JPH04347325A - Water cooler of engine - Google Patents

Water cooler of engine

Info

Publication number
JPH04347325A
JPH04347325A JP14977691A JP14977691A JPH04347325A JP H04347325 A JPH04347325 A JP H04347325A JP 14977691 A JP14977691 A JP 14977691A JP 14977691 A JP14977691 A JP 14977691A JP H04347325 A JPH04347325 A JP H04347325A
Authority
JP
Japan
Prior art keywords
temperature
sectional area
engine
water hole
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14977691A
Other languages
Japanese (ja)
Inventor
Shuichi Yamada
修一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14977691A priority Critical patent/JPH04347325A/en
Publication of JPH04347325A publication Critical patent/JPH04347325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent a piston from seizing or binding by contracting a cylinder as letting a lot of low temperature cooling water in a radiator flow into a cylinder jacket at the time of imposing a suddent load on an engine immediately after start-up. CONSTITUTION:Cooling water flows into a head jacket 5 from a cylinder jacket 3 by way of a water hole 4. A passage contracting thermosensitive working valve 7 is installed in this water hole 4. This working valve 7 operates at a time when temperature in this cooling water passing through the water hole 4 goes up to a passage contraction realeasing operation temperature T3 little higher than a seizure occurring upper limit temperature Tg at the time of sudden load immediately after engine starting, thereby expanding a passage sectional area S of the water hole 4 up to the reference sectional area Sb from the contracted sectional area S1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エンジンの水冷装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water cooling system for an engine.

【0002】0002

【前提構造】本発明のエンジンの水冷装置は、例えば図
4に示すように、次の前提構造を有するものを前提とす
る。すなわち、エンジン1の冷却水を水ポンプ2により
、シリンダジャケット3から水孔4・ヘッドジャケット
5・ラジエータ6及びシリンダジャケット3の順に、圧
送循環させるように構成したものである。
[Prerequisite Structure] The engine water cooling system of the present invention is predicated on having the following prerequisite structure, as shown in FIG. 4, for example. That is, the cooling water for the engine 1 is pumped and circulated by the water pump 2 from the cylinder jacket 3 in the order of the water hole 4, the head jacket 5, the radiator 6, and the cylinder jacket 3.

【0003】0003

【従来の技術】上記前提構造において、従来技術では、
前記水孔4が基準断面積Sbの大きさに形成されていた
[Prior art] In the above-mentioned premise structure, in the prior art,
The water hole 4 was formed to have a standard cross-sectional area Sb.

【0004】0004

【発明が解決しようとする課題】上記の従来技術では次
の問題がある。水孔4が基準断面積Sbの大きさに形成
されているので、エンジン1の定格を越えない負荷出力
時には、冷却水の循環量が過剰にならず、過冷却による
燃焼性能の低下が防止されている。しかし、エンジン1
の冷始動直後に急に負荷をかける場合、ピストン26が
急速に膨張するのに対し、サーモスタット31が急に開
き、ラジエータ6内の低温冷却水がシリンダジャケット
3に流れ込んで、シリンダ25を収縮させるため、ピス
トン26が焼き付く事がある。さらに、過負荷出力時に
は、発熱量が増えるのに対して冷却水の循環量が増えな
いので、エンジン1がオーバーヒートすることがある。 本発明は、エンジン冷始動直後に急に負荷をかけた場合
のピストン26の焼き付きを防止し、エンジン1が過負
荷時にオーバーヒートするのを抑制することを課題とす
る。
[Problems to be Solved by the Invention] The above-mentioned prior art has the following problems. Since the water hole 4 is formed to have a standard cross-sectional area Sb, when the load output does not exceed the rating of the engine 1, the circulating amount of cooling water does not become excessive, and a reduction in combustion performance due to overcooling is prevented. ing. However, engine 1
When a load is suddenly applied immediately after a cold start, the piston 26 expands rapidly, while the thermostat 31 suddenly opens, and the low-temperature cooling water in the radiator 6 flows into the cylinder jacket 3, causing the cylinder 25 to contract. Therefore, the piston 26 may seize. Furthermore, during overload output, the amount of heat generated increases but the amount of circulating cooling water does not increase, so the engine 1 may overheat. An object of the present invention is to prevent the piston 26 from seizing when a load is suddenly applied immediately after a cold start of the engine, and to suppress overheating of the engine 1 when overloaded.

【0005】[0005]

【課題を解決するための手段】本発明は、上記前提構造
において、上記課題を達成するために、例えば図1及び
図2に示すように、次の改良構造を追加したものである
。すなわち、前記水孔4に通路縮小用感温作動弁7を設
け、この感温作動弁7の通路縮小解除用作動温度T3は
、エンジン冷始動直後急負荷時の焼付き発生上限温度T
gよりも少し高い温度に設定する。この感温作動弁7は
、上記水孔4を通過する冷却水の温度が、上記通路縮小
解除用作動温度T3にまで上昇した時に感温作動して、
その水孔4の通路断面積Sを縮小断面積S2から基準断
面積Sbにまで拡大するように構成する。
[Means for Solving the Problems] In order to achieve the above object, the present invention adds the following improved structure to the above-mentioned premise structure, as shown in FIGS. 1 and 2, for example. That is, the temperature-sensitive operating valve 7 for passage reduction is provided in the water hole 4, and the operating temperature T3 for releasing the passage reduction of the temperature-sensitive operating valve 7 is equal to the seizure occurrence upper limit temperature T at the time of sudden load immediately after the cold start of the engine.
Set the temperature slightly higher than g. This temperature-sensitive operating valve 7 is temperature-sensing operated when the temperature of the cooling water passing through the water hole 4 rises to the operating temperature T3 for canceling passage reduction.
The passage cross-sectional area S of the water hole 4 is configured to be expanded from the reduced cross-sectional area S2 to the reference cross-sectional area Sb.

【0006】[0006]

【作用】本発明は次のように作用する。エンジン1の定
格を越えない負荷出力時には、水孔4を通過する冷却水
の温度が上記通路縮小解除用作動温度T3よりも低い温
度になっている。このため、エンジン1の冷始動直後に
急に負荷をかける場合、サーモスタット31が急に開い
ても、水孔4を通過する冷却水温Tが,エンジン冷始動
直後急負荷時の焼付き発生上限温度Tg(例えば50℃
)以下であれば、感温作動弁7が作動しないので、水孔
4の通路断面積Sは縮小断面積S2のままであり、ラジ
エータ6内の低温冷却水がシリンダジャケット3に多量
に流れ込んでシリンダ25を収縮させる事が無く、ピス
トン26が焼き付く事を防ぐ。一方、エンジンが過負荷
出力時には、発熱量の増大により、水孔4を通過する冷
却水の温度が上記通路縮小解除用作動温度T3よりも高
い温度になる。このため、感温作動弁7が感温作動して
、上記水孔4の通路断面積Sを縮小断面積S2から基準
断面積Sbにまで拡大する。これにより、冷却水の循環
量が増えて冷却能力が増大し、エンジン1のオーバーヒ
ートするのを抑制する。
[Operation] The present invention operates as follows. When the load output does not exceed the rating of the engine 1, the temperature of the cooling water passing through the water hole 4 is lower than the operating temperature T3 for canceling passage reduction. Therefore, when a load is suddenly applied immediately after a cold start of the engine 1, even if the thermostat 31 suddenly opens, the temperature T of the cooling water passing through the water hole 4 will be lower than the upper limit temperature at which seizure will occur under a sudden load immediately after a cold start of the engine. Tg (e.g. 50℃
), the temperature-sensitive operating valve 7 does not operate, so the passage cross-sectional area S of the water hole 4 remains the reduced cross-sectional area S2, and a large amount of low-temperature cooling water in the radiator 6 flows into the cylinder jacket 3. The cylinder 25 is not contracted and the piston 26 is prevented from seizing. On the other hand, when the engine outputs an overload, the temperature of the cooling water passing through the water holes 4 becomes higher than the operating temperature T3 for canceling passage reduction due to an increase in heat generation. Therefore, the temperature-sensitive operating valve 7 is temperature-sensingly operated to expand the passage cross-sectional area S of the water hole 4 from the reduced cross-sectional area S2 to the reference cross-sectional area Sb. As a result, the amount of circulating water is increased, the cooling capacity is increased, and overheating of the engine 1 is suppressed.

【0007】[0007]

【発明の効果】本発明は、上記のように構成され、作用
することから、次の効果を奏する。エンジンの冷始動直
後に急に負荷をかける場合、サーモスタットが急に開い
ても水孔の通路断面積が縮小断面積のままであり、ラジ
エータ内の低温冷却水がシリンダジャケットに多量に流
れ込まないので、シリンダ25を収縮させないためピス
トン26が焼き付くのを防ぐことができる。さらに、エ
ンジンの過負荷出力時に発熱量が増えるのに対して、冷
却水の循環量が増えて冷却能力が増大し、エンジン1の
オーバーヒートするのを抑制することができる。
[Effects of the Invention] Since the present invention is constructed and operates as described above, it has the following effects. When a load is suddenly applied immediately after a cold start of the engine, the passage cross-sectional area of the water hole remains the reduced cross-sectional area even if the thermostat suddenly opens, and a large amount of low-temperature cooling water in the radiator does not flow into the cylinder jacket. Since the cylinder 25 is not contracted, the piston 26 can be prevented from seizing. Furthermore, while the amount of heat generated increases when the engine outputs an overload, the amount of circulating water increases, the cooling capacity increases, and overheating of the engine 1 can be suppressed.

【0008】[0008]

【実施例】以下、本発明の実施例を図面で説明する。図
1(A)はエンジンのヘッドガスケットの要部平面図、
図1(B)は図1(A)のX−X線矢視断面図、図2は
水孔断面積と冷却水温との関係を示す線図、図3はヘッ
ドガスケットの平面図、図4はエンジンの縦断面概略図
である。図4において、エンジン1は、クランクケース
20の上方にシリンダブロック21を一体に形成すると
ともに、このシリンダブロック21の上面にヘッドガス
ケット22を介してシリンダヘッド23及びヘッドカバ
ー24を順に載置固定して、エンジン本体を形成してい
る。上記シリンダブロック21内には、シリンダ25の
中を摺動するピストン26と、このピストン26をクラ
ンク軸27につなぐコネクチングロッド28、その他が
ある。そして、シリンダブロック21及びシリンダヘッ
ド23の内壁には、シリンダジャケット3からヘッドジ
ャケット5へ冷却水を通す水孔4がヘッドガスケット2
2を貫いて連通している。エンジン1の冷却水はクラン
ク軸27からベルト29・プーリ30を介して駆動され
る水ポンプ2により、シリンダジャケット3から水孔4
・ヘッドジャケット5・ラジエータ6及びシリンダジャ
ケット3の順に、圧送循環されるように構成してある。 さらに、冷却水の循環路の途中には冷却水温を検知する
サ−モスタット31があり、ラジエータ6はラジエータ
ファン32で高温の冷却水を空冷する。そして、上記ヘ
ッドガスケット22には図3に示すように、各シリンダ
用開放部22a・各プッシュロッド用開放部22b・各
水孔用開放部22c及び22dと、各取付ボルト用開放
部22eとがそれぞれ必要個数開けられている。
Embodiments Hereinafter, embodiments of the present invention will be explained with reference to the drawings. Figure 1(A) is a plan view of the main parts of the engine head gasket.
1(B) is a sectional view taken along the line X-X in FIG. 1(A), FIG. 2 is a diagram showing the relationship between the cross-sectional area of water holes and cooling water temperature, FIG. 3 is a plan view of the head gasket, and FIG. is a schematic vertical cross-sectional view of the engine. In FIG. 4, the engine 1 includes a cylinder block 21 integrally formed above a crankcase 20, and a cylinder head 23 and a head cover 24 placed and fixed in order on the upper surface of the cylinder block 21 via a head gasket 22. , forming the engine body. Inside the cylinder block 21, there are a piston 26 that slides inside the cylinder 25, a connecting rod 28 that connects the piston 26 to a crankshaft 27, and others. Water holes 4 are provided in the inner walls of the cylinder block 21 and the cylinder head 23 to allow cooling water to flow from the cylinder jacket 3 to the head jacket 5.
It is connected through 2. Cooling water for the engine 1 is supplied from the cylinder jacket 3 to the water hole 4 by a water pump 2 driven from the crankshaft 27 via a belt 29 and a pulley 30.
- The head jacket 5, the radiator 6, and the cylinder jacket 3 are configured to be pumped and circulated in this order. Further, a thermostat 31 for detecting the temperature of the cooling water is provided in the middle of the cooling water circulation path, and the radiator 6 uses a radiator fan 32 to cool the high temperature cooling water. As shown in FIG. 3, the head gasket 22 includes each cylinder opening 22a, each push rod opening 22b, each water hole opening 22c and 22d, and each mounting bolt opening 22e. The required number of each is opened.

【0009】(第1実施例)本発明の第1実施例では、
前記シリンダジャケット3とヘッドジャケット5とを連
通させる前記水孔4の途中に位置する、上記ヘッドガス
ケット22の上記水孔用開放部22cに、例えば図1に
示すように、形状記憶合金で形成された通路縮小用感温
作動弁7を設けてある。この感温作動弁7の通路縮小解
除用作動温度T3は、エンジン冷始動直後急負荷時の焼
付き発生上限温度Tgよりも少し高い温度に設定してあ
る。この感温作動弁7は、図2(A)に示すように、上
記水孔4を通過する冷却水温Tが、上記通路縮小解除用
作動温度T3にまで上昇した時に感温作動して、その水
孔4の通路断面積Sを、縮小断面積S2から基準断面積
Sbにまで拡大するように構成してある。このため、冷
却水の循環量が増えて冷却能力が増大し、エンジン1の
オーバーヒートするのを抑制する。尚、ヘッドガスケッ
ト22のシリンダ間の水孔用開放部22dには感温作動
弁7を形成せずに、常時冷却水を流すようにして熱的に
苛酷な気筒間の冷却を促進する。
(First Embodiment) In the first embodiment of the present invention,
As shown in FIG. 1, for example, the water hole opening 22c of the head gasket 22, which is located in the middle of the water hole 4 that communicates the cylinder jacket 3 and head jacket 5, is formed of a shape memory alloy. A temperature-sensitive valve 7 for reducing the passageway is provided. The operating temperature T3 for releasing passage reduction of the temperature-sensitive operating valve 7 is set to a temperature slightly higher than the seizure occurrence upper limit temperature Tg during a sudden load immediately after a cold start of the engine. As shown in FIG. 2(A), this temperature-sensitive operating valve 7 is temperature-sensing operated when the temperature T of the cooling water passing through the water hole 4 rises to the operating temperature T3 for canceling passage reduction. The passage cross-sectional area S of the water hole 4 is configured to be expanded from the reduced cross-sectional area S2 to the reference cross-sectional area Sb. Therefore, the amount of circulating water increases, the cooling capacity increases, and overheating of the engine 1 is suppressed. Note that the temperature-sensitive operating valve 7 is not formed in the water hole opening 22d between the cylinders of the head gasket 22, and cooling water is constantly allowed to flow to promote cooling between the thermally severe cylinders.

【0010】(第2実施例)図5(A)はエンジンのヘ
ッドガスケットの要部平面図、図5(B)は図5(A)
のY−Y線矢視断面図である。本発明の第2実施例では
、感温作動弁7を例えば図5に示すように形成する。 図2(B)に示すように、エンジン冷始動直後急負荷時
の焼付き発生上限温度Tg(例えば50℃)よりも少し
高い温度T3にまで上昇した時に、上側作動弁7aが感
温作動して、その水孔4の通路断面積Sを縮小断面積S
2から拡大断面積S1にまで拡大する。エンジン1の冷
始動直後に急に負荷をかける場合、サーモスタット31
が急に開いても、水孔4を通過する冷却水温Tが,エン
ジン冷始動直後急負荷時の焼付き発生上限温度Tg(例
えば50℃)以下であれば、上側作動弁7aが作動しな
いので、その水孔4の通路断面積Sは縮小断面積S2の
ままであり、ラジエータ6内の低温冷却水がシリンダジ
ャケット3に多量に流れ込んでシリンダ25を収縮させ
る事が無く、ピストン26が焼き付く事を防ぐ。そして
、水孔4を通過する冷却水温Tが前記温度T3以上であ
れば、上側作動弁7aが感温作動して、その水孔4の通
路断面積Sは下側作動弁7bによる基準断面積Sbにな
る。さらに、オーバーヒートする直前の冷却水温T1(
例えば110℃)で下側作動弁7bが感温作動して、水
孔4の通路断面積Sを基準断面積Sbから拡大断面積S
1にまで拡大する。このため、冷却水の循環量が増えて
冷却能力が増大し、エンジン1のオーバーヒートするの
を抑制する。
(Second Embodiment) FIG. 5(A) is a plan view of essential parts of an engine head gasket, and FIG. 5(B) is a plan view of FIG. 5(A).
FIG. 2 is a sectional view taken along YY line. In the second embodiment of the present invention, the temperature-sensitive valve 7 is formed as shown in FIG. 5, for example. As shown in FIG. 2(B), when the temperature rises to T3, which is slightly higher than the seizure occurrence upper limit temperature Tg (for example, 50°C) immediately after a cold start of the engine, the upper operating valve 7a is activated by temperature sensing. Then, the passage cross-sectional area S of the water hole 4 is reduced to a reduced cross-sectional area S
2 to an enlarged cross-sectional area S1. If a load is suddenly applied immediately after engine 1 starts cold, thermostat 31
Even if the upper operating valve 7a opens suddenly, the upper operating valve 7a will not operate if the temperature T of the cooling water passing through the water hole 4 is below the seizure occurrence upper limit temperature Tg (for example, 50°C) at the time of a sudden load immediately after a cold start of the engine. , the passage cross-sectional area S of the water hole 4 remains the reduced cross-sectional area S2, and a large amount of low-temperature cooling water in the radiator 6 does not flow into the cylinder jacket 3 and contract the cylinder 25, preventing the piston 26 from seizing. prevent. If the temperature T of the cooling water passing through the water hole 4 is equal to or higher than the temperature T3, the upper operating valve 7a is temperature-sensing activated, and the passage cross-sectional area S of the water hole 4 is the reference cross-sectional area determined by the lower operating valve 7b. Becomes Sb. Furthermore, the cooling water temperature T1 just before overheating (
For example, at 110° C.), the lower operating valve 7b is temperature-sensing activated, and the passage cross-sectional area S of the water hole 4 is expanded from the standard cross-sectional area Sb to the enlarged cross-sectional area S.
Expand to 1. Therefore, the amount of circulating water increases, the cooling capacity increases, and overheating of the engine 1 is suppressed.

【0011】(第3実施例)図6(A)はエンジンのヘ
ッドガスケットの要部平面図、図6(B)は図6(A)
のZ−Z線矢視断面図である。第3実施例では、感温作
動弁7を例えば図6に示すように形成する。図2(C)
に示すように、エンジン冷始動直後急負荷時の焼付き発
生上限温度Tg(例えば50℃)よりも少し高い温度T
3にまで上昇した時に、上側作動弁7aが感温作動して
、水孔4の通路断面積Sを縮小断面積S2から基準断面
積Sbにまで拡大する。エンジン1の冷始動直後に急に
負荷をかける場合、水孔4を通過する冷却水温Tが,エ
ンジン冷始動直後急負荷時の焼付き発生上限温度Tg(
例えば50℃)以下であれば、上側作動弁7aが作動し
ないので、その水孔4の通路断面積Sは縮小断面積S2
のままであり、ラジエータ6内の低温冷却水がシリンダ
ジャケット3に多量に流れ込んでシリンダ25を収縮さ
せる事が無く、ピストン26が焼き付く事を防ぐ。そし
て、従来のサーモスタットの開弁温温T2(例えば82
℃)で、下側作動弁7bが感温作動して、その水孔4の
通路断面積Sを暖機断面積Sdから基準断面積Sbにま
で拡大する。始動後の冷却水温Tが従来のサーモスタッ
トの開弁温温T2(例えば82℃)未満の時は、上側作
動弁7aの作動により、その水孔4の通路断面積Sは下
側作動弁7bによる暖機断面積Sdまで絞られているか
ら、冷却水の循環量は少なくエンジン内部の冷却水温は
急速に上昇し均一化される。この結果、従来のようにサ
−モスタット31を閉じてバイパス通路33でラジエー
タ6をバイパスする必要がなくなり、サ−モスタット3
1を廃止する事もできる。又、サーモスタット31が開
いた時に、ラジエータ6にあった低温冷却水がシリンダ
ジャケット3へ多量に流れ込み、せっかく均一化された
エンジン内部の一部を過冷却する事があり、冷却損失が
生じる。サーモスタット31を廃止する事で、そのよう
な場合のエンジン過冷却を無くせるから、常温での冷却
損失が少ない。さらに、冷却水温Tが従来のサーモスタ
ットの開弁温温T2(例えば82℃)以上の時は、下側
作動弁7bが感温作動して、その水孔4の通路断面積S
を基準断面積Sbにまで拡大するから、冷却水の循環量
が増えて冷却能力が増大し、エンジン1のオーバーヒー
トするのを抑制する。
(Third Embodiment) FIG. 6(A) is a plan view of essential parts of an engine head gasket, and FIG. 6(B) is a plan view of FIG. 6(A).
It is a sectional view taken along the Z-Z line. In the third embodiment, the temperature-sensitive valve 7 is formed as shown in FIG. 6, for example. Figure 2(C)
As shown in , the temperature T is slightly higher than the upper limit temperature Tg (for example, 50°C) at which seizure occurs at the time of sudden load immediately after a cold start of the engine.
3, the upper operating valve 7a is activated by temperature sensing to expand the passage cross-sectional area S of the water hole 4 from the reduced cross-sectional area S2 to the reference cross-sectional area Sb. When a load is suddenly applied immediately after a cold start of the engine 1, the temperature T of the cooling water passing through the water hole 4 will be the upper limit temperature for seizure occurrence Tg (
For example, if the temperature is below 50°C, the upper operating valve 7a will not operate, so the passage cross-sectional area S of the water hole 4 will be reduced to a reduced cross-sectional area S2.
This prevents the low-temperature cooling water in the radiator 6 from flowing into the cylinder jacket 3 in large quantities and causing the cylinder 25 to contract, thereby preventing the piston 26 from seizing. Then, the valve opening temperature T2 of the conventional thermostat (for example, 82
℃), the lower operating valve 7b is temperature-sensing activated to expand the passage cross-sectional area S of the water hole 4 from the warm-up cross-sectional area Sd to the reference cross-sectional area Sb. When the cooling water temperature T after startup is lower than the valve opening temperature T2 of a conventional thermostat (e.g. 82°C), the upper operating valve 7a is operated, and the passage cross-sectional area S of the water hole 4 is changed by the lower operating valve 7b. Since the warm-up cross section is narrowed down to Sd, the amount of circulating water is small, and the temperature of the cooling water inside the engine rises rapidly and becomes uniform. As a result, it is no longer necessary to close the thermostat 31 and bypass the radiator 6 through the bypass passage 33 as in the conventional case, and the thermostat 3
1 can also be abolished. Furthermore, when the thermostat 31 opens, a large amount of low-temperature cooling water in the radiator 6 flows into the cylinder jacket 3, which may overcool a part of the otherwise homogenized engine interior, resulting in cooling loss. By eliminating the thermostat 31, overcooling of the engine in such a case can be eliminated, so cooling loss at room temperature is reduced. Furthermore, when the cooling water temperature T is equal to or higher than the valve opening temperature T2 (for example, 82° C.) of a conventional thermostat, the lower operating valve 7b is temperature-sensingly activated, and the passage cross-sectional area S of the water hole 4 is
Since the cooling water is expanded to the reference cross-sectional area Sb, the amount of circulating water is increased, the cooling capacity is increased, and overheating of the engine 1 is suppressed.

【0012】(第4実施例)図7(A)はエンジンのヘ
ッドガスケットの要部平面図、図7(B)は図7(A)
のV−V線矢視断面図である。第4実施例では、感温作
動弁7を例えば図7に示すように形成する。図2(D)
に示すように、第1段階では、エンジン冷始動直後急負
荷時の焼付き発生上限温度Tg(例えば50℃)よりも
少し高い温度T3にまで上昇した時に、下側作動弁7b
が感温作動して、水孔4の通路断面積Sを縮小断面積S
2から拡大断面積S1にまで拡大する。この時、中側作
動弁7cはまだ感温作動せず、そのため水孔4の通路断
面積Sは暖機断面積Sdである。エンジン1の冷始動直
後に急に負荷をかける場合、水孔4を通過する冷却水温
Tが、エンジン冷始動直後急負荷時の焼付き発生上限温
度Tg(例えば50℃)以下であれば、下側作動弁7b
が作動しないので、水孔4の通路断面積Sは縮小断面積
S2のままであり、ラジエータ6内の低温冷却水がシリ
ンダジャケット3に多量に流れ込んでシリンダ25を収
縮させる事が無く、ピストン26が焼き付く事を防ぐ。 第2段階では、従来のサーモスタットの開弁温温T2(
例えば82℃)で、中側作動弁7cが感温作動して、水
孔4の通路断面積Sを暖機断面積Sdから拡大断面積S
1にまで拡大する。この時も、上側作動弁7aがまだ感
温作動せず、そのため水孔4の通路断面積Sは基準断面
積Sbである。このため、始動後の冷却水温Tが従来の
サーモスタットの開弁温温T2(例えば82℃)未満の
時は、中側作動弁7cが感温作動せず、水孔4の通路断
面積Sは暖機断面積Sdまで絞られているから、冷却水
の循環量は少なく、エンジン内部の冷却水温は急速に上
昇し均一化される。この結果、前述の第3実施例と同様
に、サ−モスタット31を廃止する事もでき、エンジン
過冷却を無くせるから、常温での冷却損失が少ない。 さらに、冷却水温Tが従来のサーモスタットの開弁温温
T2(例えば82℃)以上の時は、中側作動弁7cが感
温作動するから、その水孔4の通路断面積Sは上側作動
弁7aによる基準断面積Sbに拡大される。第3段階で
は、オーバーヒートする直前の冷却水温T1(例えば1
10℃)で上側作動弁7aが感温作動して、その水孔4
の通路断面積Sを基準断面積Sbから拡大断面積S1に
まで拡大する。このため、冷却水の循環量が増えて冷却
能力が増大し、エンジン1のオーバーヒートするのを抑
制する。
(Fourth Embodiment) FIG. 7(A) is a plan view of essential parts of an engine head gasket, and FIG. 7(B) is a plan view of FIG. 7(A).
It is a sectional view taken along the line V-V of FIG. In the fourth embodiment, the temperature-sensitive valve 7 is formed as shown in FIG. 7, for example. Figure 2(D)
As shown in , in the first stage, when the temperature rises to T3, which is slightly higher than the seizure occurrence upper limit temperature Tg (for example, 50°C) immediately after a cold start of the engine, the lower operating valve 7b
operates temperature-sensingly to reduce the passage cross-sectional area S of the water hole 4.
2 to an enlarged cross-sectional area S1. At this time, the middle operating valve 7c is not yet temperature-sensing operated, so the passage cross-sectional area S of the water hole 4 is the warm-up cross-sectional area Sd. When a load is suddenly applied immediately after a cold start of the engine 1, if the temperature T of the cooling water passing through the water hole 4 is below the upper limit temperature for seizure occurrence Tg (for example, 50 degrees Celsius) during a sudden load immediately after a cold start of the engine, the Side operating valve 7b
does not operate, the passage cross-sectional area S of the water hole 4 remains the reduced cross-sectional area S2, and a large amount of low-temperature cooling water in the radiator 6 does not flow into the cylinder jacket 3 and contract the cylinder 25, and the piston 26 prevent from burning. In the second stage, the valve opening temperature T2 (
For example, at 82° C.), the middle operating valve 7c is temperature-sensing activated, and the passage cross-sectional area S of the water hole 4 is changed from the warm-up cross-sectional area Sd to the enlarged cross-sectional area S.
Expand to 1. At this time, the upper operating valve 7a is not yet temperature-sensitively operated, so the passage cross-sectional area S of the water hole 4 is the reference cross-sectional area Sb. Therefore, when the cooling water temperature T after startup is lower than the valve opening temperature T2 of a conventional thermostat (for example, 82° C.), the middle operating valve 7c does not operate temperature-sensingly, and the passage cross-sectional area S of the water hole 4 is Since the cooling water is narrowed down to the warm-up cross-sectional area Sd, the circulating amount of the cooling water is small, and the cooling water temperature inside the engine rapidly rises and becomes uniform. As a result, as in the third embodiment described above, the thermostat 31 can be omitted, and engine overcooling can be eliminated, resulting in less cooling loss at room temperature. Furthermore, when the cooling water temperature T is higher than the valve opening temperature T2 (for example, 82° C.) of a conventional thermostat, the middle operating valve 7c is temperature-sensingly activated, so the passage cross-sectional area S of the water hole 4 is smaller than that of the upper operating valve. 7a is expanded to the reference cross-sectional area Sb. In the third stage, the cooling water temperature T1 (for example, 1
10°C), the upper operating valve 7a is temperature-sensing operated and the water hole 4 is opened.
The passage cross-sectional area S is expanded from the reference cross-sectional area Sb to the enlarged cross-sectional area S1. Therefore, the amount of circulating water increases, the cooling capacity increases, and overheating of the engine 1 is suppressed.

【0013】前記感温作動弁7は、必ずしもヘッドガス
ケット22の周囲の水孔用開放部22cの全数に形成す
る必要は無く、部分的に形成する事は自由である。又、
感温作動弁7を、ヘッドガスケット22の水孔用開放部
22c又は22dに形成するのに代えて、シリンダジャ
ケット3又はヘッドジャケット5に形成しても良い。さ
らに、感温作動弁7は、形状記憶合金で形成するのに代
えてバイメタルで形成しても良い。尚、前記実施例での
上側作動弁7aと下側作動弁7bとは、相互に位置を替
えて構成する事が可能である。
The temperature-sensitive operating valve 7 does not necessarily need to be formed in all the water hole openings 22c around the head gasket 22, and may be formed in some parts. or,
The temperature-sensitive operating valve 7 may be formed in the cylinder jacket 3 or the head jacket 5 instead of being formed in the water hole opening 22c or 22d of the head gasket 22. Furthermore, the temperature-sensitive operating valve 7 may be made of bimetal instead of being made of a shape memory alloy. It should be noted that the upper operating valve 7a and lower operating valve 7b in the above embodiment can be constructed by changing their positions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例を示し、図1(A)はエンジンの
ヘッドガスケットの要部平面図、図1(B)は図1(A
)のX−X線矢視断面図である。
1 shows an embodiment of the present invention, FIG. 1(A) is a plan view of the main part of an engine head gasket, and FIG. 1(B) is a plan view of main parts of an engine head gasket;
) is a sectional view taken along line X-X.

【図2】本発明実施例を示し、水孔断面積と冷却水温と
の関係を示す線図である。
FIG. 2 is a diagram showing an example of the present invention and showing the relationship between water hole cross-sectional area and cooling water temperature.

【図3】本発明実施例を示し、ヘッドガスケットの平面
図である。
FIG. 3 shows an embodiment of the present invention and is a plan view of a head gasket.

【図4】本発明実施例を示し、エンジンの縦断面概略図
である。
FIG. 4 is a schematic vertical cross-sectional view of an engine, showing an embodiment of the present invention.

【図5】本発明の他の実施例を示し、図5(A)は図1
(A)に相当する図、図5(B)は図5(A)のY−Y
線矢視断面図である。
FIG. 5 shows another embodiment of the present invention, and FIG. 5(A) shows FIG.
A diagram corresponding to (A), Figure 5 (B) is Y-Y of Figure 5 (A)
It is a sectional view taken along the line.

【図6】本発明の他の実施例を示し、図6(A)は図1
(A)に相当する図、図6(B)は図6(A)のZ−Z
線矢視断面図である。
FIG. 6 shows another embodiment of the present invention, and FIG. 6(A) shows FIG.
A diagram corresponding to (A), FIG. 6 (B) is a diagram corresponding to Z-Z of FIG. 6 (A)
It is a sectional view taken along the line.

【図7】本発明の他の実施例を示し、図7(A)は図1
(A)に相当する図、図7(B)は図7(A)のV−V
線矢視断面図である。
FIG. 7 shows another embodiment of the present invention, and FIG. 7(A) shows FIG.
A diagram corresponding to (A), FIG. 7(B) is V-V of FIG. 7(A)
It is a sectional view taken along the line.

【図8】従来例を示し、図8(A)は図1(A)に相当
する図、図8(B)は図8(A)のW−W線矢視断面図
である。
8 shows a conventional example, FIG. 8(A) is a diagram corresponding to FIG. 1(A), and FIG. 8(B) is a sectional view taken along the line WW in FIG. 8(A).

【符号の説明】[Explanation of symbols]

1…エンジン、2…水ポンプ、3…シリンダジャケット
、4…水孔、5…ヘッドジャケット、6…ラジエータ、
7…感温作動弁、T3…通路縮小解除用作動温度、Tg
…焼付き発生上限温度、S…通路断面積、S2…縮小断
面積、Sb…基準断面積。
1...Engine, 2...Water pump, 3...Cylinder jacket, 4...Water hole, 5...Head jacket, 6...Radiator,
7... Temperature-sensitive operating valve, T3... Operating temperature for releasing passage reduction, Tg
... Upper limit temperature for seizure occurrence, S... Passage cross-sectional area, S2... Reduced cross-sectional area, Sb... Reference cross-sectional area.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  エンジン(1)の冷却水を水ポンプ(
2)により、シリンダジャケット(3)から水孔(4)
・ヘッドジャケット(5)・ラジエータ(6)及びシリ
ンダジャケット(3)の順に、圧送循環させるように構
成したエンジンの水冷装置において、前記水孔(4)に
通路縮小用感温作動弁(7)を設け、この感温作動弁(
7)の通路縮小解除用作動温度(T3)は、エンジン冷
始動直後急負荷時の焼付き発生上限温度(Tg)よりも
少し高い温度に設定し、この感温作動弁(7)は、上記
水孔(4)を通過する冷却水の温度が上記通路縮小解除
用作動温度(T3)にまで上昇した時に、感温作動して
、その水孔(4)の通路断面積(S)を縮小断面積(S
1)から基準断面積(Sb)にまで拡大するように構成
したことを特徴とする、エンジンの水冷装置。
Claim 1: A water pump (
2) from the cylinder jacket (3) to the water hole (4)
- In an engine water cooling system configured to circulate under pressure in the order of head jacket (5), radiator (6), and cylinder jacket (3), a temperature-sensitive valve (7) for passage reduction is installed in the water hole (4). This temperature-sensitive valve (
The passage reduction release operating temperature (T3) in 7) is set to a temperature slightly higher than the seizure occurrence upper limit temperature (Tg) at the time of sudden load immediately after engine cold start, and this temperature-sensitive valve (7) When the temperature of the cooling water passing through the water hole (4) rises to the operating temperature (T3) for releasing the passage reduction, a temperature sensing operation is performed to reduce the passage cross-sectional area (S) of the water hole (4). Cross-sectional area (S
1) A water cooling device for an engine, characterized in that it is configured to expand from 1) to a standard cross-sectional area (Sb).
JP14977691A 1991-05-24 1991-05-24 Water cooler of engine Pending JPH04347325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14977691A JPH04347325A (en) 1991-05-24 1991-05-24 Water cooler of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14977691A JPH04347325A (en) 1991-05-24 1991-05-24 Water cooler of engine

Publications (1)

Publication Number Publication Date
JPH04347325A true JPH04347325A (en) 1992-12-02

Family

ID=15482479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14977691A Pending JPH04347325A (en) 1991-05-24 1991-05-24 Water cooler of engine

Country Status (1)

Country Link
JP (1) JPH04347325A (en)

Similar Documents

Publication Publication Date Title
EP0580934B1 (en) Cooling system for an automotive engine
US4410133A (en) Two way fluid switchover valve with crossover protection
EP3358161B1 (en) Cooling structure for internal combustion engine
GB2245703A (en) Engine cooling system
JP2009097352A (en) Engine cooling system
US6830016B2 (en) System and method for cooling an engine
JPH04347325A (en) Water cooler of engine
US1791756A (en) Control means for cooling systems for internal-combustion engines
JPH04347324A (en) Water cooler of engine
JPH04347327A (en) Water cooler of engine
JPH04347326A (en) Water cooler multicylinder engine
KR20210003434A (en) Water jacket of engine
JP2810373B2 (en) Engine cooling system
JPH1144208A (en) Oil temperature control device for internal combustion engine
GB2234343A (en) Engine cooling system
JPS6034744Y2 (en) Internal combustion engine cooling control device
KR100381529B1 (en) Cooling apparatus of internal combution engine
JPH0444816Y2 (en)
JPS6114587Y2 (en)
JP2002161746A (en) Thermostat and engine cooling circuit
JPH0513946Y2 (en)
JPS6226583Y2 (en)
GB2054034A (en) Liquid-cooled internal combustion engine
JPS6267217A (en) Cooling device for engine
JPS63170519A (en) Cylinder head oil cooling device for auxiliary chamber type engine