JPH04348850A - Method and device for measuring shape of cylindrical cam - Google Patents

Method and device for measuring shape of cylindrical cam

Info

Publication number
JPH04348850A
JPH04348850A JP14960091A JP14960091A JPH04348850A JP H04348850 A JPH04348850 A JP H04348850A JP 14960091 A JP14960091 A JP 14960091A JP 14960091 A JP14960091 A JP 14960091A JP H04348850 A JPH04348850 A JP H04348850A
Authority
JP
Japan
Prior art keywords
cam
measurement
starting point
angle
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14960091A
Other languages
Japanese (ja)
Inventor
Morihito Ushikusa
牛草 守人
Shinichi Furusawa
古澤 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP14960091A priority Critical patent/JPH04348850A/en
Publication of JPH04348850A publication Critical patent/JPH04348850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To cause coincidence of a cam with a regular measurement starting point through correction of an error by calculating an error angle with the measurement starting point of the cam mounted on a reference point planned during measurement of the shape of a manufactured cam. CONSTITUTION:A cam P is supported to a support bed 4 capable of controlling revolution dividing, an error detector 37 is located to a slider capable of controlling positioning in the direction of an R-axis, and a manual cam P is mounted so that a temporary measurement starting point R1 is set to a value within + or -10 deg. of a design reference point (a regular measurement starting point) R0. Based on the temporary measurement stating point R1, measurement is determined through temporary measurement and a difference eni between a change amount r'n of a cam profile radium and a change amount r''ni of a design value of thetai calculated by a design formula is determined. An angle thetai at which a square sum of the difference eni is minimized is determined. By correcting and rotating the temporary measurement starting position of a cam based on the thetai forming an angle displacement amount T, the cam is caused to coincide with the regular measurement starting point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は設計値にもとづき製作さ
れたカムの形状の測定方法及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the shape of a cam manufactured based on design values.

【0002】0002

【従来の技術】従来製作された円板,円筒カム(以下円
筒状カムと称する)の輪郭形状の誤差を測定するには、
一つの手法に、パソコンにより理論上のカムの輪郭形状
をX−Yプロッタで原寸大の輪郭図を描いておき、製作
されたカムをその図の上に重ねるか投影法で図7のよう
に加工誤差を測定する。別の手法はカムを機構の中に組
込んだ状態でカムを一定角度ずつ回転させて直接節端の
変位を図8のように測定しパソコンにより計算された理
論上のカムの輪郭形状から形状誤差を計算させる。
[Prior Art] In order to measure the error in the contour shape of conventionally manufactured discs and cylindrical cams (hereinafter referred to as cylindrical cams),
One method is to use a computer to draw a full-size outline of the theoretical cam using an X-Y plotter, and then superimpose the manufactured cam on top of that drawing or use a projection method to draw it as shown in Figure 7. Measure machining errors. Another method is to rotate the cam by a fixed angle with the cam installed in the mechanism, and directly measure the displacement of the nodal end as shown in Figure 8. Let the error be calculated.

【0003】0003

【発明が解決しようとする課題】その一は原寸大のパソ
コン作成図面に、製作したカム形状の投影図をのせて誤
差をみるため大雑把な判断しかできず、誤差を数値に現
すことは不可能で正確さが望めないうえ時間を要し能率
的でない。その二はカムの測定開始点と設計の基準点と
を合わせることが必要であり、データの解析が面倒であ
る。また所定角度ずつ旋回して輪郭半径を測定するとい
う面倒な操作がともなううえ長時間を要するという問題
があった。
[Problems to be solved by the invention] One is that a projected drawing of the manufactured cam shape is placed on a full-size computer-generated drawing to check for errors, so only rough judgments can be made, and it is impossible to express the errors numerically. In addition to not being accurate, it is time consuming and inefficient. Second, it is necessary to match the measurement starting point of the cam with the design reference point, which makes data analysis troublesome. Further, there is a problem in that it involves a troublesome operation of turning at a predetermined angle and measuring the contour radius, and also requires a long time.

【0004】本発明は従来の技術の有するこのような問
題点に鑑みなされたもので、その目的とするところはカ
ム形状の測定開始点を仮測定のデータから測定開始点を
自動且正確に割出す測定方法及び測定装置を提供しよう
とするものである。
The present invention was made in view of the problems of the conventional technology, and its purpose is to automatically and accurately determine the measurement start point of a cam shape from provisional measurement data. The purpose of this paper is to provide a measuring method and a measuring device for the

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに本発明は、半径方向の変位測定装置を有し、円筒状
カムを軸心で支える測定器を用い、支持された円筒状カ
ムを本測定開始点の近傍に仮の測定開始点を位置決めし
カム角度θiにおける輪郭半径を仮測定してカムの測定
開始点近傍のある範囲の形状と設計上の角度θi にお
けるカム形状との差の最小値を求めてカムの本測定開始
点を見出す方法である。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention has a radial displacement measuring device and uses a measuring instrument that supports a cylindrical cam at its axis, and measures the supported cylindrical cam. Position a temporary measurement start point near the actual measurement start point, temporarily measure the contour radius at the cam angle θi, and find the difference between the shape of the cam in a certain range near the measurement start point and the cam shape at the designed angle θi. This method finds the starting point for the actual measurement of the cam by finding the minimum value of .

【0006】さらに円筒状カムを軸心で支持するととも
に回転位置決め可能なカム保持駆動部材と、該円筒状カ
ムの回転角の検出手段と、前記円筒状カムの軸心方向並
びに半径方向に移動位置決め可能に設けられた輪郭半径
検出手段と、前記円筒状カムのカム形状の設計値を演算
記憶する手段と、前記輪郭半径検出手段の仮測定値と前
記設計値との誤差の最小値を算出する演算手段と、該演
算された誤差の最小値に対応する角度にもとづきカム形
状本測定開始点に前記円筒状カムの位相を合わせる手段
とを含むものである。
The invention further includes a cam holding and driving member that supports the cylindrical cam along its axis and is capable of rotationally positioning the cylindrical cam, a means for detecting the rotation angle of the cylindrical cam, and a means for moving and positioning the cylindrical cam in the axial direction and radial direction. a means for calculating and storing a design value of the cam shape of the cylindrical cam; and calculating a minimum value of an error between a provisional measurement value of the contour radius detection means and the design value. The method includes a calculating means, and means for adjusting the phase of the cylindrical cam to the starting point of the actual measurement of the cam shape based on the angle corresponding to the calculated minimum value of the error.

【0007】[0007]

【作用】請求項1の方法のとおりである。[Operation] The method is as claimed in claim 1.

【0008】[0008]

【実施例】以下本発明を図1,図2にもとづき説明する
。機台1上には壁体2が設立されていて、その前面にエ
アベアリング3で軸承された支持軸4が垂直に回転可能
に保持されており、上端に円周角度目盛を刻設した回転
テーブル5が取付けられその中心にドライブセンタ6が
嵌着されている。そして支持軸4の下部にはプーリ7が
キー着され下端にロータリエンコーダ8が取付けられて
いる。プーリ7と枠体1に取付けたサーボモータ10の
出力軸のプーリ11との間にベルト12が掛けられてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to FIGS. 1 and 2. A wall 2 is installed on the machine base 1, and a support shaft 4 supported by an air bearing 3 is vertically rotatably held on the front surface of the wall 2. A table 5 is attached and a drive center 6 is fitted in the center thereof. A pulley 7 is keyed to the lower part of the support shaft 4, and a rotary encoder 8 is attached to the lower end. A belt 12 is stretched between the pulley 7 and a pulley 11 on the output shaft of a servo motor 10 attached to the frame 1.

【0009】壁体2の上部には心押台15が取付けられ
ており支持軸4と同心に心押センタ16が嵌装されてい
る。この心押センタ16は軸方向にラックが刻設されて
いて、ラックと噛合う心押台15に水平に軸承されたハ
ンドル17の軸端のラックと噛合うピニオンによって軸
方向に移動される。また心押センタ16と直角方向の押
し子18によって先端の球体が心押センタ16を押圧し
て被測定カムPを上下両センタで支えたときにゆるまな
いようにしている。
A tailstock 15 is attached to the upper part of the wall 2, and a tailstock center 16 is fitted concentrically with the support shaft 4. This tailstock center 16 has a rack carved in the axial direction, and is moved in the axial direction by a pinion that engages with a rack at the shaft end of a handle 17 that is horizontally supported on the tailstock 15 that engages with the rack. Further, the spherical body at the tip presses the tailstock center 16 by the pusher 18 in a direction perpendicular to the tailstock center 16 so that the cam P to be measured is not loosened when the cam P is supported by both the upper and lower centers.

【0010】更に壁体2の前面には円筒状カム軸と平行
な2本のリニアガイド21a,21bが並列されて取付
けられており、リニアベアリング22a,22bを介し
てテーブル23が軸承案内されている。リニアガイド2
1a,21bの間には回転のみ可能に壁体2に軸承され
た送りねじ24が支持されており、テーブル23の裏面
に設けたナットが螺合されている。そして壁体2に取付
けられた図示しない制御装置で駆動されるサーボモータ
25でテーブル23は上下方向(Z軸)の位置制御がな
される。
Further, two linear guides 21a and 21b parallel to the cylindrical camshaft are attached to the front surface of the wall 2, and a table 23 is supported and guided via linear bearings 22a and 22b. There is. Linear guide 2
A feed screw 24 rotatably supported by the wall 2 is supported between 1a and 21b, and a nut provided on the back surface of the table 23 is screwed into the feed screw 24. The position of the table 23 in the vertical direction (Z-axis) is controlled by a servo motor 25 driven by a control device (not shown) attached to the wall 2.

【0011】さらにリニアガイド21aと平行して例え
ば市販のハイデンハイン社製ミニリッド310型の計測
部材のメインスケール26が取付台に設けられている。 このメインスケール26は光透過部と非透過部とが所定
ピッチで形成された必要長さの光学格子でなり、テーブ
ル23側には光学格子インデックススケール27が取付
けられこれに必要な投受光器が設けられている。しかし
Z軸方向にはそれ程の精度を必要としない場合には磁気
スケールとすることもできる。またスケールを用いず送
りボールねじに位置検出器を設けてNC制御の位置決め
に代えることができる。
Further, in parallel with the linear guide 21a, a main scale 26 of a measuring member, for example, a commercially available Minilid Model 310 manufactured by Heidenhain, is provided on a mounting base. The main scale 26 is an optical grating of the required length in which light transmitting parts and non-transmitting parts are formed at a predetermined pitch.An optical grating index scale 27 is attached to the table 23 side, and the necessary light emitter and receiver are attached to the table 23 side. It is provided. However, if such precision is not required in the Z-axis direction, a magnetic scale may be used. Furthermore, positioning can be replaced by NC control by providing a position detector on the feed ball screw without using a scale.

【0012】テーブル23上には図2に示すようにリニ
アガイド30a,30bが取付けられており、リニアベ
アリング31a,31bを介してスライダ32がカムP
の軸心に向かって水平移動可能に支持されている。スラ
イダ32は制御装置で駆動されるサーボモータ33に連
結されテーブル23に回転のみ可能に軸承された送りボ
ールねじ34に螺合するナットを介して移動されるよう
になっている。この移動量計測には例えばミニリッド3
10型が用いられる。
As shown in FIG. 2, linear guides 30a and 30b are mounted on the table 23, and the slider 32 is connected to the cam P via linear bearings 31a and 31b.
It is supported so that it can move horizontally toward the axis of the The slider 32 is connected to a servo motor 33 driven by a control device, and is moved via a nut screwed onto a feed ball screw 34 rotatably supported on the table 23. To measure this movement amount, for example, mini lid 3
Type 10 is used.

【0013】即ちスライダ32には光透過部と非透過部
とが所定ピッチで交互に形成された光学格子を有するメ
インスケール35が設けられ、テーブル23にはメイン
スケール35と一定の間隔を有して対向配置された同様
に光学格子を有するインデックススケール36が設けら
れている。そしてメインスケール35,インデックスス
ケール36に図示しないが公知の光を照射する投光器と
、スケールを挟んで透過光を受ける受光器が設けられて
おり、干渉縞の移動信号は制御装置に送られカウントさ
れて精度高い移動量が検出できる。さらにスライダ32
には例えばキーエンス製LD−2510型の非接触セン
サ若しくは例えば東京精密製差動トランス形接触式セン
サ等の誤差検出器37が用いられ誤差となる変位を検出
する出力信号は制御装置に送られる。
That is, the slider 32 is provided with a main scale 35 having an optical grating in which light transmitting portions and non-transmitting portions are alternately formed at a predetermined pitch, and the table 23 is provided with a main scale 35 having a predetermined interval from the main scale 35. An index scale 36 is provided which also has an optical grating arranged oppositely. Although not shown, the main scale 35 and the index scale 36 are provided with a light projector that irradiates known light and a light receiver that receives the transmitted light across the scale, and movement signals of the interference fringes are sent to a control device and counted. The amount of movement can be detected with high accuracy. Furthermore, slider 32
For example, an error detector 37 such as a non-contact sensor of the LD-2510 type manufactured by Keyence Corporation or a differential transformer type contact sensor manufactured by Tokyo Seimitsu is used, and an output signal for detecting displacement resulting in an error is sent to the control device.

【0014】スライダ32のカム輪郭半径の測定の制御
ブロック図を示す図3にもとづき説明する。51はMD
I,テープなどの入力部材で、目的とするカム形状の設
計式 r=Ro−R=f(θ)但しr:輪郭半径Rの本測定開
始点Roからの変位量、仮測定(自動的に本測定開始点
Roを求める測定)時の測定ピッチ,測定範囲,本測定
開始点Roに位置決め後の本測定時の測定ピッチ,測定
範囲等が入力される。52はパソコン、53はMDI5
3より入力されたデータを記憶する記憶器、54は記憶
された設計式から設計値を算出する演算器、55はR軸
位置検出器35,36の現在値、Z軸位置検出器26,
27の現在値、θ軸位置検出器8の角度位置と演算器5
4で計算されたカム設計値及び誤差検出器37の検出誤
差δn を記憶する記憶器、56はR軸位置検出器35
,36の現在値、Z軸位置検出器26,27の現在値、
θ軸位置検出器の角度位置と記憶器55に記憶されたカ
ム設計値とを比較してその差を出力する比較器。
A description will be given based on FIG. 3 showing a control block diagram for measuring the cam contour radius of the slider 32. 51 is MD
I, the design formula for the desired cam shape using an input member such as a tape, r = Ro - R = f (θ), where r: displacement amount of the contour radius R from the actual measurement starting point Ro, provisional measurement (automatically The measurement pitch, measurement range, and the like during the actual measurement after positioning are input to the actual measurement starting point Ro. 52 is a computer, 53 is MDI5
3, a storage device that stores the data input from 3; 54, a calculator that calculates the design value from the stored design formula; 55, the current values of the R-axis position detectors 35 and 36; the Z-axis position detector 26;
The current value of 27, the angular position of the θ-axis position detector 8 and the calculator 5
4 is a memory for storing the cam design value calculated in step 4 and the detection error δn of the error detector 37; 56 is the R-axis position detector 35;
, 36, current values of Z-axis position detectors 26 and 27,
A comparator that compares the angular position of the θ-axis position detector and the cam design value stored in the memory 55 and outputs the difference.

【0015】57はr´n =f(θn )+δn 及
びΔr´n =r´n −r´n−1 を計算する演算
器、58は演算器57の計算値r´n ,Δr´n の
記憶器、59はr〃ni=(θn −θi )及びΔr
〃ni=r〃ni−r〃n−1iを計算する演算器、6
0は演算器59の計算値r〃ni,Δr〃niの記憶器
、61は数1を計算する演算器、62は演算器62の計
算値eni, Eiの記憶器、63はE>Eiを比較し
、NOのときθi に0.1°ずつ加え且つθi が1
0.1°になったかを比較判定する比較器、64は比較
器63で比較されたEiが小さいとき及びこのときのθ
i を誤差角度Tとして記憶する記憶器、65は指令で
記憶器64の誤差角度Tに相当する関数を発生する関数
発生器、66は比較器56で比較されたR軸,Z軸,θ
軸の差分の関数を発生する関数発生器、67はR軸モー
タ駆動回路、68はZ軸モータ駆動回路、69はθ軸モ
ータ駆動回路である。
57 is an arithmetic unit that calculates r'n = f(θn) + δn and Δr'n = r'n - r'n-1, and 58 is an arithmetic unit that calculates the calculated values r'n and Δr'n of the arithmetic unit 57. The memory device 59 is r〃ni=(θn −θi) and Δr
Arithmetic unit for calculating 〃ni=r〃ni-r〃n-1i, 6
0 is a memory for the calculated values r〃ni, Δr〃ni of the arithmetic unit 59, 61 is an arithmetic unit that calculates Equation 1, 62 is a memory for the calculated values eni, Ei of the arithmetic unit 62, and 63 is a memory for E>Ei. Compare, when NO, add 0.1° to θi and set θi to 1
A comparator 64 compares and determines whether the angle is 0.1°, and 64 indicates θ when Ei compared by the comparator 63 is small and at this time.
65 is a function generator that generates a function corresponding to the error angle T in the memory 64 in response to a command; 66 is the R-axis, Z-axis, and θ compared by the comparator 56;
A function generator that generates a function of the difference between the axes, 67 is an R-axis motor drive circuit, 68 is a Z-axis motor drive circuit, and 69 is a θ-axis motor drive circuit.

【数1】[Math 1]

【0016】71は誤差検出器37の記憶値にもとづき
誤差曲線及びカム設計値をカム角度に対応してプロット
するプロッタ、72は同様にカム角度に対して誤差及び
設計値をプリントするプリンタ、73はR軸の現在値の
表示器、74はZ軸の現在値の表示器、75はθ軸の現
在角度の表示器である。
71 is a plotter that plots error curves and cam design values corresponding to cam angles based on the stored values of the error detector 37; 72 is a printer that similarly prints errors and design values for cam angles; 73; 74 is a display for the current value of the R axis, 74 is a display for the current value of the Z axis, and 75 is a display for the current angle of the θ axis.

【0017】次いで制御のフローチャートの図4にもと
づいて説明する。ステップS1において被測定カムをド
ライブセンタ6とセンタ16との間に支持し、カムの輪
郭半径設計式にもとづいて計算されたカム形状の設計値
の基本点(本測定開始点Ro)と考えられる位置に対し
カムの仮測定開始点R1 を手動で±10°以内に位置
決めする。
Next, a description will be given based on the control flowchart shown in FIG. In step S1, the cam to be measured is supported between the drive center 6 and the center 16, and is considered to be the basic point (main measurement starting point Ro) of the design value of the cam shape calculated based on the cam contour radius design formula. Manually position the tentative measurement starting point R1 of the cam within ±10° of the position.

【0018】ステップS2においてSDI入力済か及び
設計値演算済かを判断する。NOであればステップS3
においてMDI51よりカム形状設計式、仮測定時の角
度測定ピッチ例えば1°でn=1〜21迄、測定範囲−
10°〜10°、シュミレーション修正角度ピッチ0.
1°で−10°〜10°、本測定時の角度測定ピッチ例
えば10°で測定範囲0°〜360°を入力する。
In step S2, it is determined whether the SDI has been input and the design value calculation has been completed. If NO, step S3
In the cam shape design formula from MDI51, the angle measurement pitch at the time of temporary measurement, for example, 1 degree, n = 1 to 21, measurement range -
10° to 10°, simulation correction angle pitch 0.
1 degree is -10 degrees to 10 degrees, and the angle measurement pitch at the time of actual measurement is, for example, 10 degrees, and the measurement range is 0 degrees to 360 degrees.

【0019】ステップS4において、設計式にもとづく
10°ピッチで0°〜360°及び1°ピッチで−10
°〜10°の設計値の演算が演算器54で行われその値
f(θn )が記憶器55に記憶される。ステップS2
でYESであればステップS5に移行する。
In step S4, 0° to 360° at 10° pitch and -10° at 1° pitch based on the design formula.
Calculation of the design value of .degree. to 10.degree. is performed in the arithmetic unit 54, and the value f(.theta.n) is stored in the storage device 55. Step S2
If YES, the process moves to step S5.

【0020】ステップS5においてスライダ32を誤差
検出器37の非接触センサの測定基準位置が設計値の基
本点となるように移動位置決めしたあと1°ピッチで−
10°〜10°迄カムをサーボモータ10で回転位置決
めしその角度に対応してスライダを設計値に位置決めし
てその角度毎に誤差検出器37により誤差δn を読み
取り記憶器55に角度θn と対応する誤差δn とを
記憶する。
In step S5, the slider 32 is moved and positioned so that the measurement reference position of the non-contact sensor of the error detector 37 becomes the basic point of the design value, and then the slider 32 is moved at a pitch of 1°.
The cam is rotated and positioned from 10° to 10° by the servo motor 10, and the slider is positioned to the design value corresponding to that angle. For each angle, the error detector 37 reads the error δn and stores it in the memory 55, corresponding to the angle θn. The error δn is stored.

【0021】ステップS6において演算器57でカム角
度θn におけるカム輪郭半径設計値f(θn )の対
応位置の誤差δn を加算して角度θn のときの仮測
定開始点R1 からの輪郭半径の変位量r´n =f(
θn )+δn を求め、記憶器58に記憶する。
In step S6, the calculator 57 adds the error δn of the corresponding position of the cam contour radius design value f(θn) at the cam angle θn to calculate the amount of displacement of the contour radius from the provisional measurement starting point R1 at the angle θn. r´n = f(
θn)+δn is determined and stored in the storage device 58.

【0022】ステップS4において角度θn のときの
変位量r´n とθn−1 のときの変位量r´n−1
 とより仮測定開始点R1 からのカム回転角θn−1
 からθn までの間の変位量r´n ,r´n−1 
の測定ピッチごとの輪郭半径の変化量 Δr´n ={f(θ)+δn }−{f(θn−1 
)+δn−1 }=r´n −r´n−1 を記憶器5
8の記憶値をもとに演算器57で求め、記憶器58に記
憶する。
In step S4, the amount of displacement r'n when the angle is θn and the amount of displacement r'n-1 when the angle is θn-1
Therefore, the cam rotation angle θn-1 from the tentative measurement starting point R1
Displacement amount r'n, r'n-1 between and θn
Amount of change in contour radius for each measurement pitch Δr′n = {f(θ)+δn }-{f(θn-1
)+δn-1 }=r'n -r'n-1 in the memory 5
The calculation unit 57 calculates the value based on the stored value of 8, and stores it in the storage unit 58.

【0023】ステップS8において、カムが本測定開始
点Roとなる基準点より何度ずれて取付けられているか
を知るために記憶器53のカムの輪郭半径設計式r=R
o−R=f(θ)にθi を修正角度パラメータとして
r〃=f(θ−θi )なる関数を発生させ仮測定で行
った各ピッチごとの0.1ピッチで−10°〜10°ま
でシュミレートして本測定開始点(Ro)よりの輪郭半
径の変位量r〃ni=f(θn −θi )を演算器5
9で求め記憶器60に記憶する。
In step S8, in order to find out how many times the cam is installed with respect to the reference point which is the main measurement starting point Ro, the cam contour radius design formula r=R in the memory 53 is used.
o-R=f(θ) with θi as the correction angle parameter to generate the function r〃=f(θ-θi), and measure from -10° to 10° at 0.1 pitch for each pitch, which was done in temporary measurement. The calculation unit 5 calculates the amount of displacement r〃ni=f(θn −θi) of the contour radius from the main measurement starting point (Ro) by simulating the
9 and stores it in the memory 60.

【0024】ステップS9において記憶器60に記憶さ
れた本測定開始点Roからカム回転角θn ,θn−1
 における変位量r〃ni,r〃n−1iの測定ピッチ
ごとの輪郭半径の変化量Δr〃ni=f(θn −θi
 )−f(θn−1 −θi )=r〃ni−r〃n−
1iを演算器59で求め記憶器60に記憶する。
Cam rotation angles θn, θn-1 from the main measurement starting point Ro stored in the memory 60 in step S9
Change amount Δr〃ni=f(θn −θi
)−f(θn−1−θi)=r〃ni−r〃n−
1i is determined by the arithmetic unit 59 and stored in the memory 60.

【0025】ステップS10において仮測定開始点R1
 を基準に計算され記憶器58に記憶されたカムの輪郭
半径の変化量Δr´n と設計式上で本測定開始点Po
より測定点がθi ずれた時に計算して求められ記憶器
60に記憶された輪郭半径の変化量Δr〃niとの差e
ni=Δr〃ni−Δr´n を演算器61で求める。 すなわち仮測定範囲全体nで測定ピッチ毎に求め、記憶
器62に記憶する。
[0025] In step S10, provisional measurement starting point R1
Based on the amount of change Δr'n in the contour radius of the cam calculated based on and stored in the memory 58, and the actual measurement starting point Po on the design formula.
The difference e from the amount of change Δr〃ni in the contour radius calculated when the measurement point deviates by θi and is stored in the memory 60.
The arithmetic unit 61 calculates ni=Δr〃ni−Δr′n. That is, it is determined for each measurement pitch in the entire temporary measurement range n and is stored in the memory 62.

【0026】ステップS11において、記憶器62に記
憶された各ピッチごとのeniの二乗和数2を演算器6
1で求め記憶器62に記憶する。この二乗和は全パラメ
ータで計算されることになる。
In step S11, the sum of squares 2 of eni for each pitch stored in the memory 62 is calculated by the calculator 6.
1 and stored in the memory 62. This sum of squares will be calculated for all parameters.

【数2】[Math 2]

【0027】ステップS12において、記憶器62に記
憶された先の二乗和Eと今回求められた二乗和Eiとを
比較しE>EiがYESであればステップS13におい
てEをEiとし、このときの誤差角度Tをθi として
記憶器64に記憶する。ステップS12においてNOで
あればステップS14に移行するが、Eiが初期値であ
れば比較対象なしでNOとしてステップS14に移行す
る。
In step S12, the previous sum of squares E stored in the memory 62 is compared with the sum of squares Ei obtained this time, and if E>Ei is YES, in step S13, E is set to Ei, and the current value is The error angle T is stored in the storage device 64 as θi. If NO in step S12, the process moves to step S14, but if Ei is the initial value, there is no comparison target, and the process moves to step S14.

【0028】ステップS14において、θi で計算を
行っていくため修正角度θi に0.1°を加える。ス
テップS15において比較器63でθi が10.1に
達したかを判断する。NOであればステップS8に移行
し10.1になるまで同様にシュミレーションを繰り返
す。 YESであればステップS16において記憶器64に記
憶されたEiが最小値であるとしてこのときのθi を
誤差角度Tとして関数発生器65より関数を発生してθ
軸モータ駆動回路69でサーボモータ10を駆動し支持
軸4,回転テーブル5を回転させる指令を出す。
In step S14, 0.1° is added to the correction angle θi in order to perform calculations using θi. In step S15, the comparator 63 determines whether θi has reached 10.1. If NO, the process moves to step S8 and the simulation is repeated in the same way until 10.1 is reached. If YES, in step S16, assuming that Ei stored in the memory 64 is the minimum value, the function generator 65 generates a function with θi at this time as the error angle T.
A command to drive the servo motor 10 by the shaft motor drive circuit 69 and rotate the support shaft 4 and rotary table 5 is issued.

【0029】ステップS17において誤差角度T°回転
させカムPを位置決めし、誤差検出器37のフィラー前
面に本測定開始点Roを対応させる。ステップS18に
おいてサーボモータ10を例えば10°ピッチで360
°まで回転位置決めさせる。一方モータ33を駆動して
スライダ32をZ軸方向に対応角度での設計値となるよ
うに位置制御してその時の誤差δを誤差検出器37にて
検出しプリンタ72でプリント,プロッタ71でプロッ
トする。そしてR軸の現在値はR軸表示器12に、Z軸
の現在値はZ軸位置表示器74に、θ軸の現在角度はθ
軸角度誤差表示器75にそれぞれ表示される。なおカム
1が円筒カムであればR軸の位置制御を行って本測定を
実施する。円筒カムが捩じれカムであれば各R軸位置に
おいて必要により本発明の方法による仮測定を行って本
測定開始点に合わせて同様の本測定を行う。
In step S17, the cam P is positioned by rotating the error angle T°, and the main measurement starting point Ro corresponds to the front surface of the filler of the error detector 37. In step S18, the servo motor 10 is rotated, for example, 360 times at a pitch of 10°.
Rotate and position up to °. On the other hand, the motor 33 is driven to control the position of the slider 32 in the Z-axis direction so that it becomes the design value at the corresponding angle, and the error δ at that time is detected by the error detector 37, printed by the printer 72, and plotted by the plotter 71. do. The current value of the R axis is displayed on the R axis display 12, the current value of the Z axis is displayed on the Z axis position display 74, and the current angle of the θ axis is displayed on the θ axis.
Each is displayed on the axis angle error display 75. Note that if the cam 1 is a cylindrical cam, the main measurement is performed by controlling the position of the R axis. If the cylindrical cam is a torsion cam, provisional measurements are performed according to the method of the present invention at each R-axis position if necessary, and a similar actual measurement is performed in accordance with the actual measurement starting point.

【0029】[0029]

【発明の効果】上述のようであるので、本発明は以下の
効果を奏する。請求項1の方法は仮測定によって求めた
誤差値と設計値とにもとづいて本測定のための正しい測
定開始位置が判明するのでカムの形状を迅速,正確に測
定することが可能である。請求項2の装置は上記方法の
実施を可能とする。
[Effects of the Invention] As described above, the present invention has the following effects. According to the method of claim 1, the correct measurement start position for the actual measurement can be determined based on the error value obtained by the preliminary measurement and the design value, so that the shape of the cam can be measured quickly and accurately. The device according to claim 2 makes it possible to carry out the method described above.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の測定装置の説明図である。FIG. 1 is an explanatory diagram of a measuring device of the present invention.

【図2】R軸方向移動用のスライダの説明図である。FIG. 2 is an explanatory diagram of a slider for movement in the R-axis direction.

【図3】制御ブロック線図である。FIG. 3 is a control block diagram.

【図4】制御の流れ図である。FIG. 4 is a control flowchart.

【図5】仮測定時のカム形状の測定値を示す図である。FIG. 5 is a diagram showing measured values of the cam shape at the time of provisional measurement.

【図6】本測定時のカム形状の測定値を示す図である。FIG. 6 is a diagram showing the measured values of the cam shape during the main measurement.

【図7】従来の第1の測定方法を示す図である。FIG. 7 is a diagram showing a first conventional measurement method.

【図8】従来の第2の測定方法を示す図である。FIG. 8 is a diagram showing a second conventional measurement method.

【符号の説明】[Explanation of symbols]

3  空気軸受 6  ドライブセンタ 8  角度検出器 10,25,33  サーボモータ 16  センタ 21a,21b,31a,31b  リニアガイド24
,34  送りねじ 26,35  メインスケール 27,36  インデックススケール 32  スライダ 37  誤差検出器 51  MDI 53,56,58,60,62,64  記憶器54,
57,59,61  演算器 55,63  比較器 65,66  関数発生器 71  プロッタ 72  プリンタ
3 Air bearing 6 Drive center 8 Angle detector 10, 25, 33 Servo motor 16 Center 21a, 21b, 31a, 31b Linear guide 24
, 34 Feed screw 26, 35 Main scale 27, 36 Index scale 32 Slider 37 Error detector 51 MDI 53, 56, 58, 60, 62, 64 Memory device 54,
57, 59, 61 Arithmetic unit 55, 63 Comparator 65, 66 Function generator 71 Plotter 72 Printer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半径方向の変位測定装置を有し、円筒
状カムを軸心で支える測定器を用い、支持された円筒状
カムを本測定開始点の近傍に仮の測定開始点を位置決め
しカム角度θi における輪郭半径を仮測定してカムの
測定開始点近傍のある範囲の形状とし設計上の角度θi
 におけるカム形状との差の最小値を求めてカムの本測
定開始点を見出すことを特徴とする円筒状カム形状測定
方法。
Claim 1: Using a measuring device that has a radial displacement measuring device and supports a cylindrical cam at its axis, the supported cylindrical cam is positioned at a temporary measurement starting point in the vicinity of the main measurement starting point. The contour radius at the cam angle θi is tentatively measured and the shape of a certain range near the measurement starting point of the cam is determined, and the design angle θi is determined.
A method for measuring the shape of a cylindrical cam, characterized in that the starting point for the actual measurement of the cam is found by finding the minimum value of the difference between the shape of the cam and the shape of the cam.
【請求項2】  円筒状カムを軸心で支持するとともに
回転位置決め可能なカム保持駆動部材と、該円筒状カム
の回転角の検出手段と、前記円筒状カムの軸心方向並び
に半径方向に移動位置決め可能に設けられた輪郭半径検
出手段と、前記円筒状カムのカム形状の設計値を演算記
憶する手段と、前記輪郭半径検出手段の仮測定値と前記
設計値との誤差の最小値を算出する演算手段と、該演算
された誤差の最小値に対応する角度にもとづきカム形状
本測定開始点に前記円筒状カムの位相を合わせる手段と
を含むことを特徴とする円筒状カム形状測定装置。
2. A cam holding and driving member that supports a cylindrical cam at its axis and is capable of rotationally positioning the cylindrical cam, a means for detecting a rotation angle of the cylindrical cam, and a cam holding and driving member that moves in the axial direction and radial direction of the cylindrical cam. a contour radius detection means provided so as to be positionable; a means for calculating and storing a design value of the cam shape of the cylindrical cam; and a minimum value of an error between a tentative measurement value of the contour radius detection means and the design value. A cylindrical cam shape measuring device comprising: calculation means for calculating the minimum value of the calculated error; and means for adjusting the phase of the cylindrical cam to a cam shape main measurement starting point based on the angle corresponding to the minimum value of the calculated error.
JP14960091A 1991-05-24 1991-05-24 Method and device for measuring shape of cylindrical cam Pending JPH04348850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14960091A JPH04348850A (en) 1991-05-24 1991-05-24 Method and device for measuring shape of cylindrical cam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14960091A JPH04348850A (en) 1991-05-24 1991-05-24 Method and device for measuring shape of cylindrical cam

Publications (1)

Publication Number Publication Date
JPH04348850A true JPH04348850A (en) 1992-12-03

Family

ID=15478751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14960091A Pending JPH04348850A (en) 1991-05-24 1991-05-24 Method and device for measuring shape of cylindrical cam

Country Status (1)

Country Link
JP (1) JPH04348850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297676A (en) * 2011-05-25 2011-12-28 常州工学院 Cam contour detection system driven by wire rope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237744A (en) * 1989-03-09 1990-09-20 Fanuc Ltd Processing error measurement method for elliptically processed product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237744A (en) * 1989-03-09 1990-09-20 Fanuc Ltd Processing error measurement method for elliptically processed product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297676A (en) * 2011-05-25 2011-12-28 常州工学院 Cam contour detection system driven by wire rope

Similar Documents

Publication Publication Date Title
JP6149337B1 (en) Surface shape measuring device
JP4229698B2 (en) Measuring method and apparatus for cutting edge position of tool, workpiece processing method, and machine tool
US4026031A (en) Surface measurement instruments
US4982504A (en) Method for determining positional errors and for compensating for such errors, and apparatus for carrying out the method
US4080741A (en) Measuring apparatus
JP5235284B2 (en) Measuring method and machine tool
JPS59168316A (en) Measuring device and method for inspecting pitch of gear
JPH02138807A (en) Method and apparatus for measuring horizontal dimensions of object
JP2017161252A (en) Surface shape measuring method, and surface shape measuring device
CN208606719U (en) A kind of disk-like accessory flexibility on-line measuring device
EP1434027A2 (en) Apparatus for measuring angular position and displacement of a rotary table and accuracy analyzing apparatus therefor
JP2002005653A (en) Method and apparatus for measurement of screw dimension
JP2007245342A (en) Method and device for measuring position of cutting edge in tool, work machining method, and machine tool
JP2010085360A (en) Automatic dimension measurement device
JPH04348850A (en) Method and device for measuring shape of cylindrical cam
JPS63501938A (en) Zero position adjustment method for cylindrical grinder and device for implementing the method
JP2002054917A (en) Concentricity measuring method in concentricity measuring device
JP3995333B2 (en) Screw shaft measuring method and measuring device
CN110823103A (en) Calibration control method, device and system of laser line length measuring instrument
JP2935603B2 (en) Roundness measuring device with straightness measuring function
JP3975815B2 (en) 3D cam shape measurement result correction method and 3D cam profile measurement device
US3225586A (en) Method of regulating and poising adjustment
JPH06138921A (en) Measuring method and automatic correction method for linear interpolation feeding accuracy of numerically controlled machine tool
JP2758810B2 (en) Shape measurement method
JPH05196411A (en) Method for measuring parallelism error between rotary axis center and straightness of roundness measuring machine