gas. This prevents the reaction gas flowing through the inner container from leaking to the outside of the inner container. The reaction gas is in the inner container 15
It passes through the substrate surface in a laminar state without creating stagnation or vortices, and as it passes through, it is heated and thermally decomposed, and the thermal decomposition products are deposited on the substrate to form a thin film with a predetermined composition. .

【0025】図2に、本発明によるガス混合手段構造の
第1の実施例を示す。この実施例では、ガス混合手段は
、石英ガラスからなる一体成形品として形成され、その
パイプ部分(以下パイプと記す)51内の上流側には、
中心に絞り孔を有する絞り板52が1個形成され、絞り
板52の下流側には、円錐状の錐状体53がリブを介し
てパイプ51の内側に支持されている。絞り板52の絞
り孔の径は、断面積が絞り孔の上流側の流路断面積の1
/10以下となる大きさに設定され、また、絞り板52
の下流側の面と錐状体53の底面との間には、絞り孔で
絞られた反応ガスが四方へ急激に拡散する拡散空間が形
成されている。
FIG. 2 shows a first embodiment of the gas mixing means structure according to the present invention. In this embodiment, the gas mixing means is formed as an integrally molded product made of quartz glass, and on the upstream side within the pipe portion (hereinafter referred to as pipe) 51, there are
One diaphragm plate 52 having a diaphragm hole in the center is formed, and on the downstream side of the diaphragm plate 52, a conical conical body 53 is supported inside the pipe 51 via a rib. The diameter of the throttle hole of the throttle plate 52 is such that the cross-sectional area is 1 of the flow path cross-sectional area on the upstream side of the throttle hole.
/10 or less, and the aperture plate 52
A diffusion space is formed between the downstream surface of the conical body 53 and the bottom surface of the conical body 53, in which the reaction gas squeezed by the throttle hole rapidly diffuses in all directions.

【0026】ガス混合手段5に流入した複数の混合ガス
は、絞り板52の絞り孔で流路断面を絞られて拡散空間
内へ噴出する際に、四方へ急激に拡散して均一に混合さ
れる。混合された化合物ガスは、錐状体53の底面周縁
とパイプ51の内壁面との間の狭いリング状ギャップに
入り、このリング状ギャップから、拡散空間内で発生し
た渦が大半消滅した状態で流出し、錐状体53の斜面と
パイプ51の内壁面との間で流路断面を徐々に広げかつ
消滅しきれなかった渦を流れの道程で消滅させながら渦
を含まない層流状態で反応容器内へ流入する。
When the plurality of mixed gases that have flowed into the gas mixing means 5 are spouted into the diffusion space after the cross section of the flow path is narrowed by the throttle hole of the throttle plate 52, they are rapidly diffused in all directions and mixed uniformly. Ru. The mixed compound gas enters a narrow ring-shaped gap between the bottom periphery of the cone-shaped body 53 and the inner wall surface of the pipe 51, and from this ring-shaped gap, the vortices generated in the diffusion space are mostly eliminated. It flows out, gradually widens the cross section of the flow path between the slope of the cone 53 and the inner wall surface of the pipe 51, and reacts in a laminar flow state without vortices while eliminating vortices that could not be completely eliminated along the flow path. Flows into the container.

【0027】図3に、本発明によるガス混合手段の第2
の実施例を示す。この実施例では、絞り板52と錐状体
53とがステンレス鋼により一体に形成され、石英ガラ
スからなるパイプ51に挿入される。絞り板52は、底
面に絞り孔が形成されるシリンダとして形成され、この
底面に複数の絞り孔が、その総断面積がシリンダ部の流
路断面積の1/10以下となるように形成されている。
FIG. 3 shows a second gas mixing means according to the present invention.
An example is shown below. In this embodiment, the aperture plate 52 and the conical body 53 are integrally formed of stainless steel and inserted into a pipe 51 made of quartz glass. The throttle plate 52 is formed as a cylinder with a throttle hole formed in the bottom surface, and a plurality of throttle holes are formed in the bottom surface such that the total cross-sectional area thereof is 1/10 or less of the flow path cross-sectional area of the cylinder portion. ing.

【0028】図4に、ガス混合手段の絞り板を1個とし
た場合の絞り孔の総断面積を、絞り孔より上流側流路断
面積の1/10以上として2インチ径の基板に基板を回
転させないで薄膜を形成した場合の膜厚分布の一例と、
1/10以下とした場合の薄膜の膜厚分布の一例とを示
す。同図(a)は前者の場合を示し、膜厚が流れと直角
方向に左右対称とならず、一方へ片寄って分厚く、反対
方向へ膜厚が急に低下する膜厚分布となっている。これ
に対し、後者の場合には、同図(b)に示すように、膜
厚は流れと直角方向に左右対称に、かつ均一に形成され
、絞り孔総断面積の上流側流路断面積に対する比の,混
合度に対する影響が、膜厚分布の形で現れている。
In FIG. 4, when the gas mixing means has one throttle plate, the total cross-sectional area of the throttle hole is set to be 1/10 or more of the cross-sectional area of the flow path upstream from the throttle hole, and the substrate is mounted on a 2-inch diameter substrate. An example of film thickness distribution when forming a thin film without rotating the
An example of the film thickness distribution of a thin film when the thickness is 1/10 or less is shown. Figure (a) shows the former case, in which the film thickness is not symmetrical in the direction perpendicular to the flow, and the film thickness distribution is such that it is thick in one direction and rapidly decreases in the opposite direction. On the other hand, in the latter case, as shown in FIG. The influence of the ratio on the mixing degree appears in the form of film thickness distribution.

【0029】[0029]

【発明の効果】本発明では、気相成長装置を以上のよう
に構成したので、以下に記載する効果が得られる。
[Effects of the Invention] In the present invention, since the vapor phase growth apparatus is constructed as described above, the following effects can be obtained.

【0030】請求項1の装置では、複数の化合物ガスを
混合するガス混合手段が、装置の反応容器本体の反応ガ
ス導入口に直接接続され、化合物ガスがそれぞれの貯溜
槽からそれぞれの短い配管を介して互いに独立にガス混
合手段に導入されるから、従来のように、反応容器より
上流側の加熱もしくは保温された配管内で微量ながらも
熱分解して互いに結合し配管内壁に付着するような反応
生成物が生じなくなり、その剥離による基板へのパーテ
ィクル汚染の機会が著しく減少し、形成される薄膜の品
質が高いレベルに均一化れる。加えて、従来のガス混合
手段から反応容器に到る配管とその加熱もしくは保温装
置とが省略され、化合物ガスの貯溜槽を含む装置全体の
コストが低減される。
In the apparatus of claim 1, the gas mixing means for mixing a plurality of compound gases is directly connected to the reaction gas inlet of the reaction vessel main body of the apparatus, and the compound gas is supplied from each storage tank to each short pipe. Because they are introduced into the gas mixing means independently from each other through No reaction products are produced, the chance of particle contamination of the substrate due to their peeling is significantly reduced, and the quality of the thin film formed is highly uniform. In addition, the conventional piping from the gas mixing means to the reaction vessel and its heating or warming device are omitted, reducing the cost of the entire apparatus including the compound gas storage tank.

【0031】さらに、ガス混合手段におけるガス混合部
は、流入したガスの流路断面を絞る絞り孔を有する絞り
板と、絞り孔を通過したガスを拡散させる拡散空間とで
構成されているため、ガスの混合が効果的に行われ、か
つ、均一に混合されたガスが下流側の整流部で層流化さ
れるため、本発明の構成によるガス混合手段は、膜厚,
膜質の均一な膜形成を可能にする。
Furthermore, the gas mixing section of the gas mixing means is composed of a throttle plate having a throttle hole that throttles the flow path cross section of the gas flowing in, and a diffusion space that diffuses the gas that has passed through the throttle hole. Since the gases are mixed effectively and the uniformly mixed gas is made into a laminar flow in the downstream rectifier, the gas mixing means according to the structure of the present invention has a film thickness,
Enables film formation with uniform film quality.

【0032】請求項2の装置では、ガス混合手段が単純
な構造に形成され、請求項1におけるコスト面の効果が
減殺されることなく保持される。
In the apparatus of the second aspect, the gas mixing means is formed in a simple structure, and the cost effectiveness of the first aspect is maintained without being diminished.

【0033】請求項3の装置では、ガス混合手段が、請
求項2の構成に基づく最も単純化された構造で形成され
、請求項2におけるコスト保持の効果が補強される。
In the apparatus of claim 3, the gas mixing means is formed with the simplest structure based on the structure of claim 2, and the cost-retaining effect of claim 2 is reinforced.

【0034】請求項4の装置では、ガス混合手段が安価
に形成され、ガス流量等、成膜条件が変らない装置の場
合、わずかではあるが、装置をより安価に構成させる効
果がある。
In the apparatus of the fourth aspect, the gas mixing means is formed at a low cost, and in the case of an apparatus in which the film forming conditions such as the gas flow rate do not change, there is an effect that the apparatus can be constructed at a lower cost, although it is small.

【0035】請求項5の装置では、ガス混合手段の絞り
孔の径や数などが容易に変更でき、ガス流量等、成膜条
件が変わる装置の場合、成膜条件全体の変更をより迅速
に行わせる効果がある。
In the apparatus of claim 5, the diameter and number of the throttle holes of the gas mixing means can be easily changed, and in the case of an apparatus in which film forming conditions such as gas flow rate are changed, the entire film forming conditions can be changed more quickly. It has the effect of making you do it.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明による気相成長装置構成の一実施例を示
す図であって、同図(a)は平面断面図,同図(b)は
側面部分断面図
FIG. 1 is a diagram showing an embodiment of the configuration of a vapor phase growth apparatus according to the present invention, in which (a) is a plan sectional view, and (b) is a side partial sectional view.

【図2】本発明によるガス混合手段構成の第1の実施例
を示す縦断面図
FIG. 2 is a vertical sectional view showing a first embodiment of the gas mixing means configuration according to the present invention.

【図3】本発明によるガス混合手段構成の第2の実施例
を示す縦断面図
FIG. 3 is a longitudinal sectional view showing a second embodiment of the gas mixing means configuration according to the present invention.

【図4】本発明によるガス混合手段を構成する絞り板を
1個とした場合の絞り孔の総断面積によるガス混合度の
差異を膜厚分布の形で示す図であって、同図(a)は絞
り孔の総断面積を絞り孔より上流側の流路断面積の1/
10とした場合の一例を示す膜厚分布図、同図(b)は
1/10以下とした場合の一例を示す膜厚分布図
FIG. 4 is a diagram showing, in the form of film thickness distribution, the difference in gas mixing degree depending on the total cross-sectional area of the throttle hole when there is only one throttle plate constituting the gas mixing means according to the present invention; In a), the total cross-sectional area of the throttle hole is 1/1 of the cross-sectional area of the flow path upstream from the throttle hole.
A film thickness distribution diagram showing an example when the value is 10, and (b) a film thickness distribution diagram showing an example when the value is 1/10 or less.

【図5
】化合物半導体膜を基板上に成長させる気相成長装置の
,本発明が対象とする型とは別の型の構成原理図
[Figure 5
] Diagram of the configuration principle of a vapor phase growth apparatus for growing a compound semiconductor film on a substrate, which is different from the type targeted by the present invention.

【図6
】図5の型の気相成長装置における問題点解決のための
装置構成を示す模式図
[Figure 6
] Schematic diagram showing the device configuration for solving problems in the type of vapor phase growth device shown in FIG.

【図7】図5の型の気相成長装置における問題点解決の
ための別の装置構成を示す模式図
FIG. 7 is a schematic diagram showing another device configuration for solving the problems in the vapor phase growth device of the type shown in FIG.

【図8】本発明が対象とする気相成長装置の構成原理図
[Figure 8] Diagram of the configuration principle of a vapor phase growth apparatus targeted by the present invention

【符号の説明】[Explanation of symbols]

1    基板(被成膜基板) 2    サセプタ 5    ガス混合手段 14    反応容器 15    内容器 15A  内容器部分 15B  内容器部分 16    外容器 51    パイプ 52    絞り板 53    錐状体 1 Substrate (substrate to be film-formed) 2 Susceptor 5 Gas mixing means 14 Reaction container 15 Inner container 15A Inner container part 15B Inner container part 16 Outer container 51 Pipe 52 Aperture plate 53 Cone

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】導入された複数の化合物ガスからなる反応
ガスが水平に流れる反応容器の底面が、被成膜基板が水
平に載置されるサセプタの基板載置面と同一平面に形成
され、反応ガスを流しつつサセプタを加熱することによ
り被成膜基板の表面に薄膜を成長させる気相成長装置に
おいて、前記反応容器本体の反応ガス導入口に、流入し
たガスの流路断面を絞る絞り孔を有する絞り板と,絞り
板の絞り孔を通過したガスを拡散させる拡散空間とから
なるガス混合部をガス流の方向に1段または多段に有す
るとともに最下流側ガス混合部の下流側に最下流側ガス
混合部から流出したガスを層流状の流れにする整流部を
備えたガス混合手段が直接接続していることを特徴とす
る気相成長装置。
1. The bottom surface of the reaction vessel through which the introduced reaction gas consisting of a plurality of compound gases flows horizontally is formed on the same plane as the substrate mounting surface of a susceptor on which the substrate to be film-formed is horizontally mounted, In a vapor phase growth apparatus that grows a thin film on the surface of a substrate to be film-formed by heating a susceptor while flowing a reaction gas, a restriction hole is provided in the reaction gas inlet of the reaction vessel body to narrow down the flow path cross section of the gas flowing into the reaction vessel body. A gas mixing section consisting of a diaphragm plate having a diaphragm plate and a diffusion space for diffusing the gas that has passed through the diaphragm hole in the diaphragm plate is provided in one or multiple stages in the direction of the gas flow, and the most downstream gas mixing section is located downstream of the gas mixing section on the most downstream side. A vapor phase growth apparatus, characterized in that a gas mixing means is directly connected to a gas mixing means including a rectifying section that converts gas flowing out from a downstream gas mixing section into a laminar flow.
【請求項2】請求項第1項に記載の気相成長装置におい
て、ガス混合手段が、パイプと,パイプ内の上流側にパ
イプの軸方向に間隔をおいて1段または多段に配される
1個または複数個の絞り板と,パイプ内で最下流側の絞
り板の下流側に位置し底面が該絞り板と間隔をおいて対
向する三角錐等の錐状体とからなり、ガスが拡散する拡
散空間が絞り板相互間およびまたは絞り板と錐状体底面
との間に形成され、最下流側ガス混合部から流出したガ
スを層流状の流れにする整流部が、錐状体の底面より下
流側の錐状体斜面とパイプの内壁面とで形成されること
を特徴とする気相成長装置。
2. In the vapor phase growth apparatus according to claim 1, the gas mixing means is disposed in the pipe and in one or multiple stages at intervals in the axial direction of the pipe on the upstream side of the pipe. Consisting of one or more throttle plates and a cone-shaped body such as a triangular pyramid located downstream of the most downstream throttle plate in the pipe and whose bottom face faces the throttle plate at a distance, the gas A diffusion space is formed between the diaphragm plates and/or between the diaphragm plate and the bottom surface of the cone, and a rectifying part that makes the gas flowing out from the most downstream gas mixing part into a laminar flow is formed in the cone. A vapor phase growth apparatus characterized in that the slope is formed by a slope of a pyramid on the downstream side of the bottom of the pipe and an inner wall surface of the pipe.
【請求項3】請求項第2項に記載の気相成長装置におい
て、ガス混合手段のパイプ内の上流側に配される絞り板
を1個とするとともに、絞り板の絞り孔の総断面積を、
絞り孔より上流側の流路断面積の1/10以下としたこ
とを特徴とする気相成長装置。
3. The vapor phase growth apparatus according to claim 2, wherein the number of aperture plates disposed on the upstream side of the pipe of the gas mixing means is one, and the total cross-sectional area of the aperture holes of the aperture plate. of,
A vapor phase growth apparatus characterized in that the cross-sectional area of the flow path on the upstream side of the throttle hole is 1/10 or less.
【請求項4】請求項第2項または第3項に記載の気相成
長装置において、パイプと絞り板と錐状体とからなるガ
ス混合手段は、パイプ,絞り板,錐状体がそれぞれ、石
英ガラスからなる一体成形品中の部分として形成される
ことを特徴とする気相成長装置。
4. In the vapor phase growth apparatus according to claim 2 or 3, the gas mixing means consisting of a pipe, a diaphragm plate, and a cone-shaped body includes a pipe, a diaphragm plate, and a cone-shaped body, respectively. A vapor phase growth apparatus characterized in that it is formed as a part of an integrally molded product made of quartz glass.
【請求項5】請求項第2項または第3項に記載の気相成
長装置において、パイプと絞り板と錐状体とからなるガ
ス混合手段は、絞り板と錐状体とが金属を用いて一体に
形成され、石英ガラスからなるパイプ内に挿入されてな
ることを特徴とする気相成長装置。
5. In the vapor phase growth apparatus according to claim 2 or 3, the gas mixing means including the pipe, the aperture plate, and the cone-shaped body is characterized in that the aperture plate and the cone-shaped body are made of metal. A vapor phase growth apparatus characterized in that the apparatus is formed integrally with a quartz glass pipe and inserted into a pipe made of quartz glass.
JP12150891A 1991-05-28 1991-05-28 Vapor growth apparatus Pending JPH04349623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12150891A JPH04349623A (en) 1991-05-28 1991-05-28 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12150891A JPH04349623A (en) 1991-05-28 1991-05-28 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH04349623A true JPH04349623A (en) 1992-12-04

Family

ID=14812935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12150891A Pending JPH04349623A (en) 1991-05-28 1991-05-28 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH04349623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531489A (en) * 2000-04-17 2003-10-21 エスアール ジェイムス ジェイ メズィー Method and apparatus for heat treating a wafer
JP2021052141A (en) * 2019-09-26 2021-04-01 セイコーNpc株式会社 Vertical diffusion furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531489A (en) * 2000-04-17 2003-10-21 エスアール ジェイムス ジェイ メズィー Method and apparatus for heat treating a wafer
JP2021052141A (en) * 2019-09-26 2021-04-01 セイコーNpc株式会社 Vertical diffusion furnace

Similar Documents

Publication Publication Date Title
US7201942B2 (en) Coating method
KR940009945B1 (en) Cvd apparatus
US4694778A (en) Chemical vapor deposition wafer boat
US6010748A (en) Method of delivering source reagent vapor mixtures for chemical vapor deposition using interiorly partitioned injector
US4033286A (en) Chemical vapor deposition reactor
US6884296B2 (en) Reactors having gas distributors and methods for depositing materials onto micro-device workpieces
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
US8465802B2 (en) Chemical vapor deposition reactor and method
JPH0517696B2 (en)
US20080308040A1 (en) Cvd Reactor Comprising a Gas Inlet Member
US9427762B2 (en) Gas injector and cover plate assembly for semiconductor equipment
JPH07193015A (en) Gas inlet for wafer processing chamber
JPH09246192A (en) Thin film gas phase growing device
TW202307258A (en) Bottom fed sublimation bed for high saturation efficiency in semiconductor applications
JPH04349623A (en) Vapor growth apparatus
JPH07100861B2 (en) Method and apparatus for performing chemical vapor deposition using an axisymmetric flow of gas
EP0378543A1 (en) Gas injector apparatus for chemical vapor deposition reactors.
CA1234972A (en) Chemical vapor deposition wafer boat
US3621812A (en) Epitaxial deposition reactor
US5275686A (en) Radial epitaxial reactor for multiple wafer growth
JPS62113419A (en) Vapor phase epitaxial growth equipment
JP2845105B2 (en) Thin film vapor deposition equipment
KR20020006776A (en) Atomic thin layer deposition appratus
JPH03106039A (en) Gas mixing device and vapor phase epitaxial growth device using that
JPH05152350A (en) Vapor epitaxial growth device