JPH04349606A - Superconducting magnet for magnetically floating movable structure - Google Patents

Superconducting magnet for magnetically floating movable structure

Info

Publication number
JPH04349606A
JPH04349606A JP12345091A JP12345091A JPH04349606A JP H04349606 A JPH04349606 A JP H04349606A JP 12345091 A JP12345091 A JP 12345091A JP 12345091 A JP12345091 A JP 12345091A JP H04349606 A JPH04349606 A JP H04349606A
Authority
JP
Japan
Prior art keywords
outer tank
superconducting magnet
magnetically levitated
friction
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12345091A
Other languages
Japanese (ja)
Inventor
Tosuke Hirata
平田 東助
Kihachiro Tanaka
田中 基八郎
Shigeru Sakamoto
茂 坂本
Yumiko Seki
関 由美子
Shuji Onodera
小野寺 修司
Tadashi Sonobe
園部 正
Fumio Suzuki
鈴木 史男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Hitachi Ltd
Original Assignee
Railway Technical Research Institute
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Hitachi Ltd filed Critical Railway Technical Research Institute
Priority to JP12345091A priority Critical patent/JPH04349606A/en
Publication of JPH04349606A publication Critical patent/JPH04349606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To prevent a superconducting state from being destroyed owing to the temperature rise of a superconducting magnet for a magnetically floating train. CONSTITUTION:There is provided on the surface of an outer tank 1 a member having a function to prevent any vibration, whereby any vibration produced on the outer tank 1 is prevented from being transmitted to a superconducting magnet 8. A vibration prevention mechanism is constructed by: 1' disposing at least one or more of friction production structures 2, 3, and connecting to the outer tank 1 through a bolt 5 or welding keeping a gap; 2' inserting a vibration damping member 6 between the outer tank 1 and the fabrication production structure 2; 3' applying a paint 7 involving metal particles blended therein between the outer tank 1 and the friction production structure 2; or 4' disposing a mass-spring system 11 on the surface of the outer tank 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は磁気浮上列車用超電導磁
石の制振構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping structure for superconducting magnets for magnetically levitated trains.

【0002】0002

【従来の技術】従来磁気浮上列車における防振構造にお
いては例えば特開昭49−77309号公報にあるよう
に乗り心地などを良くするために車両に生じる振動を低
減するものは提案されているが、超電導磁石支持構造そ
のものにおける低振動化に関しては考慮されていない。 しかし以下の理由により超電導磁石の低振動化を考える
ことが必要不可欠である。
2. Description of the Related Art Conventional vibration-proof structures for magnetically levitated trains have been proposed, for example in Japanese Patent Laid-Open No. 77309/1989, which reduce vibrations generated in the train in order to improve riding comfort. , no consideration is given to reducing vibration in the superconducting magnet support structure itself. However, it is essential to consider reducing the vibration of superconducting magnets for the following reasons.

【0003】磁気浮上列車は図15のように車体15に
超電導磁石8を備え地上に設けられた推進コイル17と
浮上コイル18によって推進及び浮上する。この原理を
簡単に説明する。
As shown in FIG. 15, a magnetically levitated train has a superconducting magnet 8 on a car body 15, and is propelled and levitated by a propulsion coil 17 and a levitation coil 18 provided on the ground. This principle will be briefly explained.

【0004】磁気浮上列車はリニアシンクロナスモータ
の原理で推進する。すなわち例えば車体が図17のAの
位置にいるときには地上の推進コイル17には実線の矢
印の方向に電流を流しておく。このとき車体15はフレ
ミングの左手の法則に従ってこの図の矢印の方向の力を
受けて推進する。
Magnetic levitation trains are propelled by the principle of linear synchronous motors. That is, for example, when the vehicle body is in the position A in FIG. 17, a current is caused to flow through the propulsion coil 17 on the ground in the direction of the solid arrow. At this time, the vehicle body 15 is propelled by a force in the direction of the arrow in this figure according to Fleming's left-hand rule.

【0005】次に車体15がBの位置にきたときは破線
の方向に電流を流す。つまりこの図における真中のコイ
ルに関しては電流を流す方向を切り替えることになる。 すると今度も車体15はこの図の矢印の方向に力を受け
同方向に進行する。この繰返しによって車体は同方向に
進行し続けることが出来る。これが推進原理である。
Next, when the vehicle body 15 comes to position B, a current is applied in the direction of the broken line. In other words, for the middle coil in this figure, the direction in which the current flows is switched. Then, the vehicle body 15 receives a force in the direction of the arrow in this figure and moves in the same direction. This repetition allows the vehicle to continue moving in the same direction. This is the driving principle.

【0006】次に浮上の原理を説明する。車体がここで
述べた原理で走行すると地上に設置された浮上コイル1
8に誘導電流が発生する。誘導電流は車体15に取り付
けられた超電導磁石8が作る磁界を打ち消す方向に流れ
る。このため磁気反発力が生じて車体を浮上させる。こ
れが浮上の原理である。
Next, the principle of levitation will be explained. When the car body runs according to the principle described here, the levitation coil 1 installed on the ground
8, an induced current is generated. The induced current flows in a direction that cancels the magnetic field created by the superconducting magnet 8 attached to the vehicle body 15. This generates a magnetic repulsion force that causes the vehicle to levitate. This is the principle of levitation.

【0007】ここまでに述べたように超電導磁気浮上列
車は地上に設置された地上コイルと超電導磁石が作る磁
気力によって浮上走行する。地上コイルはN極とS極が
交代で変化していくので、地上コイル上を移動していく
超電導磁石はN極とS極の切り替えによって生じる変動
磁場を受ける。
[0007] As described above, a superconducting magnetically levitated train levitates due to the magnetic force generated by a ground coil installed on the ground and a superconducting magnet. Since the north and south poles of the ground coil alternate, the superconducting magnet moving on the ground coil receives a fluctuating magnetic field caused by the switching between the north and south poles.

【0008】このため超電導磁石を納める外槽には2次
電流が誘導される。この誘導電流と超電導磁石の磁界が
フレミングの法則により電磁力を発生させる。この電磁
力が原因となって超電導磁石に振動を発生させる。
[0008] Therefore, a secondary current is induced in the outer tank housing the superconducting magnet. This induced current and the magnetic field of the superconducting magnet generate electromagnetic force according to Fleming's law. This electromagnetic force causes vibrations in the superconducting magnet.

【0009】超電導磁石は極低温(絶対4度)に保たれ
る必要があるので発熱等の原因となり得る振動を抑える
ことが重要である。そこで超電導磁気浮上列車において
超電導磁石構造そのものに対する低振動構造を設ける必
要がある。
[0009] Since superconducting magnets need to be kept at extremely low temperatures (absolutely 4 degrees Celsius), it is important to suppress vibrations that can cause heat generation and the like. Therefore, it is necessary to provide a low-vibration structure for the superconducting magnet structure itself in a superconducting magnetic levitation train.

【0010】0010

【発明が解決しようとする課題】しかしながら、これま
で超電導磁石そのものについての防振対策について考え
られた発明は少なく低振動化に関する対策は必ずしも充
分ではなかった。特に列車は一定速度で走行する時間が
多いが、一定速度で走行した場合には、走行速度と地上
の浮上用コイルの接地間隔から決まる振動数を基本振動
数とする電磁加振力を受けることになる。
[Problems to be Solved by the Invention] However, until now, there have been few inventions that have considered anti-vibration measures for superconducting magnets themselves, and measures to reduce vibration have not necessarily been sufficient. In particular, trains often travel at a constant speed, but when they travel at a constant speed, they receive an electromagnetic excitation force whose basic frequency is determined by the traveling speed and the ground contact interval of the levitation coil on the ground. become.

【0011】また、地上コイルは等間隔に離散的に設置
されるので上で述べた基本振動数のほかにそれの高調波
成分の振動数も受け複雑に振動する。このため一定速度
で走行中の振動を低減する機構を考える必要がある。
Furthermore, since the ground coils are installed discretely at equal intervals, they vibrate in a complex manner due to the frequencies of their harmonic components in addition to the above-mentioned fundamental frequency. Therefore, it is necessary to consider a mechanism to reduce vibrations while running at a constant speed.

【0012】本発明の目的は超電導磁石を用いた磁気浮
上列車が走行中に電磁加振力を受け続け大きく振動した
ような場合に超電導磁石の共振を避け、超電導磁石の発
熱等を防止する手段を与えることにある。
An object of the present invention is to provide a means for avoiding resonance of the superconducting magnets and preventing heat generation, etc. of the superconducting magnets when a magnetically levitated train using superconducting magnets continues to receive electromagnetic excitation force while running and vibrates greatly. It is about giving.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、超電導磁石の外槽の表面に摩擦発生体を少なくとも
一つ以上配置し、外槽が振動していないときには互いに
軽く接触しているか、もしくは少し隙間をあけて取り付
ける。このように取付けることによって外槽が振動し変
形すると摩擦発生体が互いに擦り合い摩擦が起こる。振
動エネルギーは摩擦により熱となって消費され、振動は
減衰する。
[Means for Solving the Problems] In order to achieve the above object, at least one friction generating body is arranged on the surface of the outer tank of a superconducting magnet, and when the outer tank is not vibrating, the friction generators are in light contact with each other. Or install it with a slight gap. When the outer tank vibrates and deforms when it is attached in this manner, the friction generating bodies rub against each other and friction occurs. Vibration energy is consumed as heat due to friction, and vibrations are damped.

【0014】摩擦発生体と外槽表面との間に制振材を挿
入して、外槽が振動し変形したとき摩擦発生体と外槽と
の間に相対的なずれを生じさせて制振材に歪を発生させ
、制振材の内部で歪による内部摩擦を起こしても良い。
[0014] A vibration damping material is inserted between the friction generating body and the surface of the outer tank, and when the outer tank vibrates and deforms, a relative shift is generated between the friction generating body and the outer tank to damp the vibration. It is also possible to generate strain in the material and cause internal friction due to the strain inside the damping material.

【0015】他の態様として、外槽の表面に非磁性体金
属の微小な粒を混入した塗料を塗布し外槽が振動したと
きに金属粒子と塗料との間に摩擦を発生させるように構
成すること、或いは外槽の表面に少なくとも一つ以上の
質量−ばね系を付設させ外槽の振動と逆位相の振動を発
生させて外槽の振動を打ち消す構成にすることも有効で
ある。
[0015] In another embodiment, a paint containing minute particles of non-magnetic metal is applied to the surface of the outer tank so that when the outer tank vibrates, friction is generated between the metal particles and the paint. Alternatively, it is also effective to provide a structure in which at least one mass-spring system is attached to the surface of the outer tank to generate vibrations in the opposite phase to the vibrations of the outer tank to cancel out the vibrations of the outer tank.

【0016】本発明に使用する摩擦発生体には磁性材料
を使用することはできない。超電導磁石による強力な磁
力により、摩擦発生体が外槽表面に吸着されたままとな
り外槽が振動しても外槽と摩擦発生体との間に相対的な
ずれが生じないからである。従って摩擦発生体としては
アルミニウム、ステンレス鋼等の非磁性金属板、FRP
などの樹脂板が好ましい。
[0016] Magnetic materials cannot be used in the friction generator used in the present invention. This is because the friction generating body remains attracted to the surface of the outer tank due to the strong magnetic force of the superconducting magnet, so that even if the outer tank vibrates, no relative displacement occurs between the outer tank and the friction generating body. Therefore, as friction generating bodies, non-magnetic metal plates such as aluminum and stainless steel, FRP, etc.
A resin plate such as is preferable.

【0017】[0017]

【作用】この発明において、電磁力によって外槽が振動
して変形したとき、摩擦発生体は互いに接触してこすり
合う。そのときの摩擦によって外槽の振動エネルギーを
熱エネルギーに変えて消失させ、振動を減衰させる。
[Operation] In this invention, when the outer tank is vibrated and deformed by electromagnetic force, the friction generating bodies come into contact with each other and rub against each other. The friction generated at this time converts the vibrational energy of the outer tank into thermal energy and dissipates it, dampening the vibrations.

【0018】摩擦発生体と外槽表面の間に制振材を挿入
した場合には、外槽が振動して変形したとき、摩擦発生
体と外槽との間に相対的なずれが発生し制振材に歪が発
生する。制振材の内部では歪によって制振材粒子間で摩
擦が起こり、摩擦によって振動エネルギーが熱エネルギ
ーへ変換されて振動を減衰させる。
[0018] When a damping material is inserted between the friction generator and the outer tank surface, when the outer tank vibrates and deforms, a relative displacement occurs between the friction generator and the outer tank. Distortion occurs in the damping material. Inside the damping material, strain causes friction between the damping material particles, and the friction converts vibrational energy into thermal energy, damping vibrations.

【0019】外槽の表面に非磁性体金属の微小な粒を混
入した塗料を塗布したときには、外槽が振動すると、混
入した金属粒子と塗料との間に摩擦が起り、この摩擦に
よって振動エネルギーが熱エネルギーに変換されて振動
を低減させる。
When a paint containing minute particles of non-magnetic metal is applied to the surface of the outer tank, when the outer tank vibrates, friction occurs between the mixed metal particles and the paint, and this friction generates vibration energy. is converted into thermal energy and reduces vibration.

【0020】更に、質量−ばね系の固有振動数を外槽の
振動数と合致させると、質量−ばね系は外槽の振動方向
とは逆向きに振動し外槽の振動を抑えるように動作する
Furthermore, when the natural frequency of the mass-spring system is made to match the frequency of the outer tank, the mass-spring system vibrates in the opposite direction to the vibration direction of the outer tank, and operates to suppress the vibration of the outer tank. do.

【0021】[0021]

【実施例】以下、本発明の実施例を図面に従って説明す
る。図1は本発明の一実施例を示す。磁気浮上列車の車
体15の下部に台車台枠16が設けられ、これに荷重支
持構造物が取付けられている。磁気浮上列車の台車には
車体を浮上させ、かつ高速で走行させる力を出す超電導
磁石が設置されている。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the invention. A bogie underframe 16 is provided at the bottom of a car body 15 of a magnetically levitated train, and a load supporting structure is attached to this. The bogies of magnetic levitation trains are equipped with superconducting magnets that generate the power to levitate the train and drive it at high speed.

【0022】この荷重支持構造物の対面には間隔をもっ
て推進コイル17と浮上コイル18が配置されている。 これらのコイルは軌道側に形成されている。
[0022] A propulsion coil 17 and a levitation coil 18 are arranged at a distance from each other on opposite sides of this load supporting structure. These coils are formed on the track side.

【0023】超電導磁石は外気に接する部分の外槽1、
超電導磁石8と外槽1の間にあって外部からの輻射熱を
遮断するシールド板9および荷重を支える荷重支持体1
0で構成されている。
[0023] The superconducting magnet has an outer tank 1 in the part that comes into contact with the outside air,
A shield plate 9 that is located between the superconducting magnet 8 and the outer tank 1 and blocks radiant heat from the outside, and a load support 1 that supports the load.
Consists of 0.

【0024】外槽1の外側の表面には摩擦発生体2およ
び3を取付けるための取付基板4が固着されいる。摩擦
発生体2及び3はボルト5で取付基板4に嵌着されてい
る。
A mounting board 4 for mounting the friction generators 2 and 3 is fixed to the outer surface of the outer tank 1. The friction generators 2 and 3 are fitted onto the mounting board 4 with bolts 5.

【0025】摩擦発生体2および3の両端は角度θで傾
斜しており、互いに両端の傾斜部分が重なり合っている
Both ends of the friction generators 2 and 3 are inclined at an angle θ, and the inclined portions of both ends overlap each other.

【0026】両端の接触面積をできるだけ大きくとり、
しかも接触剛性を大きくするためには、角度θは15〜
45度が適当である。またボルト5と摩擦発生体2およ
び3との隙間δはあき過ぎて接触しなくなることを避け
るためには、0.3mm以下が適当である。
[0026] The contact area at both ends is made as large as possible,
Moreover, in order to increase the contact rigidity, the angle θ must be 15~
45 degrees is appropriate. Further, in order to avoid the gap δ between the bolt 5 and the friction generators 2 and 3 being too large and causing no contact, it is appropriate that the gap δ is 0.3 mm or less.

【0027】外槽1が振動すると摩擦発生体2及び3と
が両端で擦れ合い摩擦が起きる。この摩擦によって振動
エネルギーが熱エネルギーに変換され振動を吸収する。 摩擦発生体2および摩擦発生体3の材質を変えることに
より、摩擦によって発生する音を小さくできる。
When the outer tank 1 vibrates, the friction generators 2 and 3 rub against each other at both ends, causing friction. This friction converts vibrational energy into thermal energy and absorbs vibrations. By changing the materials of the friction generators 2 and 3, the noise generated by friction can be reduced.

【0028】図2は摩擦発生体2および摩擦発生体3を
取付基板4上に溶接で取り付けた実施例である。この場
合、摩擦発生体2と摩擦発生体3との間にわずかの隙間
をあけておく。
FIG. 2 shows an embodiment in which the friction generator 2 and the friction generator 3 are attached to a mounting substrate 4 by welding. In this case, a slight gap is left between the friction generator 2 and the friction generator 3.

【0029】図3は取付基板4を使わずに、摩擦発生体
2および3を外槽1に取り付けた場合の実施例である。 外槽1の内側は真空になっているため、ねじ込みボルト
5は外槽1の板厚の途中で止まる必要がある。
FIG. 3 shows an embodiment in which the friction generators 2 and 3 are attached to the outer tank 1 without using the mounting board 4. Since the inside of the outer tank 1 is in a vacuum, the screw bolt 5 needs to stop midway through the thickness of the outer tank 1.

【0030】図4は外槽1の表面に台形の突起を設け、
突起と突起の間に摩擦発生体2を配設した実施例である
FIG. 4 shows a trapezoidal projection provided on the surface of the outer tank 1.
This is an embodiment in which a friction generating body 2 is disposed between the protrusions.

【0031】図5は摩擦発生体2に複数個の台形の突起
を設け、外槽1の表面に設けた台形の突起に嵌着させた
実施例である。
FIG. 5 shows an embodiment in which a plurality of trapezoidal projections are provided on the friction generating body 2 and are fitted into trapezoidal projections provided on the surface of the outer tank 1.

【0032】図6は外槽1の表面に設けた溝に摩擦発生
体2を埋め込んだ実施例である。
FIG. 6 shows an embodiment in which the friction generator 2 is embedded in a groove provided on the surface of the outer tank 1.

【0033】図7は摩擦発生体2と外槽1の間に制振材
6を挿入した実施例である。制振材6として粘着剤を用
いており、粘着剤の粘性減衰効果を利用している。安定
して粘着するためには、粘着層の厚みは0.05mm以
上必要である。
FIG. 7 shows an embodiment in which a damping material 6 is inserted between the friction generating body 2 and the outer tank 1. Adhesive is used as the vibration damping material 6, and the viscous damping effect of the adhesive is utilized. For stable adhesion, the thickness of the adhesive layer must be 0.05 mm or more.

【0034】外槽1が振動すると摩擦発生体2と外槽1
の間に相対変位が発生し、粘着剤には剪断歪が加わる。 粘着剤に歪が加わると粘着剤内部に摩擦が起り、摩擦熱
として振動エネルギーを吸収する。
When the outer tank 1 vibrates, the friction generator 2 and the outer tank 1
A relative displacement occurs during this time, and shear strain is applied to the adhesive. When strain is applied to the adhesive, friction occurs inside the adhesive, which absorbs vibrational energy as frictional heat.

【0035】図8は図6の実施例に示した摩擦発生体2
と外槽1の間に制振材6を挿入した実施例である。
FIG. 8 shows the friction generating body 2 shown in the embodiment of FIG.
This is an embodiment in which a damping material 6 is inserted between the outer tank 1 and the outer tank 1.

【0036】図9は図3の実施例に示した摩擦発生体2
および3と外槽1との間に制振材6を挿入した実施例で
ある。
FIG. 9 shows the friction generating body 2 shown in the embodiment of FIG.
This is an embodiment in which a damping material 6 is inserted between 3 and the outer tank 1.

【0037】図10は外槽1の表面に鉛などの金属粒子
を混入した制振塗料7を塗布した実施例である。塗布層
の厚さは外槽1の板厚以上である。外槽1が振動すると
塗料内部において金属粒子と塗料との間で摩擦が発生し
、摩擦熱として振動エネルギーを吸収する。
FIG. 10 shows an embodiment in which the surface of the outer tank 1 is coated with a damping paint 7 containing metal particles such as lead. The thickness of the coating layer is greater than or equal to the thickness of the outer tank 1. When the outer tank 1 vibrates, friction occurs between the metal particles and the paint inside the paint, and the vibration energy is absorbed as frictional heat.

【0038】電磁力によって加振されて発生する外槽の
振動は図1〜図10に示す実施例により、かなり低減す
ることができるが、場合によっては十分低減できないこ
とがある。このような場合、外槽の振動数をf(Hz)
とし、質量−ばね系の質量11をm、ばね定数をkとす
ると、質量−ばね系の固有振動数f0は、f0=(1/
2π)√(k/m) で与えられる。
Although the vibrations of the outer tank caused by electromagnetic force can be considerably reduced by the embodiments shown in FIGS. 1 to 10, in some cases the vibrations cannot be reduced sufficiently. In such a case, the frequency of the outer tank should be f (Hz)
If the mass 11 of the mass-spring system is m and the spring constant is k, then the natural frequency f0 of the mass-spring system is f0 = (1/
2π)√(k/m).

【0039】f0=fになるように質量mおよびばね定
数kを設定すれば、質量−ばね系は外槽の振動方向とは
逆の方向に振動し、外槽1の振動を抑える方向に慣性力
が加わり、外槽1の振動は低減される。
If the mass m and spring constant k are set so that f0=f, the mass-spring system will vibrate in the opposite direction to the vibration direction of the outer tank, and the inertia will be in the direction of suppressing the vibration of the outer tank 1. The force is applied, and the vibration of the outer tank 1 is reduced.

【0040】質量−ばね系を設置する位置は外槽1の振
動が大きいところ、すなわち、振動の腹または腹の近く
がよい。外槽1の振動の腹は通常、一個以上あり、質量
−ばね系も一個以上必要である。
The mass-spring system should be installed at a location where the vibration of the outer tank 1 is large, that is, at or near the antinode of the vibration. There are usually one or more antinodes of vibration in the outer tank 1, and one or more mass-spring systems are also required.

【0041】図11は防振ゴム12を使った質量−ばね
系の実施例、図12は片持梁の板ばね14を使った質量
−ばね系の実施例、図13はコイルばね13を質量−ば
ね系に使った実施例、図14は両持梁の板ばね14を使
った質量−ばね系の実施例である。
FIG. 11 shows an example of a mass-spring system using a vibration isolating rubber 12, FIG. 12 shows an example of a mass-spring system using a cantilever plate spring 14, and FIG. 13 shows a mass-spring system using a coil spring 13. - Example used in a spring system FIG. 14 is an example of a mass-spring system using a plate spring 14 supported on both sides.

【0042】[0042]

【発明の効果】本発明によれば、外槽の表面の振動減衰
能力が向上するので、電磁力によって外槽が加振されて
振動振幅が成長するようなことが低減され、振動はすみ
やかに減衰し、超電導磁石へ振動が伝わることが減る。 したがって超電導磁石が振動によって発熱して温度が上
昇し、超電導現象が破壊される現象が軽減するという効
果がある。
[Effects of the Invention] According to the present invention, since the vibration damping ability of the surface of the outer tank is improved, it is possible to reduce the increase in vibration amplitude caused by the vibration of the outer tank due to electromagnetic force, and the vibrations are quickly reduced. Attenuates the transmission of vibrations to the superconducting magnet. This has the effect of reducing the phenomenon in which the superconducting magnet generates heat due to vibration, the temperature rises, and the superconducting phenomenon is destroyed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る磁気浮上移動体用超電導
磁石の横断面図である。
FIG. 1 is a cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図2】本発明の実施例に係る磁気浮上移動体用超電導
磁石の横断面図である。
FIG. 2 is a cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図3】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 3 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図4】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 4 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図5】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 5 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図6】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 6 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図7】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 7 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図8】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 8 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図9】本発明の実施例に係る磁気浮上移動体用超電導
磁石の部分横断面図である。
FIG. 9 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図10】本発明の実施例に係る磁気浮上移動体用超電
導磁石の部分横断面図である。
FIG. 10 is a partial cross-sectional view of a superconducting magnet for a magnetically levitated moving body according to an embodiment of the present invention.

【図11】本発明の質量−ばね系の実施例を示す要部断
面模式図である。
FIG. 11 is a schematic cross-sectional view of essential parts showing an embodiment of the mass-spring system of the present invention.

【図12】本発明の質量−ばね系の実施例を示す要部断
面模式図である。
FIG. 12 is a schematic cross-sectional view of essential parts showing an embodiment of the mass-spring system of the present invention.

【図13】本発明の質量−ばね系の実施例を示す要部断
面模式図である。
FIG. 13 is a schematic cross-sectional view of essential parts showing an embodiment of the mass-spring system of the present invention.

【図14】本発明の質量−ばね系の実施例を示す要部断
面模式図である。
FIG. 14 is a schematic cross-sectional view of essential parts showing an embodiment of the mass-spring system of the present invention.

【図15】磁気浮上列車の要部断面説明図である。FIG. 15 is an explanatory cross-sectional view of the main part of the magnetic levitation train.

【図16】磁気浮上列車の要部側面図である。FIG. 16 is a side view of the main part of the magnetic levitation train.

【図17】磁気浮上列車の浮上原理を示す説明図である
FIG. 17 is an explanatory diagram showing the principle of levitation of a magnetically levitated train.

【図18】磁気浮上列車の浮上原理を示す説明図である
FIG. 18 is an explanatory diagram showing the principle of levitation of a magnetically levitated train.

【符号の説明】[Explanation of symbols]

1…外槽、2…摩擦発生体、3…摩擦発生体、4…取付
基板、5…ボルト、6…制振材、7…制振塗料、8…超
電導磁石、11…質量、12…防振ゴム、13…コイル
ばね、14…板ばね。
DESCRIPTION OF SYMBOLS 1... Outer tank, 2... Friction generator, 3... Friction generator, 4... Mounting board, 5... Bolt, 6... Damping material, 7... Damping paint, 8... Superconducting magnet, 11... Mass, 12... Prevention Swing rubber, 13...coil spring, 14...plate spring.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】少なくとも超電導体と荷重支持体とを収納
する外槽を備えた磁気浮上移動体用超電導磁石において
、前記外槽に振動を抑える機能を有するものを付設した
ことを特徴とする磁気浮上移動体用超電導磁石。
1. A superconducting magnet for a magnetically levitated vehicle, comprising an outer tank for accommodating at least a superconductor and a load support, characterized in that the outer tank is provided with a magnet having a function of suppressing vibrations. Superconducting magnet for levitated moving objects.
【請求項2】請求項1に記載の振動を抑える機能を有す
るものは、摩擦発生体を少なくとも一つ以上、外槽に設
けたものであることを特徴とする磁気浮上移動体用超電
導磁石。
2. A superconducting magnet for a magnetically levitated moving body, wherein the magnet having the function of suppressing vibration according to claim 1 has at least one friction generating body provided in the outer tank.
【請求項3】請求項2に記載の摩擦発生体は0.3mm
以下の範囲で動き得るように外槽表面もしくは基板上に
取り付けられていることを特徴とする磁気浮上移動体用
超電導磁石。
[Claim 3] The friction generating body according to Claim 2 has a thickness of 0.3 mm.
A superconducting magnet for a magnetically levitated vehicle, characterized in that it is attached to the surface of an outer tank or a substrate so that it can move within the following range.
【請求項4】請求項2に記載の振動を抑える機能を有す
るものは、外槽に突起あるいは溝を設け、該突起あるい
は溝の形状に倣う摩擦発生体を該突起または溝に配設し
たことを特徴とする磁気浮上移動体用超電導磁石。
4. The device having the function of suppressing vibrations according to claim 2 is provided with a protrusion or groove on the outer tank, and a friction generating body that follows the shape of the protrusion or groove is disposed in the protrusion or groove. A superconducting magnet for magnetically levitated moving objects.
【請求項5】請求項2、3または4に記載の摩擦発生体
は非磁性金属板若しくは樹脂板であり、その両端の傾斜
角が15〜45度であることを特徴とする磁気浮上移動
体用超電導磁石。
5. A magnetically levitated moving body according to claim 2, 3 or 4, wherein the friction generating body is a non-magnetic metal plate or a resin plate, and the inclination angle of both ends thereof is 15 to 45 degrees. superconducting magnets.
【請求項6】請求項1に記載の振動を抑える機能を有す
るものは、摩擦発生体と外槽の間に制振材を挿入したも
のであることを特徴とする磁気浮上移動体用超電導磁石
6. A superconducting magnet for a magnetically levitated moving body having the function of suppressing vibration according to claim 1, wherein a damping material is inserted between the friction generating body and the outer tank. .
【請求項7】請求項1に記載の振動を抑える機能を有す
るものは、外槽に制振性を有する塗料を塗布したもので
あることを特徴とする磁気浮上移動体用超電導磁石。
7. A superconducting magnet for a magnetically levitated moving body, wherein the magnet having the function of suppressing vibration according to claim 1 has an outer tank coated with a paint having vibration suppressing properties.
【請求項8】請求項1に記載の振動を抑える機能を有す
るものは、外槽に質量とばねで構成するダイナミックダ
ンパを付設したものであることを特徴とする磁気浮上移
動体用超電導磁石。
8. A superconducting magnet for a magnetically levitated moving body, wherein the magnet having the function of suppressing vibration according to claim 1 is provided with a dynamic damper comprising a mass and a spring attached to the outer tank.
JP12345091A 1991-05-28 1991-05-28 Superconducting magnet for magnetically floating movable structure Pending JPH04349606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12345091A JPH04349606A (en) 1991-05-28 1991-05-28 Superconducting magnet for magnetically floating movable structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12345091A JPH04349606A (en) 1991-05-28 1991-05-28 Superconducting magnet for magnetically floating movable structure

Publications (1)

Publication Number Publication Date
JPH04349606A true JPH04349606A (en) 1992-12-04

Family

ID=14860912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12345091A Pending JPH04349606A (en) 1991-05-28 1991-05-28 Superconducting magnet for magnetically floating movable structure

Country Status (1)

Country Link
JP (1) JPH04349606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688211A (en) * 2020-12-30 2022-07-01 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Lateral buffering vibration damper and high-speed magnetic suspension equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688211A (en) * 2020-12-30 2022-07-01 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Lateral buffering vibration damper and high-speed magnetic suspension equipment

Similar Documents

Publication Publication Date Title
EP0833074B1 (en) Magnetic spring having damping characteristics and vibration mechanism having same
US7478598B2 (en) Oscillation damping means for magnetically levitated systems
JPH0646058B2 (en) Device for damping vibration transmission from a vibration source to a support structure
CN106926743A (en) Eddy current retarder and magnetically supported vehicle
KR101197257B1 (en) Magnetic levitation conveyance system having enhanced stop performance
JPH1038020A (en) Vibration damping device
JP4215444B2 (en) Device for suppressing vibration in a driven system
JPH1046503A (en) Vibrationproofing rail support structure of magnetic floating travelling vehicle
JPH04349606A (en) Superconducting magnet for magnetically floating movable structure
US5601027A (en) Positioning system with damped magnetic attraction stopping assembly
JPH0674294A (en) Active dynamic vibration absorber
KR101182354B1 (en) Magnetic levitation conveyance system having spring
JP3810932B2 (en) Non-contact induction current collector
JPH06333733A (en) Damper for magnetic levitation train
Hoque et al. A 3-DOF modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness
JPH0547681B2 (en)
JP2008095757A (en) Vibration damping device
JP2008185184A (en) Vibration absorbing machine for in-wheel motor
JP2001071900A (en) Interior noise reduction apparatus for railway rolling stock
JP2619581B2 (en) Superconducting magnet structure for magnetic levitation train
JPH04162403A (en) Superconducting magnet for magnetic levitation train
JP3924596B2 (en) Magnetic spring vibration mechanism with negative damping characteristics
JPH05319256A (en) High speed levitation train
JP3924597B2 (en) Magnetic spring vibration mechanism with negative damping characteristics
KR101061005B1 (en) Heat resistant dustproof electromagnet