JPH04347485A - Method and device for recovering carbonic acid gas in air separating device - Google Patents

Method and device for recovering carbonic acid gas in air separating device

Info

Publication number
JPH04347485A
JPH04347485A JP3121046A JP12104691A JPH04347485A JP H04347485 A JPH04347485 A JP H04347485A JP 3121046 A JP3121046 A JP 3121046A JP 12104691 A JP12104691 A JP 12104691A JP H04347485 A JPH04347485 A JP H04347485A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
air
nitrogen gas
backwashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121046A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kusunoki
楠 光裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3121046A priority Critical patent/JPH04347485A/en
Publication of JPH04347485A publication Critical patent/JPH04347485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/84Processes or apparatus using other separation and/or other processing means using filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/44Separating high boiling, i.e. less volatile components from nitrogen, e.g. CO, Ar, O2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To recover carbonic gas in an air separating device, provided with a reversing type heat exchanger or an adsorption type moisture and carbonic gas remover, and contrive energy saving as well as the prevension of environmental contamination. CONSTITUTION:Ice, solidified and separated by reversing type heat exchangers 2a, 2b, and dry ice are evaporated by nitrogen gas for reverse washing while the evaporated gas is mixed with low-temperature and high-purity nitrogen gas in two stages through gas diffusers 14a, 14b, 24a, 24b. In the first stage, moisture is separated and removed as ice through gravity sedimenting separators 12a, 12b and separating filters 21a, 21b while carbonic acid gas is separated and removed in the second stage as dry ice through gravity sedimenting separators 29a, 29b and separating filters 39a, 39b whereby the nitrogen gas for reverse washing is recovered as nitrogen gas having comparatively high purity while carbonic gas is recovered by washing the dry ice with low- temperature carbonic acid gas reversely.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空気分離装置における
炭酸ガスの回収方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for recovering carbon dioxide gas in an air separation device.

【0002】0002

【従来の技術】一般的に酸素(以下、O2と略称する)
および窒素(以下、N2と略称する)を工業的規模に製
造することを目的とする装置において、原料となる空気
に含まれる水分および炭酸ガス(以下、CO2ガスと略
称する)を除去する方法の一つに、たとえば特開昭60
− 68104号公報に開示されているようなリバーシ
ング式熱交換器を用いて含有する水分とCO2 ガスを
冷却して氷とドライアイスの形で熱交換器内に堆積させ
ることにより除去するリバーシング式の空気分離装置が
ある。この熱交換器内に堆積した氷とドライアイスは、
空気分離装置にて同時に分離されたN2ガスを使用して
逆洗し、熱交換器から大気中に放出される。
[Prior Art] Generally, oxygen (hereinafter abbreviated as O2)
and a method for removing moisture and carbon dioxide gas (hereinafter referred to as CO2 gas) contained in air, which is a raw material, in equipment whose purpose is to produce nitrogen (hereinafter referred to as N2) on an industrial scale. For example, JP-A-60
- Reversing using a reversing heat exchanger as disclosed in Publication No. 68104 to remove the contained moisture and CO2 gas by cooling and depositing them in the heat exchanger in the form of ice and dry ice. There is a type air separation device. The ice and dry ice accumulated inside this heat exchanger
The N2 gas separated at the same time by the air separation device is used for backwashing and discharged into the atmosphere from the heat exchanger.

【0003】一般に空気分離装置から発生するN2ガス
の半分以上はこの逆洗に使用されており、したがって回
収利用されることがなかったのである。設備的には熱交
換器を2基並設しておき、切換弁を切り換えることによ
り逆洗と原料空気中の水分, CO2 ガスの除去とを
交互に行っており、それ故熱交換器を2式並設し切り換
えて使用するのが一般的である。
[0003] Generally, more than half of the N2 gas generated from an air separation device is used for backwashing, and therefore is not recovered and used. In terms of equipment, two heat exchangers are installed in parallel, and backwashing and removal of moisture and CO2 gas from the feed air are performed alternately by switching the switching valve. Generally, they are installed side by side and used by switching.

【0004】図2は、リバーシング式熱交換器を用いた
従来の空気分離装置の一例の構成図である。図において
、1は原料空気圧縮機、2a,2bはリバーシング式熱
交換器、3a〜3dは原料空気切換弁、4a〜4dは逆
洗用N2ガス切換弁、5は熱交換後の低温空気管、6は
空気分離器、7は高純N2ガス取出管、8は高純O2ガ
ス取出管、9は逆洗用N2ガス送給管、10a,10b
は逆洗用N2ガス取出管、11は逆洗用N2ガス放出管
である。
FIG. 2 is a block diagram of an example of a conventional air separation apparatus using a reversing heat exchanger. In the figure, 1 is a raw air compressor, 2a and 2b are reversing heat exchangers, 3a to 3d are raw air switching valves, 4a to 4d are N2 gas switching valves for backwashing, and 5 is low temperature air after heat exchange. Pipe, 6 is an air separator, 7 is a high-purity N2 gas extraction pipe, 8 is a high-purity O2 gas extraction pipe, 9 is a backwashing N2 gas supply pipe, 10a, 10b
1 is a backwashing N2 gas extraction pipe, and 11 is a backwashing N2 gas discharge pipe.

【0005】原料空気圧縮機1で圧縮された空気は、2
基のリバーシング式熱交換器2a,2bのうちの一方た
とえば2aに原料空気切換弁3a〜3dを介して送り込
まれ、逆洗用N2ガス送給配管9,逆洗用N2ガス切換
弁4cを介して送り込まれる空気分離器6で生成された
N2などの低温ガスである逆洗用N2ガスにより約−8
0℃まで冷却されて、水分は氷としてCO2 ガスはド
ライアイス(水分は0℃で氷化し、CO2 ガスは−7
8.5℃でドライアイスに変態する) として、それぞ
れ固化され除去・精製される。熱交換器2aで熱交換後
の圧縮空気は原料空気切換弁3c,低温空気管5を通っ
て空気分離器6に送られ、深冷分離法によって純酸素と
純窒素に分離・精留されてそれぞれ高純N2ガス取出管
7,高純O2ガス取出管8を介して製品として需要先へ
送出される。
[0005] The air compressed by the raw air compressor 1 is
The raw air is sent to one of the reversing type heat exchangers 2a and 2b, for example 2a, via the switching valves 3a to 3d, and is connected to the backwashing N2 gas supply pipe 9 and the backwashing N2 gas switching valve 4c. Approximately -8
Water is cooled to 0℃, CO2 gas becomes dry ice (water turns into ice at 0℃, CO2 gas becomes -7
(transforms into dry ice at 8.5℃) and is solidified, removed, and purified. The compressed air after heat exchange in the heat exchanger 2a is sent to the air separator 6 through the raw air switching valve 3c and the low-temperature air pipe 5, where it is separated and rectified into pure oxygen and pure nitrogen using a cryogenic separation method. The products are sent to customers via a high-purity N2 gas extraction pipe 7 and a high-purity O2 gas extraction pipe 8, respectively.

【0006】このとき、もう一方のリバーシング式熱交
換器2bでは前のサイクルで空気中の水分とCO2 ガ
スを固化・分離した氷とドライアイスに対して、空気分
離器6から逆洗用N2ガス送給管9,逆洗用N2ガス切
換弁4dを介して逆洗用N2ガスが送り込まれることに
より、熱交換器2bの器内に堆積した氷およびドライア
イスが気化して逆洗用N2ガスに含まれ、逆洗用N2ガ
ス切換弁4b, 逆洗用N2ガス取出配管10bを介し
て逆洗用N2ガス放出管11から大気中に放散される。
At this time, in the other reversing type heat exchanger 2b, the air separator 6 supplies N2 for backwashing to the ice and dry ice that solidified and separated the moisture and CO2 gas in the air in the previous cycle. By feeding N2 gas for backwashing through the gas supply pipe 9 and the N2 gas switching valve 4d for backwashing, the ice and dry ice accumulated in the heat exchanger 2b are vaporized and the N2 gas for backwashing is It is contained in the gas and is released into the atmosphere from the backwashing N2 gas discharge pipe 11 via the backwashing N2 gas switching valve 4b and the backwashing N2 gas extraction pipe 10b.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、CO2
 ガスは、たとえば消火剤の原料としてあるいは化学原
料などの工業用に利用可能であるにもかかわらず、上記
したように水分を含む逆洗用N2ガスとともに逆洗用N
2ガス放出管から大気中に放散するのは非常に不経済で
ある。また、大気中のCO2 ガス濃度の増加にともな
う地球温暖化などの環境問題などから、でき得るかぎり
CO2 ガスの大気へのリサイクルを避けるに越したこ
とはないのである。本発明は、上記のような従来技術の
課題を解決すべくしてなされたものであって、リバーシ
ング式熱交換器を用いた空気分離装置における炭酸ガス
を回収可能とした方法および装置を提供することを目的
とする。
[Problem to be solved by the invention] However, CO2
Although gas can be used for industrial purposes, such as as a raw material for extinguishing agents or as a chemical raw material, as mentioned above, it is used as a backwashing N2 gas along with water-containing N2 gas.
2 It is very uneconomical to dissipate the gas into the atmosphere from the gas discharge pipe. Furthermore, due to environmental problems such as global warming caused by the increase in the concentration of CO2 gas in the atmosphere, it is better to avoid recycling CO2 gas into the atmosphere as much as possible. The present invention has been made in order to solve the problems of the prior art as described above, and provides a method and device that can recover carbon dioxide gas in an air separation device using a reversing heat exchanger. The purpose is to

【0008】[0008]

【課題を解決するための手段】本発明の第1の態様は、
リバーシング式の熱交換器と空気分離器とからなる空気
分離装置における炭酸ガスの回収方法であって、前記熱
交換器内において原料空気中の水分と炭酸ガスを冷却固
化して氷とドライアイスとして堆積する工程と、前記熱
交換器に堆積した氷とドライアイスに逆洗用窒素ガスを
吹き込んで水分および炭酸ガスに気化する工程と、この
水分および炭酸ガスを含んだ混合窒素ガスに前記空気分
離器で発生して得られた低温の高純窒素ガスを吹き込ん
で0℃以下まで低下させてガス中の水分のみを固化して
氷として分離・除去する工程と、さらに低温の高純窒素
ガスを吹き込んで前記混合窒素ガスを約−80℃まで冷
却させてガス中の炭酸ガスを固化してドライアイスとし
て分離・除去して回収窒素ガスを回収する工程と、この
ドライアイスに逆洗用炭酸ガスを吹き込んで炭酸ガスに
気化して回収する工程と、からなることを特徴とする空
気分離装置における炭酸ガスの回収方法である。なお、
前記回収窒素ガスを原料空気と熱交換させて冷却熱を回
収する工程を付加することができ、また前記回収炭酸ガ
スを原料空気と熱交換させて冷却熱を回収する工程を付
加することができる。
[Means for Solving the Problems] A first aspect of the present invention is
A method for recovering carbon dioxide gas in an air separation device consisting of a reversing type heat exchanger and an air separator, wherein water and carbon dioxide gas in raw air are cooled and solidified in the heat exchanger to form ice and dry ice. a step of blowing nitrogen gas for backwashing into the ice and dry ice accumulated in the heat exchanger to vaporize it into moisture and carbon dioxide; and a step of vaporizing the mixed nitrogen gas containing moisture and carbon dioxide with the air. A process in which low-temperature, high-purity nitrogen gas generated in a separator is blown in and cooled to below 0°C to solidify only the water in the gas, separating and removing it as ice, and an even lower temperature of high-purity nitrogen gas. A step of cooling the mixed nitrogen gas to about -80°C by blowing in the nitrogen gas to solidify the carbon dioxide in the gas and separating and removing it as dry ice to recover recovered nitrogen gas, and adding carbon dioxide for backwashing to this dry ice A method for recovering carbon dioxide gas in an air separation device, comprising the steps of blowing gas, vaporizing it into carbon dioxide gas, and recovering it. In addition,
A step of recovering cooling heat by exchanging heat with the recovered nitrogen gas with raw material air can be added, and a step of recovering cooling heat by exchanging heat with the recovered carbon dioxide gas with raw material air can be added. .

【0009】また、本発明の第2の態様は、1基の原料
空気圧縮機と、この原料空気圧縮機で圧縮された空気を
交互に切り換えられながら冷却してその中に含まれる水
分と炭酸ガスを固化して氷とドライアイスとして堆積す
る2基のリバーシング式熱交換器と、この熱交換器から
の清浄空気を深冷分離して高純の酸素と窒素とを製造す
る1基の空気分離器と、この空気分離器で生成した窒素
ガスの一部を逆洗用として前記熱交換器に送給する逆洗
用窒素ガス送給管と、前記熱交換器からの逆洗用窒素ガ
スを回収する逆洗用窒素ガス取出管と、この逆洗用窒素
ガス取出管の途中に取付けられて前記空気分離器で製造
された低温高純窒素ガスの一部を第1の高純窒素ガス分
岐管を介して吹き込む第1のデフューザと、この第1の
デフューザの下流に取付けられた温度検出器からの逆洗
用窒素ガスの温度信号を入力して前記第1の窒素ガス分
岐管に取付けられた制御弁の開度を調節して逆洗用窒素
ガスの温度を0〜−10℃の範囲に制御する第1の温度
調節計と、前記逆洗用窒素ガス取出管に接続されて氷を
ろ過して分離する第1の重力沈降セパレータおよび/ま
たは第1の分離フィルタと、これら第1の重力沈降セパ
レータおよび/または第1の分離フィルタ内に堆積した
氷を気化すべく逆洗する空気を送り込む空気ファンと、
前記第1の重力沈降セパレータおよび/または第1の分
離フィルタの下流に取付けられて前記空気分離器で製造
された低温高純窒素ガスの一部を第2の高純窒素ガス分
岐管を介して吹き込む第2のデフューザと、この第2の
デフューザの下流に取付けられた温度検出器からの逆洗
用窒素ガスの温度信号を入力して前記第2の高純窒素ガ
ス分岐管を介して吹き込む第2のデフューザと、この第
2のデフューザの下流に取付けられた温度検出器からの
逆洗用窒素ガスの温度信号を入力して前記第2の高純窒
素ガス分岐管に取付けられた制御弁の開度を調節して逆
洗用窒素ガスの温度を−80℃以下に制御する第2の温
度調節計と、前記第2のデフューザの下流に接続されて
ガス中のドライアイスをろ過して分離する第2の重力沈
降セパレータおよび/または第2の分離フィルタと、こ
れら第2の重力沈降セパレータおよび/または第2の分
離フィルタに回収炭酸ガスホルダに貯えられた低温の逆
洗用炭酸ガスを吹き込む逆洗用炭酸ガス送給管と、ドラ
イアイスが気化した炭酸ガスを回収する回収炭酸ガス取
出管と、回収された炭酸ガスを昇圧して前記回収炭酸ガ
スホルダに送り込む回収炭酸ガス圧縮機と、からなるこ
とを特徴とする空気分離装置における炭酸ガスの回収装
置である。なお、前記原料空気圧縮機と前記リバーシン
グ式熱交換器との間に回収窒素ガスを原料空気と熱交換
させて冷却熱を回収する回収窒素ガス/原料空気熱交換
器を付設することができ、また前記回収炭酸ガス取出管
に回収炭酸ガスを原料空気と熱交換させて冷却熱を回収
する回収炭酸ガス/原料空気熱交換器を付設することが
できる。
[0009] A second aspect of the present invention is to use one raw material air compressor, and cool the air compressed by this raw material air compressor while being switched alternately to remove moisture and carbon dioxide contained therein. There are two reversing heat exchangers that solidify gas and deposit it as ice and dry ice, and one unit that deep-cools and separates the clean air from these heat exchangers to produce high-purity oxygen and nitrogen. an air separator, a backwashing nitrogen gas supply pipe that sends a portion of the nitrogen gas generated by the air separator to the heat exchanger for backwashing, and a backwashing nitrogen gas supply pipe from the heat exchanger. A backwashing nitrogen gas takeoff pipe for recovering gas and a first high-purity nitrogen A first diffuser blows in through a gas branch pipe, and a temperature signal of backwashing nitrogen gas from a temperature sensor installed downstream of the first diffuser is inputted to the first nitrogen gas branch pipe. a first temperature controller that controls the temperature of the backwashing nitrogen gas within a range of 0 to -10°C by adjusting the opening degree of the attached control valve; and a first temperature controller that is connected to the backwashing nitrogen gas extraction pipe. a first gravity sedimentation separator and/or a first separation filter for filtering and separating ice, and backwashing to vaporize the ice accumulated in the first gravity sedimentation separator and/or the first separation filter; An air fan that blows air,
A part of the low-temperature high-purity nitrogen gas produced in the air separator is installed downstream of the first gravity settling separator and/or the first separation filter and passes through a second high-purity nitrogen gas branch pipe. A second diffuser for blowing in nitrogen gas, and a second diffuser for blowing through the second high-purity nitrogen gas branch pipe by inputting a temperature signal of backwashing nitrogen gas from a temperature sensor installed downstream of the second diffuser. 2 diffuser and a control valve attached to the second high-purity nitrogen gas branch pipe by inputting the temperature signal of the backwashing nitrogen gas from the temperature detector attached downstream of the second diffuser. A second temperature controller that controls the temperature of the backwashing nitrogen gas to -80°C or less by adjusting the opening degree, and a second temperature controller that is connected downstream of the second diffuser to filter and separate dry ice in the gas. a second gravity sedimentation separator and/or a second separation filter, and a backwashing method in which low-temperature backwash carbon dioxide stored in a recovered carbon dioxide gas holder is blown into the second gravity sedimentation separator and/or second separation filter. It consists of a washing carbon dioxide gas supply pipe, a recovered carbon dioxide gas take-out pipe that recovers carbon dioxide gas vaporized from dry ice, and a recovered carbon dioxide gas compressor that boosts the pressure of the recovered carbon dioxide gas and sends it to the recovered carbon dioxide gas holder. This is a carbon dioxide recovery device in an air separation device characterized by the following. Note that a recovered nitrogen gas/feedstock air heat exchanger may be installed between the feedstock air compressor and the reversing type heat exchanger for recovering cooling heat by exchanging heat with recovered nitrogen gas with feedstock air. In addition, a recovered carbon dioxide/raw material air heat exchanger may be attached to the recovered carbon dioxide gas take-out pipe for recovering cooling heat by exchanging heat between the recovered carbon dioxide gas and the raw material air.

【0010】さらに、本発明の方法および装置は、リバ
ーシング式熱交換器の代わりに吸着式水分・炭酸ガス除
去器を用いた空気分離装置にも適用することが可能であ
る。
Furthermore, the method and apparatus of the present invention can also be applied to an air separation apparatus using an adsorption type moisture/carbon dioxide remover instead of a reversing type heat exchanger.

【0011】[0011]

【作  用】本発明によれば、リバーシング式熱交換器
(または吸着式水分・炭酸ガス除去器)内の逆洗に使用
された水分とCO2 ガスを含有する逆洗用N2ガスに
2段に分けて高純窒素ガスを混合することにより、水分
を分離除去してからCO2 ガスを回収するようにして
、初期の目的を達成したものである。すなわち、1段目
として、空気分離器で得られた低温のN2ガスを混合し
て0〜−10℃以内になるように制御して水分を氷に固
化し、この氷をダストとともに重力沈降セパレータと分
離フィルタを用いて分離・除去する。さらに2段目とし
て、水分の除去された逆洗用N2ガスに再び低温のN2
ガスを混合して−80℃以下になるように制御してCO
2 ガスをドライアイスとして固化し、重力沈降セパレ
ータと分離フィルタを用いて分離・除去する。これによ
って、CO2 ガスを単独で回収可能となる。
[Function] According to the present invention, the N2 gas for backwashing containing moisture and CO2 gas used for backwashing in the reversing type heat exchanger (or adsorption type moisture/carbon dioxide remover) is heated in two stages. The initial objective was achieved by separating and removing moisture by mixing high-purity nitrogen gas and recovering CO2 gas. That is, in the first stage, low-temperature N2 gas obtained in an air separator is mixed and controlled to be within 0 to -10°C to solidify water into ice, and this ice is sent together with dust to a gravity sedimentation separator. Separate and remove using a separation filter. Furthermore, as a second stage, low-temperature N2 is added to the backwashing N2 gas from which moisture has been removed.
CO by mixing gases and controlling the temperature to below -80°C.
2. Solidify the gas as dry ice and separate and remove it using a gravity sedimentation separator and separation filter. This makes it possible to collect CO2 gas independently.

【0012】なお、水分とCO2 ガスが除去された逆
洗用N2ガスには−80℃の冷却熱を保有しており、こ
れを原料空気と熱交換後N2ガス源として、通常の工場
でたとえばパージ用ガスなどに有効に利用することがで
きる。ここで、熱エネルギーバランスについて説明する
と、まず水分を固化する際の1段目のバランスについて
は高純N2の保有する−180 ℃から−10℃までの
有効エネルギーをQ0N′としその必要量をV0N′と
すると、熱エネルギーバランス的には下記式(数1)で
表すことができる。
[0012] Note that the N2 gas for backwashing from which moisture and CO2 gas have been removed has a cooling heat of -80°C, and after heat exchange with raw air, this is used as an N2 gas source in a normal factory, for example. It can be effectively used as a purge gas. Here, to explain the thermal energy balance, first of all, for the first stage balance when solidifying water, the effective energy possessed by high-purity N2 from -180℃ to -10℃ is Q0N', and the required amount is V0N. ', the thermal energy balance can be expressed by the following equation (Equation 1).

【0013】 Q0N′V0N′=QN ′VN ′+QH VH +
QC ′VC ′+Δ′…(数1) ここで、 QN ′;逆洗用N2ガスの常温から−10℃までの冷
却に必要なエネルギー VN ′;QN ′を確保するのに必要とされる量QH
   ;逆洗用N2ガスに含まれる水分の常温から−1
0℃までの冷却に必要な熱量 VH   ;QH を確保するのに必要とされる量QC
 ′;逆洗用N2ガスに含まれるCO2 ガスの常温か
ら−10℃までの冷却に必要な熱量 VC ′;QC ′を確保するのに必要とされる量Δ 
 ′;設備の放散熱で−10℃までのラインまたCO2
 ガスを固化する際の2段目のバランスについては高純
N2の保有する−180 ℃から−80℃までの有効エ
ネルギーをQ0N″としその必要量をV0N″とすると
、熱エネルギーバランス的には下記式(数2)で表すこ
とができる。
Q0N'V0N'=QN'VN'+QH VH +
QC ′VC ′+Δ′…(Equation 1) Here, QN ′: Energy required to cool backwashing N2 gas from room temperature to -10°C VN ′; Amount required to secure QN ′ QH
; Moisture contained in N2 gas for backwashing -1 from room temperature
Amount of heat required to cool down to 0℃ VH; Amount QC required to ensure QH
'; Amount Δ required to ensure the amount of heat VC '; QC ' required to cool the CO2 gas contained in the N2 gas for backwashing from room temperature to -10°C
’: Due to the heat radiated by the equipment, the line temperature down to -10℃ and CO2
Regarding the balance of the second stage when solidifying gas, assuming that the effective energy possessed by high-purity N2 from -180℃ to -80℃ is Q0N'' and the required amount is V0N'', the thermal energy balance is as follows. It can be expressed by the formula (Math. 2).

【0014】 Q0N″V0N″=QN ″VN ″+QC ″VC 
″+Δ″      ………(数2) ここで、 QN ″;逆洗用N2ガスの−10〜−80℃までの冷
却に必要なエネルギー VN ″;QN ″を確保するのに必要とされる量QC
 ″;逆洗用N2ガスに含まれるCO2 ガスの−10
〜−80℃までの冷却に必要な熱量 VC ″;QC ″を確保するのに必要とされる量Δ 
 ″;設備の放散熱で−10〜−80℃までのライン
Q0N″V0N″=QN″VN″+QC″VC
``+Δ'' ......(Math. 2) Here, QN '': Energy required to cool backwashing N2 gas to -10 to -80°C VN ''; Amount required to secure QN '' QC
″; -10 of CO2 gas contained in N2 gas for backwashing
Amount Δ required to secure the amount of heat VC ″;QC ″ required for cooling to ~-80°C
″: -10 to -80℃ line due to heat dissipation from equipment


0015】
[
0015

【実施例】以下に、本発明の実施例について図面を参照
して説明する。図1は本発明の実施例を示す構成図であ
り、図中、前出した図2の従来例と同一部材は同一符号
を付して説明を省略する。図において、12a,12b
は第1の重力沈降セパレータであり、それぞれ切換弁1
3a,13bを介して熱交換器2a,2bの出側の逆洗
用N2ガス取出管10a,10bに接続される。なお、
これら逆洗用N2ガス取出管10a,10bの途中には
第1のデフューザ14a,14bが設けられ、制御弁1
5a,15bを介して高純N2ガス取出管7の第1の分
岐管7a,7bが接続される。 この制御弁15a,15bは、逆洗用N2ガス取出管1
0a,10bの第1のデフューザ14a,14bの下流
にそれぞれ取付けられた温度検出器16a,16bで検
出された温度信号を入力する第1の温度調節計17a,
17bによってその開度が制御される。また、第1の重
力沈降セパレータ12a,12bは切換弁18a,18
bを介してその一端が排水槽19に臨む排水管20に接
続される。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of the present invention, and in the figure, the same members as those in the conventional example shown in FIG. In the figure, 12a, 12b
are the first gravity settling separators, and the switching valve 1 is the first gravity settling separator, respectively.
It is connected to the backwashing N2 gas extraction pipes 10a, 10b on the outlet side of the heat exchangers 2a, 2b via 3a, 13b. In addition,
First diffusers 14a, 14b are provided in the middle of these backwashing N2 gas extraction pipes 10a, 10b, and the control valve 1
First branch pipes 7a and 7b of the high-purity N2 gas extraction pipe 7 are connected via 5a and 15b. These control valves 15a and 15b are connected to the backwashing N2 gas extraction pipe 1.
a first temperature controller 17a that inputs temperature signals detected by temperature detectors 16a and 16b installed downstream of the first diffusers 14a and 14b of 0a and 10b, respectively;
17b controls its opening degree. Further, the first gravity settling separators 12a, 12b are connected to the switching valves 18a, 18.
One end thereof is connected to a drain pipe 20 facing the drain tank 19 via b.

【0016】21a,21bは第1の分離フィルタであ
り、第1の重力沈降セパレータ12a,12bの後段に
接続される。なお、この第1の分離フィルタ21a,2
1bはこれのみで第1の重力沈降セパレータ12a,1
2bの代わりの機能をもたせることができ、あるいは第
1の重力沈降セパレータ12a,12bのみにして第1
の分離フィルタ21a,21bを省略する場合もある。 22は空気ファンであり、切換弁23a,23bを介し
て第1の分離フィルタ21a,21bにそれぞれ逆洗用
空気を供給する。
[0016] Reference numerals 21a and 21b are first separation filters, which are connected downstream of the first gravity sedimentation separators 12a and 12b. Note that this first separation filter 21a, 2
1b is the first gravity sedimentation separator 12a, 1.
2b, or only the first gravity sedimentation separators 12a, 12b can be used.
The separation filters 21a and 21b may be omitted in some cases. An air fan 22 supplies backwash air to the first separation filters 21a and 21b via switching valves 23a and 23b, respectively.

【0017】24a,24bは第1の分離フィルタ21
a,21bの出側に切換弁25a,25bを介して取付
けられる第2のデフューザであり、制御弁26a,26
bを介して高純N2ガス取出管7の第2の分岐管7cが
接続される。この制御弁26a,26bは第2のデフュ
ーザ24a,24bの下流にそれぞれ取付けられた温度
検出器27a,27bで検出された温度信号を入力する
第2の温度調節計28a,28bによってその開度が制
御される。  29a,29bは第2の重力沈降セパレ
ータであり、それぞれ切換弁30a,30bを介して第
2のデフューザ24a,24bに接続される。31a,
31bは第2の重力沈降セパレータ29a,29bの下
流に切換弁32a,32bを介して接続される第2の分
離フィルタである。この第2の分離フィルタ31a,3
1bの出側は切換弁33a,33bを介して回収N2ガ
ス取出管34に接続される。なお、第2の分離フィルタ
31a,31bは単独に取付けてもよく、あるいは第2
の重力沈降セパレータ29a,29bのみでもよい。
24a and 24b are first separation filters 21
A, 21b is a second diffuser installed on the outlet side via switching valves 25a, 25b, and control valves 26a, 26
A second branch pipe 7c of the high-purity N2 gas extraction pipe 7 is connected via b. The opening degrees of the control valves 26a, 26b are controlled by second temperature controllers 28a, 28b which input temperature signals detected by temperature detectors 27a, 27b installed downstream of the second diffusers 24a, 24b, respectively. controlled. 29a, 29b are second gravity settling separators, which are connected to second diffusers 24a, 24b via switching valves 30a, 30b, respectively. 31a,
31b is a second separation filter connected downstream of the second gravity sedimentation separators 29a, 29b via switching valves 32a, 32b. This second separation filter 31a, 3
The outlet side of 1b is connected to a recovered N2 gas extraction pipe 34 via switching valves 33a and 33b. Note that the second separation filters 31a and 31b may be installed independently, or
Only the gravity sedimentation separators 29a and 29b may be used.

【0018】35は回収CO2 ガスホルダであり、そ
の中に貯えられた回収CO2 ガスは製品CO2 ガス
送給管36を介して需要先に送給されるが、その一部は
逆洗用CO2 ガス管37によって切換弁38a,38
bおよび39a,39bを介してそれぞれ第2の重力沈
降セパレータ29a,29bおよび第2の分離フィルタ
31a,31bに供給される。40は回収CO2 ガス
圧縮機であり、回収CO2 ガス取出管41によって切
換弁42a,42bおよび43a,43bを介して第2
の重力沈降セパレータ29a,29bおよび第2の分離
フィルタ31a,31bにそれぞれ接続される。
Reference numeral 35 denotes a recovered CO2 gas holder, and the recovered CO2 gas stored therein is sent to the consumer via a product CO2 gas supply pipe 36, and a part of it is sent to the CO2 gas pipe for backwashing. 37, the switching valves 38a, 38
b and 39a, 39b to second gravity settling separators 29a, 29b and second separation filters 31a, 31b, respectively. Reference numeral 40 denotes a recovered CO2 gas compressor, which supplies the recovered CO2 gas to the second gas via switching valves 42a, 42b and 43a, 43b.
gravity sedimentation separators 29a, 29b and second separation filters 31a, 31b, respectively.

【0019】44は回収N2ガス/原料空気熱交換器で
あり、回収N2ガス取出管34を介して送り込まれる回
収N2ガスと原料空気との熱交換をする。45は回収N
2ガス圧縮機であり、46は回収N2ガス送給管である
。そこで、一方のたとえば熱交換器2bで固化された氷
,ドライアイスは、空気分離器6から逆洗用N2ガス送
給管9,切換弁4dを介して送り込まれる逆洗用N2ガ
スによって水分とCO2 ガスに気化される。そして、
切換弁4b,逆洗用N2ガス取出管10b,切換弁13
bを介して第1の重力沈降セパレータ12bに送り込ま
れる際に、高純N2ガス取出管7の第1の分岐管7bか
ら制御弁15bを介して送り込まれる低温の高純N2ガ
スと第1のデフューザ14bで混合されるのであるが、
このとき第1の温度調節計17bによって逆洗用N2ガ
スの温度が0〜−10℃以内になるように制御弁15b
の開度が制御されて、逆洗用N2ガス中に含まれる水分
のみが再び冷却固化されて氷となる。この氷は第1の重
力沈降セパレータ12bと第1の分離フィルタ21bで
ろ過されて除去される。この第1の重力沈降セパレータ
12b, 第1の分離フィルタ21bに堆積した氷は、
つぎのサイクルで空気ファン22から切換弁23bを介
して送り込まれる逆洗用空気によって水分に気化され、
第1の重力沈降セパレータ12bに設けられた切換弁1
8bを介して排水管20を経て排水槽19に一旦溜めら
れ、その後系外に排出される。
Reference numeral 44 denotes a recovered N2 gas/raw material air heat exchanger, which exchanges heat between the recovered N2 gas sent through the recovered N2 gas extraction pipe 34 and the raw material air. 45 is collection N
2 gas compressor, and 46 is a recovered N2 gas feed pipe. Therefore, the ice or dry ice solidified in the heat exchanger 2b, for example, is removed from moisture by the backwashing N2 gas sent from the air separator 6 through the backwashing N2 gas supply pipe 9 and the switching valve 4d. It is vaporized into CO2 gas. and,
Switching valve 4b, backwashing N2 gas extraction pipe 10b, switching valve 13
When being sent to the first gravity sedimentation separator 12b via the high-purity N2 gas extraction pipe 7, the low-temperature high-purity N2 gas and the first It is mixed in the diffuser 14b,
At this time, the first temperature controller 17b controls the control valve 15b so that the temperature of the backwashing N2 gas is within 0 to -10°C.
The opening degree of the backwashing N2 gas is controlled, and only the water contained in the backwashing N2 gas is cooled and solidified again to become ice. This ice is filtered and removed by the first gravity sedimentation separator 12b and the first separation filter 21b. The ice deposited on the first gravity sedimentation separator 12b and the first separation filter 21b is
In the next cycle, the backwashing air sent from the air fan 22 through the switching valve 23b vaporizes it into moisture.
Switching valve 1 provided in the first gravity settling separator 12b
8b and the drain pipe 20, the water is temporarily stored in the drain tank 19, and then discharged to the outside of the system.

【0020】ついで、水分の除去された逆洗用N2ガス
は第2のデフューザ24bで高純N2ガス取出管7の第
2の分岐管7cから制御弁26bを介して送り込まれる
低温の高純N2ガスと混合されるのであるが、このとき
第2の温度調節計28bによって逆洗用N2ガスの温度
が−80℃以下になるように制御弁26bの開度が制御
されて、逆洗用N2ガス中に含まれるCO2 ガスは再
び冷却固化されてドライアイスとなって第2の重力沈降
セパレータ29bと第2の分離フィルタ31bでろ過さ
れて除去される。こうして水分もCO2 ガスも含まな
いかなり高い純度になった回収N2ガスは、回収N2ガ
ス取出管34を介して回収N2ガス/原料空気熱交換器
44に送られ、原料空気と熱交換してから回収N2ガス
圧縮機45で昇圧されて回収N2ガス送給管46を介し
て需要先に供給される。
[0020] Next, the backwashing N2 gas from which moisture has been removed is sent to the second diffuser 24b from the second branch pipe 7c of the high-purity N2 gas extraction pipe 7 to the low-temperature high-purity N2 gas that is sent through the control valve 26b. At this time, the opening degree of the control valve 26b is controlled by the second temperature controller 28b so that the temperature of the backwashing N2 gas becomes -80°C or less, and the backwashing N2 gas is mixed with the backwashing N2 gas. The CO2 gas contained in the gas is cooled and solidified again to become dry ice, which is filtered and removed by the second gravity sedimentation separator 29b and the second separation filter 31b. The recovered N2 gas, which has reached a fairly high purity without containing moisture or CO2 gas, is sent to the recovered N2 gas/feed air heat exchanger 44 via the recovered N2 gas take-off pipe 34, where it is heat exchanged with the feed air. The pressure of the recovered N2 gas is increased by the compressor 45, and the recovered N2 gas is supplied to customers via the recovered N2 gas supply pipe 46.

【0021】そして、第2の重力沈降セパレータ29b
と第2の分離フィルタ31bで除去されて堆積したドラ
イアイスは、つぎのサイクルで回収CO2 ガスホルダ
35から逆洗用CO2 ガス管37によって切換弁38
b,39bを介して送り込まれる低温の逆洗用CO2 
ガスによって気化され、回収CO2 ガスとして回収C
O2 ガス圧縮機40によって切換弁42b,43bお
よび回収CO2 ガス取出管41を介して回収CO2 
ガスホルダ35に送り込まれ貯えられる。
[0021] Then, the second gravity sedimentation separator 29b
The dry ice removed and deposited by the second separation filter 31b is recovered in the next cycle.
b, low-temperature backwashing CO2 sent through 39b
Gas vaporized and recovered CO2 Recovered as gas C
O2 gas compressor 40 collects CO2 via switching valves 42b, 43b and recovered CO2 gas extraction pipe 41
It is fed into the gas holder 35 and stored.

【0022】なお、回収CO2 ガス取出管41の途中
に回収CO2 ガス/原料空気熱交換器(図示せず)を
設けて、回収CO2 ガスの冷却熱で原料空気を冷却す
るようにすれば、さらに省エネルギーの観点から望まし
いことである。また、回収N2ガスは水分やCO2 ガ
ス, ダストなどが除去されてはいるが微量のたとえば
H2とかCOなどが除けないため、通常の空気分離器6
で得られる高純N2ガスに比して純度が多少落ちること
になり、それらが問題になるようなシビアな品質を要求
される需要先では使用することはできない。しかし、通
常の工場のパージ用ガスなどとしては支障なく十分使用
することが可能である。
[0022] If a recovered CO2 gas/raw material air heat exchanger (not shown) is provided in the middle of the recovered CO2 gas extraction pipe 41 and the raw material air is cooled by the cooling heat of the recovered CO2 gas, further improvement can be achieved. This is desirable from the perspective of energy conservation. In addition, although moisture, CO2 gas, and dust have been removed from the recovered N2 gas, trace amounts of H2 and CO cannot be removed, so a normal air separator 6
The purity is somewhat lower than that of the high-purity N2 gas obtained in the above-mentioned method, and it cannot be used in places where severe quality is required and where such problems are a problem. However, it can be used without any problems as a purge gas in ordinary factories.

【0023】さらに、上記した実施例は圧縮空気中の水
分,炭酸ガスの除去に2基のリバーシング式熱交換器を
用いる空気分離装置について説明したが、本発明はこれ
に限定されるものではなく、リバーシング式熱交換器の
代わりに2基の吸着式水分・炭酸ガス除去器を用いる場
合に適用することができる。
[0023]Furthermore, although the above embodiment describes an air separation apparatus that uses two reversing heat exchangers to remove moisture and carbon dioxide from compressed air, the present invention is not limited to this. However, it can be applied when two adsorption type moisture/carbon dioxide removers are used instead of a reversing type heat exchanger.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、逆
洗用N2ガスを回収するとともにそれに含まれるCO2
 ガスをも高効率に回収することができるから、安価な
CO2 ガスを供給し得るからその経済的効果は大であ
り、また環境汚染防止にも寄与する。さらに回収N2ガ
スや回収CO2 ガスの冷却熱を用いて原料空気を冷却
することができ、空気分離装置の系内の省エネルギー効
果は大である。
Effects of the Invention As explained above, according to the present invention, the N2 gas for backwashing can be recovered and the CO2 contained therein can be recovered.
Since gas can also be recovered with high efficiency, inexpensive CO2 gas can be supplied, which has great economic effects, and also contributes to the prevention of environmental pollution. Furthermore, the cooling heat of recovered N2 gas and recovered CO2 gas can be used to cool the feed air, and the energy saving effect within the air separation device system is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】リバーシング式熱交換器を用いた従来の空気分
離装置の一例の構成図である。
FIG. 2 is a configuration diagram of an example of a conventional air separation device using a reversing heat exchanger.

【符号の説明】[Explanation of symbols]

1  原料空気圧縮機 2a,2b  リバーシング式熱交換器3a〜3d  
原料空気切換弁 4a〜4d  逆洗用N2ガス切換弁 5  低温空気管 6  空気分離器 7  高純N2ガス取出管 8  高純O2ガス取出管 9  逆洗用N2ガス送給管 10a,10b  逆洗用N2ガス取出管12a,12
b  第1の重力沈降セパレータ13a,13b,18
a,18b,23a,23b,25a,25b,30a
,30b  切換弁 14a,14b  第1のデフューザ 15a,15b,26a,26b  制御弁16a,1
6b, 27a,27b  温度検出器17a,17b
  第1の温度調節計 20  排水管 21a,21b  第1の分離フィルタ22  空気フ
ァン 24a,24b  第2のデフューザ 28a,28b  第2の温度調節計 29a,29b  第2の重力沈降セパレータ31a,
31b  第2の分離フィルタ32a,32b,33a
,33b,38a,38b,39a,39b,42a,
42b  切換弁 34  回収N2ガス取出管 35  回収CO2 ガスホルダ 36  製品CO2 ガス送給管 37  逆洗用CO2 ガス管 40  回収CO2 ガス圧縮機 41  回収CO2 ガス取出管 43a,43b  切換弁 44  回収N2ガス/原料空気熱交換器45  回収
N2ガス圧縮機 46  回収N2ガス送給管
1 Raw material air compressors 2a, 2b Reversing type heat exchangers 3a to 3d
Raw air switching valves 4a to 4d N2 gas switching valve for backwashing 5 Low temperature air pipe 6 Air separator 7 High purity N2 gas extraction pipe 8 High purity O2 gas extraction pipe 9 N2 gas supply pipes for backwashing 10a, 10b Backwashing N2 gas extraction pipe 12a, 12
b First gravity sedimentation separator 13a, 13b, 18
a, 18b, 23a, 23b, 25a, 25b, 30a
, 30b switching valves 14a, 14b first diffuser 15a, 15b, 26a, 26b control valves 16a, 1
6b, 27a, 27b Temperature detector 17a, 17b
First temperature controller 20 Drain pipes 21a, 21b First separation filter 22 Air fans 24a, 24b Second diffuser 28a, 28b Second temperature controller 29a, 29b Second gravity settling separator 31a,
31b Second separation filter 32a, 32b, 33a
, 33b, 38a, 38b, 39a, 39b, 42a,
42b Switching valve 34 Recovered N2 gas take-off pipe 35 Recovered CO2 Gas holder 36 Product CO2 Gas feed pipe 37 Backwash CO2 Gas pipe 40 Recovered CO2 Gas compressor 41 Recovered CO2 Gas take-off pipes 43a, 43b Switching valve 44 Recovered N2 gas/raw material Air heat exchanger 45 Recovery N2 gas compressor 46 Recovery N2 gas supply pipe

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】    リバーシング式の熱交換器と空気
分離器とからなる空気分離装置における炭酸ガスの回収
方法であって、前記熱交換器内において原料空気中の水
分と炭酸ガスを冷却固化して氷とドライアイスとして堆
積する工程と、前記熱交換器に堆積した氷とドライアイ
スに逆洗用窒素ガスを吹き込んで水分および炭酸ガスに
気化する工程と、この水分および炭酸ガスを含んだ混合
窒素ガスに前記空気分離器で発生して得られた低温の高
純窒素ガスを吹き込んで0℃以下まで低下させてガス中
の水分のみを固化して氷として分離・除去する工程と、
さらに低温の高純窒素ガスを吹き込んで前記混合窒素ガ
スを約−80℃まで冷却させてガス中の炭酸ガスを固化
してドライアイスとして分離・除去して回収窒素ガスを
回収する工程と、このドライアイスに逆洗用炭酸ガスを
吹き込んで炭酸ガスに気化して回収する工程と、からな
ることを特徴とする空気分離装置における炭酸ガスの回
収方法。
1. A method for recovering carbon dioxide gas in an air separation device comprising a reversing type heat exchanger and an air separator, the method comprising: cooling and solidifying moisture and carbon dioxide gas in raw air in the heat exchanger; a step of blowing nitrogen gas for backwashing into the ice and dry ice deposited in the heat exchanger to vaporize it into moisture and carbon dioxide gas, and a step of vaporizing the ice and dry ice containing the moisture and carbon dioxide gas. A step of blowing low-temperature high-purity nitrogen gas generated by the air separator into the nitrogen gas and lowering the temperature to 0° C. or lower to solidify only the moisture in the gas and separate and remove it as ice;
Further, a step of blowing low-temperature high-purity nitrogen gas to cool the mixed nitrogen gas to about -80°C to solidify carbon dioxide gas in the gas and separate and remove it as dry ice to recover recovered nitrogen gas; A method for recovering carbon dioxide gas in an air separation device, comprising the steps of blowing carbon dioxide gas for backwashing into dry ice, vaporizing it into carbon dioxide gas, and recovering it.
【請求項2】    前記回収窒素ガスを原料空気と熱
交換させて冷却熱を回収する工程を付加したことを特徴
とする請求項1記載の空気分離装置における炭酸ガスの
回収方法。
2. The method for recovering carbon dioxide gas in an air separation apparatus according to claim 1, further comprising the step of recovering cooling heat by exchanging heat between the recovered nitrogen gas and raw air.
【請求項3】    前記回収炭酸ガスを原料空気と熱
交換させて冷却熱を回収する工程を付加したことを特徴
とする請求項1または2記載の空気分離装置における炭
酸ガスの回収方法。
3. The method for recovering carbon dioxide gas in an air separation apparatus according to claim 1 or 2, further comprising the step of recovering cooling heat by exchanging heat between the recovered carbon dioxide gas and raw air.
【請求項4】    前記リバーシング式熱交換器の代
わりに吸着式水分・炭酸ガス除去器を用いた空気分離装
置に適用したことを特徴とする請求項1または2または
3記載の空気分離装置における炭酸ガスの回収方法。
4. The air separation device according to claim 1, wherein the air separation device is applied to an air separation device using an adsorption type moisture/carbon dioxide remover instead of the reversing type heat exchanger. Method of recovering carbon dioxide gas.
【請求項5】    1基の原料空気圧縮機と、この原
料空気圧縮機で圧縮された空気を交互に切り換えられな
がら冷却してその中に含まれる水分と炭酸ガスを固化し
て氷とドライアイスとして堆積する2基のリバーシング
式熱交換器と、この熱交換器からの清浄空気を深冷分離
して高純の酸素と窒素とを製造する1基の空気分離器と
、この空気分離器で生成した窒素ガスの一部を逆洗用と
して前記熱交換器に送給する逆洗用窒素ガス送給管と、
前記熱交換器からの逆洗用窒素ガスを回収する逆洗用窒
素ガス取出管と、この逆洗用窒素ガス取出管の途中に取
付けられて前記空気分離器で製造された低温高純窒素ガ
スの一部を第1の高純窒素ガス分岐管を介して吹き込む
第1のデフューザと、この第1のデフューザの下流に取
付けられた温度検出器からの逆洗用窒素ガスの温度信号
を入力して前記第1の窒素ガス分岐管に取付けられた制
御弁の開度を調節して逆洗用窒素ガスの温度を0〜−1
0℃の範囲に制御する第1の温度調節計と、前記逆洗用
窒素ガス取出管に接続されて氷をろ過して分離する第1
の重力沈降セパレータおよび/または第1の分離フィル
タと、これら第1の重力沈降セパレータおよび/または
第1の分離フィルタ内に堆積した氷を気化すべく逆洗す
る空気を送り込む空気ファンと、前記第1の重力沈降セ
パレータおよび/または第1の分離フィルタの下流に取
付けられて前記空気分離器で製造された低温高純窒素ガ
スの一部を第2の高純窒素ガス分岐管を介して吹き込む
第2のデフューザと、この第2のデフューザの下流に取
付けられた温度検出器からの逆洗用窒素ガスの温度信号
を入力して前記第2の高純窒素ガス分岐管に取付けられ
た制御弁の開度を調節して逆洗用窒素ガスの温度を−8
0℃以下に制御する第2の温度調節計と、前記第2のデ
フューザの下流に接続されてガス中のドライアイスをろ
過して分離する第2の重力沈降セパレータおよび/また
は第2の分離フィルタと、これら第2の重力沈降セパレ
ータおよび/または第2の分離フィルタに回収炭酸ガス
ホルダに貯えられた低温の逆洗用炭酸ガスを吹き込む逆
洗用炭酸ガス送給管と、ドライアイスが気化した炭酸ガ
スを回収する回収炭酸ガス取出管と、回収された炭酸ガ
スを昇圧して前記回収炭酸ガスホルダに送り込む回収炭
酸ガス圧縮機と、からなることを特徴とする空気分離装
置における炭酸ガスの回収装置。
5. One raw material air compressor, and the air compressed by this raw material air compressor is alternately cooled and the moisture and carbon dioxide contained therein are solidified to form ice and dry ice. two reversing type heat exchangers that deposit the air as oxygen, one air separator that deep-cools and separates the clean air from these heat exchangers to produce high-purity oxygen and nitrogen, and this air separator. a backwashing nitrogen gas feed pipe that sends a portion of the nitrogen gas generated in the step to the heat exchanger for backwashing;
A backwashing nitrogen gas extraction pipe for recovering backwashing nitrogen gas from the heat exchanger, and a low-temperature, high-purity nitrogen gas produced by the air separator that is installed in the middle of this backwashing nitrogen gas extraction pipe. A first diffuser blows a portion of the nitrogen gas through a first high-purity nitrogen gas branch pipe, and a temperature signal of backwashing nitrogen gas is input from a temperature sensor installed downstream of this first diffuser. The opening degree of the control valve attached to the first nitrogen gas branch pipe is adjusted to keep the temperature of the backwashing nitrogen gas from 0 to -1.
a first temperature controller that controls the temperature within a range of 0°C; and a first temperature controller that is connected to the backwashing nitrogen gas extraction pipe and filters and separates ice.
a gravity settling separator and/or a first separation filter; an air fan for delivering backwashing air to vaporize ice accumulated in the first gravity settling separator and/or the first separation filter; A second gravity sedimentation separator and/or a second separation filter installed downstream of the first gravity settling separator and/or the first separation filter and blowing a part of the low-temperature high-purity nitrogen gas produced in the air separator through a second high-purity nitrogen gas branch pipe. 2 diffuser and a control valve attached to the second high-purity nitrogen gas branch pipe by inputting the temperature signal of the backwashing nitrogen gas from the temperature detector attached downstream of the second diffuser. Adjust the opening degree to lower the temperature of the nitrogen gas for backwashing to -8
a second temperature controller that controls the temperature to below 0° C., and a second gravity sedimentation separator and/or second separation filter that is connected downstream of the second diffuser and filters and separates dry ice in the gas. , a backwashing carbon dioxide gas supply pipe that blows low-temperature backwashing carbon dioxide stored in the recovered carbon dioxide gas holder into the second gravity settling separator and/or the second separation filter, and carbon dioxide vaporized from dry ice. A carbon dioxide recovery device for an air separation device, comprising a recovered carbon dioxide gas take-out pipe for recovering gas, and a recovered carbon dioxide gas compressor for pressurizing the recovered carbon dioxide gas and sending it to the recovered carbon dioxide holder.
【請求項6】    前記原料空気圧縮機と前記リバー
シング式熱交換器との間に回収窒素ガスを原料空気と熱
交換させて冷却熱を回収する回収窒素ガス/原料空気熱
交換器を付設したことを特徴とする請求項5記載の空気
分離装置における炭酸ガスの回収装置。
6. A recovered nitrogen gas/feed air heat exchanger is attached between the feed air compressor and the reversing type heat exchanger, which exchanges heat with recovered nitrogen gas with feed air to recover cooling heat. The carbon dioxide recovery device in an air separation device according to claim 5.
【請求項7】    前記回収炭酸ガス取出管に回収炭
酸ガスを原料空気と熱交換させて冷却熱を回収する回収
炭酸ガス/原料空気熱交換器を付設したことを特徴とす
る請求項5または6記載の空気分離装置における炭酸ガ
スの回収装置。
7. The recovered carbon dioxide gas/raw material air heat exchanger is attached to the recovered carbon dioxide gas extraction pipe for recovering cooling heat by exchanging heat between the recovered carbon dioxide gas and the raw material air. A carbon dioxide recovery device in the air separation device described above.
【請求項8】    前記リバーシング式熱交換器の代
わりに吸着式水分・炭酸ガス除去器を用いた空気分離装
置に適用したことを特徴とする請求項5または6または
7記載の空気分離装置における炭酸ガスの回収装置。
8. The air separation apparatus according to claim 5, wherein the air separation apparatus is applied to an air separation apparatus using an adsorption type moisture/carbon dioxide remover instead of the reversing type heat exchanger. Carbon dioxide recovery device.
JP3121046A 1991-05-27 1991-05-27 Method and device for recovering carbonic acid gas in air separating device Pending JPH04347485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121046A JPH04347485A (en) 1991-05-27 1991-05-27 Method and device for recovering carbonic acid gas in air separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121046A JPH04347485A (en) 1991-05-27 1991-05-27 Method and device for recovering carbonic acid gas in air separating device

Publications (1)

Publication Number Publication Date
JPH04347485A true JPH04347485A (en) 1992-12-02

Family

ID=14801487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121046A Pending JPH04347485A (en) 1991-05-27 1991-05-27 Method and device for recovering carbonic acid gas in air separating device

Country Status (1)

Country Link
JP (1) JPH04347485A (en)

Similar Documents

Publication Publication Date Title
EP1211003A2 (en) Process and apparatus for producing atomized powder using recirculating atomizing gas
AU626494B2 (en) Pre-purification of air for separation
US8444749B2 (en) Method and system for membrane-based gas recovery
US2496380A (en) Gas purifying method and apparatus
US20030133864A1 (en) Central carbon dioxide purifier
JP3703933B2 (en) Permeation air separation method and apparatus for nitrogen production
JP2008505830A (en) Ammonia purification and transfer filling
JPS6380184A (en) Method and device for purifying and returning gas
KR20120095394A (en) Method and device for separating argon from a gaseous mixture
US20050006310A1 (en) Purification and recovery of fluids in processing applications
JP2001522982A (en) Freezing separation of gas components from gas mixtures
JPH04347485A (en) Method and device for recovering carbonic acid gas in air separating device
JPH1129301A (en) Production apparatus of ultrapure hydrogen gas
JPH04350489A (en) Method and apparatus for recovering back washing nitrogen gas in air separator
JP2944285B2 (en) Pretreatment method of raw air in air separation process
JP2773858B2 (en) Method and apparatus for separating air
JP3674895B2 (en) Dry air supply system and supply method
KR100680921B1 (en) Method and device for producing ultra-pure gas
AU2016218602B2 (en) Method for recovering helium
JP2001194055A (en) Method and apparatus for recovering argon
JP3143757B2 (en) Helium gas purification apparatus and operating method thereof
JP3545914B2 (en) Argon recovery method and apparatus
SU1231344A1 (en) Method of clearing argon of oxygen
JPH0652140B2 (en) He gas purification equipment
JP2003056980A (en) Method and apparatus for separating and refining gas