JPH0434702B2 - - Google Patents

Info

Publication number
JPH0434702B2
JPH0434702B2 JP11447683A JP11447683A JPH0434702B2 JP H0434702 B2 JPH0434702 B2 JP H0434702B2 JP 11447683 A JP11447683 A JP 11447683A JP 11447683 A JP11447683 A JP 11447683A JP H0434702 B2 JPH0434702 B2 JP H0434702B2
Authority
JP
Japan
Prior art keywords
capacitance
distance
cable
measured
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11447683A
Other languages
Japanese (ja)
Other versions
JPS604802A (en
Inventor
Yoshimasa Takahashi
Yoshiaki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP11447683A priority Critical patent/JPS604802A/en
Publication of JPS604802A publication Critical patent/JPS604802A/en
Publication of JPH0434702B2 publication Critical patent/JPH0434702B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Locating Faults (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、たとえば地中埋設,海底敷設電線
等の断線障害箇所を検出するのに有効な断線箇所
までの距離測定方法に関する。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a distance measuring method to a disconnection point that is effective for detecting a disconnection failure point in, for example, underground or undersea cables.

(ロ) 従来技術 一般に、絶縁ケーブル(電線等)内に断線事故
が生じた場合、ケーブルの被覆を取除くことなし
に断線箇所を発見することは極めて難しい。とり
わけ、直接手にすることの困難な地中埋設電線、
海底敷設電線等の断線障害箇所までの距離を知る
ことは不可能に近い、近年、これを解決する方法
として、ケーブルにパルス電圧を導入し、反射電
圧の遅れを検出する方法や、同一条件線の容量と
比較することにより算出する方法が試みられてい
るが、なお確実な測定結果を得るにいたつていな
い。
(b) Prior Art Generally, when a breakage occurs in an insulated cable (such as an electric wire), it is extremely difficult to find the breakage point without removing the cable coating. In particular, underground power cables that are difficult to access directly,
It is almost impossible to know the distance to the point of disconnection in submarine cables, etc. In recent years, methods to solve this problem include introducing pulse voltage into the cable and detecting the delay in reflected voltage, and Although attempts have been made to calculate this by comparing it with the capacity of

(ハ) 目 的 この発明の目的は、ケーブル芯線が外皮で被覆
されているケーブルでも、また地中埋設や海底敷
設されているケーブルであつても、ケーブルが少
なくとも1対の芯線を含む場合、断線箇所を正
確、容易に発見し得る断線箇所までの距離測定方
法を提供することである。
(C) Purpose The purpose of the present invention is to provide a cable that includes at least one pair of core wires, even if the cable core wire is covered with an outer jacket, or even if the cable is buried underground or laid on the ocean floor. It is an object of the present invention to provide a distance measuring method to a wire breakage point that can accurately and easily find the wire breakage point.

(ニ) 構 成 上記目的を達成するために、この発明は対線の
一方端末を短絡状態とし、前記対線の各々と他の
同一対象物体間の静電容量CA,CBと、前記対線
双方を一括したものと前記同一対象物体間の静電
容量CWをそれぞれ計測し、これら計測した静電
容量CA,CB,CWと既知のケーブルの全長LT
とから、LS=(CW+CB−CA)・LT/CWの演
算をなすことにより、断線箇所までの距離LSを
算出するようにしている。
(d) Configuration In order to achieve the above object, this invention short-circuits one terminal of the pair of wires, and reduces the capacitances CA and CB between each of the pair of wires and another identical target object, and the pair of wires. Measure the capacitance CW of both together and the capacitance CW between the same object, and calculate these measured capacitances CA, CB, CW and the known total length of the cable LT.
From this, the distance LS to the disconnection point is calculated by calculating LS = (CW + CB - CA) · LT / CW.

(ホ) 実施例 以下、実施例によりこの発明を詳細に説明す
る。
(e) Examples The present invention will be explained in detail below using examples.

第1図は、この発明の一実施例を示す概略図で
ある。同図において1は断線箇所までの距離を測
定すべきケーブルであつて、1対の芯線2,3及
びシールド導体4よりなるものである。5は容量
測定演算器であり、各芯線2,3とシールド導体
間の静電容量を測定するとともに、測定した静電
容量に基づいて断線箇所までの距離を演算するも
のである。芯線2,3の一端A,Bはそれぞれス
イツチSA,SBを介して容量測定演算器5に接続
され、また、芯線2,3の一端A,Bはスイツチ
SWを介して互いに共通接続されるようになつて
いる。さらにまた測定時には芯線2,3の他端が
短絡される(F点)。もつとも他端に電子回路等
の低インピーダンス回路が接続されており、略短
絡状態の場合にはそのままでよい。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a cable for measuring the distance to the disconnection point, which is composed of a pair of core wires 2 and 3 and a shield conductor 4. 5 is a capacitance measuring calculator, which measures the capacitance between each core wire 2, 3 and the shield conductor, and calculates the distance to the disconnection point based on the measured capacitance. One ends A and B of the core wires 2 and 3 are connected to the capacitance measurement calculator 5 via switches SA and SB, respectively, and one ends A and B of the core wires 2 and 3 are connected to the switch SA and SB respectively.
They are commonly connected to each other via SW. Furthermore, during measurement, the other ends of the core wires 2 and 3 are short-circuited (point F). However, a low impedance circuit such as an electronic circuit is connected to the other end, so if it is in a substantially short-circuited state, it can be left as is.

今、芯線3のD点が断線しているとして、一端
BよりD点までの距離LSを求める方法を説明す
る。
Now, assuming that point D of the core wire 3 is broken, we will explain how to find the distance LS from one end B to point D.

先ず、スイツチSW,SBを開放した状態でスイ
ツチSAをオンし、容量測定演算器5で芯線2と
シールド導体4間の静電容量CAを測定する。次
にスイツチSBをオンし、スイツチSW,SAをオ
フにした状態とし、芯線3とシールド導体4間の
静電容量CBを測定する。続いて、スイツチSW
をオンし、スイツチSAもしくはスイツチSBのい
ずれかをオンにし、芯線2,3を一括したものと
シールド導体4間の静電容量CWを測定する。こ
れらの静電容量CA,CB,CWを測定すると、容
量測定演算器5は、別に入力される既知のケーブ
ル全長LTと静電容量CA,CB,CWとにより次
式の演算を行ない、 LS=(CW+CB−CA)・LT/CW ……(1) 一端A,Bから断線箇所D点までの距離LSを算
出する。
First, switch SA is turned on with switches SW and SB open, and capacitance CA between core wire 2 and shield conductor 4 is measured by capacitance measurement calculator 5. Next, switch SB is turned on, switches SW and SA are turned off, and the capacitance CB between the core wire 3 and the shield conductor 4 is measured. Next, Switch SW
, turn on either switch SA or switch SB, and measure the capacitance CW between the core wires 2 and 3 together and the shield conductor 4. When these capacitances CA, CB, and CW are measured, the capacitance measurement calculator 5 calculates the following formula using the known total cable length LT and the capacitances CA, CB, and CW, which are input separately, and calculates LS= (CW+CB-CA)・LT/CW...(1) Calculate the distance LS from one end A, B to the disconnection point D.

次に上記(1)式により、断線箇所までの距離LS
が算出され得る理由について説明する。
Next, using the above formula (1), the distance LS to the disconnection point is
The reason why can be calculated will be explained.

第1図において、A点とシールド導体4との静
電容量CAは、芯線2のAE(E点:断線箇所D点
に対応する芯線2の位置)の静電容量をCAE,
対の芯線2,3の点EF,DFの静電容量をCEDF
とすると、 CA=CAE+CEDF ……(2) である。一方、B点とシールド導体4との静電容
量CBは、芯線3のBDの静電容量CBDである。
In Fig. 1, the capacitance CA between point A and the shield conductor 4 is the capacitance CAE of the core wire 2 (point E: the position of the core wire 2 corresponding to the disconnection point D).
CEDF is the capacitance of points EF and DF of the pair of core wires 2 and 3.
Then, CA=CAE+CEDF...(2). On the other hand, the capacitance CB between point B and the shield conductor 4 is the capacitance CBD of BD of the core wire 3.

また1対の芯線2と3は対静電容量測定端に対
し対称であるから、 CAE=CBD=CB ……(3) である。ケーブル1は全域に亘つて同じ形であ
り、芯線2,3の一括の静電容量CWはケーブル
の長さLに比例する。したがつて、ケーブルの単
位長さ当りの静電容量をCoとすると CW=Co×LT ……(4) CEDF=Co×LR ……(5) ただしLR:DR(EF)間の距離 となる。また(2)式から CEDF=CA−CAE ……(6) (3)式と(6)式より CEDF=CA−CB ……(7) B点より断線箇所D点までの距離LSは LS=LT−LR ……(8) この(8)式に、(4)(5)式のLT,LRを入れると LS=CW/Co−CEDF/Co=CW−CEDF/Co ……(9) この(9)式に(7)式のCEDFを入れると LS=(CW+CB−CA)/Co ……(10) また(4)式より Co=CW/LT ……(11) この(11)式のCoを(10)式に入れると、 LS=(CW+CB−CA)・LT/CW となり、当初の(1)式が得られる。すなわち既知の
ケーブル1の全長LTと測定した静電容量CA,
CB,CWより断線箇所までの距離LSを算出でき
る。
Also, since the pair of core wires 2 and 3 are symmetrical with respect to the capacitance measurement end, CAE=CBD=CB...(3). The cable 1 has the same shape over its entire area, and the collective capacitance CW of the core wires 2 and 3 is proportional to the length L of the cable. Therefore, if the capacitance per unit length of the cable is Co, then CW=Co×LT...(4) CEDF=Co×LR...(5) However, LR: Distance between DR (EF) . Also, from equation (2), CEDF=CA-CAE...(6) From equations (3) and (6), CEDF=CA-CB...(7) The distance LS from point B to point D, where the wire is disconnected, is LS= LT−LR …(8) Inserting LT and LR from formulas (4) and (5) into this formula (8), LS=CW/Co−CEDF/Co=CW−CEDF/Co …(9) This Inserting the CEDF of equation (7) into equation (9), LS = (CW + CB - CA) / Co ... (10) Also, from equation (4), Co = CW / LT ... (11) This equation (11) When Co is inserted into equation (10), LS = (CW + CB - CA)・LT/CW, and the original equation (1) is obtained. In other words, the known total length LT of cable 1 and the measured capacitance CA,
The distance LS to the disconnection point can be calculated from CB and CW.

第1図の実施例に使用される容量測定演算器の
一例を第2図に示している。この容量測定演算器
はケーブル長が大きいときに、有効である。
An example of a capacitance measuring calculator used in the embodiment of FIG. 1 is shown in FIG. This capacitance measurement calculator is effective when the cable length is long.

第2図においてCXは未知静電容量であり、ス
イツチS1により、電源10と、抵抗Rにそれぞ
れ並列に切換えて接続されるようになつている。
11はコンパレータであつて、入力電圧E(抵抗
Rの端子電圧)が上限電圧EOよりも小で、下限
電圧ECよりも大の時,出力信号VGを出力する。
12はパルス列信号VPを出力するパルス列発生
器、13はコンパレータ11より出力信号VGが
入力される間、パルス列発生器12よりのパルス
信号VCを出力するゲート回路,14はゲート回
路13よりのパルス信号VCを受けてカウントす
るカウンタ、15はカウンタ14のカウント値を
測定静電容量として記憶して、上記(1)式等の演算
を行なう記憶演算回路である。
In FIG. 2, CX is an unknown capacitance, which is connected in parallel to the power supply 10 and the resistor R by a switch S1.
11 is a comparator which outputs an output signal VG when the input voltage E (terminal voltage of the resistor R) is smaller than the upper limit voltage EO and larger than the lower limit voltage EC.
12 is a pulse train generator that outputs the pulse train signal VP; 13 is a gate circuit that outputs the pulse signal VC from the pulse train generator 12 while the output signal VG is input from the comparator 11; and 14 is a pulse signal from the gate circuit 13. A counter 15 that receives and counts VC is a storage calculation circuit that stores the count value of the counter 14 as a measured capacitance and performs calculations such as the above equation (1).

この容量測定演算器では、先ずスイツチS1を
a側に倒し、電源10の電圧ESで被測定静電容
量CXを充電する。次にスイツチS1をb側に倒
すと、被測定静電容量CXに充電されていた電荷
は抵抗Rを通じて放電する。この場合の抵抗Rの
両端電圧Eは第3図aに示すようにts時点からE
=Ese−tc−to/CX・Rの特性で減少してゆく。ここで toは電圧Eが上限電圧Eoに達した時点を示し、
tcは電圧Eが下限電圧Ecに達した時点を示して
おり、時点toからtcの間、コンパレータ11は出
力信号VG〔第3図のb参照〕を出力し、この出
力信号VGが加えられる間ゲート回路13はパル
ス信号VC〔第3図のd参照〕を出力する。この出
力されたパルス信号はカウンタ14でカウントさ
れるが、カウント値はtoからtcの期間が長い程大
となる。このtoらtcまでのの期間は被測定静電容
量CXに比例するのなので、カウンタ14のカウ
ント値は被測定静電容量CXに対応することにな
り、そのカウント値から被測定静電容量CXを知
ることができる。被測定静電容量CXとして、第
1図で示した静電容量CA,CB,CWを測定し、
静電容量CA,CB,CWに対応するものとしてカ
ウンタ14のパルスカウント値NA,NB,NW
が得られると、(1)式に対応して LS=(NW−NA+NB)・LT/NW ……(12) より、断線箇所までの距離LS算出できる。また
パルス数NW,NA,NBを計測する代りに、各
静電容量接続時における第3図aのtoからtcまで
の時間tW,tA,tBを計測し、 LS=(tW−tA+tB)・LT/tW ……(13) の式より、断線箇所までの距離LSを算出しても
よい。上記(12)式は各静電容量をパルス数に換算し
て、(13)式は時間に換算してそれぞれ距離LSを求
めるようにしたものである。
In this capacitance measurement calculator, first, the switch S1 is turned to the a side, and the capacitance to be measured CX is charged with the voltage ES of the power supply 10. Next, when the switch S1 is turned to the b side, the charge stored in the capacitance to be measured CX is discharged through the resistor R. In this case, the voltage E across the resistor R is from time ts to E as shown in Figure 3a.
It decreases due to the characteristics of = Ese−tc−to/CX・R. Here, to indicates the time when the voltage E reaches the upper limit voltage Eo,
tc indicates the time when the voltage E reaches the lower limit voltage Ec, and from time to to tc, the comparator 11 outputs the output signal VG [see b in Figure 3], and while this output signal VG is applied, The gate circuit 13 outputs a pulse signal VC (see d in FIG. 3). This output pulse signal is counted by the counter 14, and the count value becomes larger as the period from to to tc becomes longer. Since the period from to to tc is proportional to the capacitance to be measured CX, the count value of the counter 14 corresponds to the capacitance to be measured CX, and from that count value, the capacitance to be measured CX You can know. Measure the capacitances CA, CB, and CW shown in Figure 1 as the capacitances to be measured CX,
The pulse count values NA, NB, NW of the counter 14 correspond to the capacitances CA, CB, and CW.
Once obtained, the distance LS to the disconnection point can be calculated from LS=(NW-NA+NB)・LT/NW (12) corresponding to equation (1). Also, instead of measuring the pulse numbers NW, NA, and NB, the times tW, tA, and tB from to to tc in Figure 3 a when each capacitance is connected are measured, and LS = (tW - tA + tB) ・LT /tW...The distance LS to the disconnection point may be calculated from the formula (13). Equation (12) above converts each capacitance into the number of pulses, and Equation (13) converts it into time to calculate the distance LS.

なお、未知静電容量の測定については第2図に
示すように未知静電容量への充電とその充電電荷
の抵抗を通じての放電特性を利用する場合につい
て説明したが、この発明においは未知静電容量の
測定は他の測定原理のものを用いてもよい。
Regarding the measurement of unknown capacitance, as shown in FIG. Other measurement principles may be used to measure the capacitance.

また上記実施例では、1対の芯線とシールド導
体を有するケーブルの断線箇所までの距離測定方
法について説明したが、シールド導体を持たない
ケーブルであつても、1対の芯線とコンジツト導
体管あるいは大地間等との静電容量を測定するこ
とにより、同様に断線箇所までの距離を測定する
ことができる。
In addition, in the above embodiment, a method for measuring the distance to the disconnection point of a cable that has a pair of core wires and a shield conductor was explained, but even if the cable does not have a shield conductor, it is possible to measure the distance between a pair of core wires and a conduit conductor pipe or the ground. By measuring the capacitance between the two wires, the distance to the disconnection point can be similarly measured.

(ヘ) 効 果 この発明によれば、ケーブルの2芯線の各々の
一端の静電容量及び両芯線を一括した場合の一端
の静電容量を測定するのみであるから容易に断線
箇所までの距離を測定することができる。しかも
静電容量の測定は回転正確に行なえるので、断線
箇所までの距離測定も精度良く行なうことができ
る。
(f) Effects According to this invention, since only the capacitance at one end of each of the two core wires of the cable and the capacitance at one end when both core wires are bundled are measured, it is easy to measure the distance to the disconnection point. can be measured. Furthermore, since the capacitance can be measured with rotational accuracy, the distance to the disconnection point can also be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す概略図、第
2図は同実施例に使用される容量測定演算器の一
例を示すブロツク図、第3図は同容量測定演算器
の動作を説明するための信号タイムチヤートであ
る。 1:ケーブル、2,3:芯線、4:シールド導
体、5:容量測定演算器。
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing an example of a capacitance measurement calculator used in the same embodiment, and Fig. 3 shows the operation of the capacitance measurement calculator. This is a signal time chart for explanation. 1: Cable, 2, 3: Core wire, 4: Shield conductor, 5: Capacitance measurement calculator.

Claims (1)

【特許請求の範囲】 1 1対の線を外皮で被覆してなるケーブルの断
線箇所までの距離測定方法であつて、 前記対線の一方端末を短絡状態とし、前記対線
の各々と他の一対象物体間の静電容量CA,CB
と、前記対線双方を一括したものと前記同一対象
物体間の静電容量CWをそれぞれ計測し、これら
計測したCA,CB,CWと既知のケーブルの全長
LTとにより、LS=(CW+CB−CA)・LT/CW
の演算をなすことにより断線箇所までの距離LS
を算出するようにした断線箇所までの距離測定方
法。 2 前記同一対象物体はケーブルのシールド導体
であることを特徴とする特許請求の範囲第1項記
載の断線箇所までの距離測定方法。
[Scope of Claims] 1. A method for measuring the distance to a disconnection point in a cable formed by covering a pair of wires with an outer sheath, the method comprising: short-circuiting one end of the pair of wires, and connecting each of the pair of wires to the other end. Capacitance CA, CB between one target object
Then, measure the capacitance CW of both pairs of wires together and the same target object, and calculate the measured CA, CB, CW and the known total length of the cable.
LS=(CW+CB-CA)・LT/CW by LT
By calculating the distance LS to the disconnection point
A method of measuring the distance to the disconnection point that calculates the distance. 2. The distance measuring method to a disconnection point according to claim 1, wherein the same target object is a shield conductor of a cable.
JP11447683A 1983-06-23 1983-06-23 Method for measuring distance to point where wire is broken Granted JPS604802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447683A JPS604802A (en) 1983-06-23 1983-06-23 Method for measuring distance to point where wire is broken

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447683A JPS604802A (en) 1983-06-23 1983-06-23 Method for measuring distance to point where wire is broken

Publications (2)

Publication Number Publication Date
JPS604802A JPS604802A (en) 1985-01-11
JPH0434702B2 true JPH0434702B2 (en) 1992-06-08

Family

ID=14638688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447683A Granted JPS604802A (en) 1983-06-23 1983-06-23 Method for measuring distance to point where wire is broken

Country Status (1)

Country Link
JP (1) JPS604802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353320A (en) * 2011-07-06 2012-02-15 宝钢发展有限公司 Temperature sensing cable ranging method and range finder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610646A1 (en) * 1985-03-28 1986-11-06 Roman Koller System for measuring the length of resistor ladders
JP3228631B2 (en) * 1993-12-24 2001-11-12 東京エレクトロン株式会社 Tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353320A (en) * 2011-07-06 2012-02-15 宝钢发展有限公司 Temperature sensing cable ranging method and range finder

Also Published As

Publication number Publication date
JPS604802A (en) 1985-01-11

Similar Documents

Publication Publication Date Title
CN110082636B (en) Power cable fault positioning method and system
JPH0434702B2 (en)
JP3586266B2 (en) Fault location method for transmission line and fault location system using the same
JPS5920110B2 (en) Fault point location method for power transmission line fault detection and protection
JP3266003B2 (en) Ground fault detector
JP2564956B2 (en) Partial discharge measurement method
JPH11202017A (en) Operation confirming method of fault point orientating apparatus for power cable line
JP2001272432A (en) LIVE-WIRE tan delta MEASURING APPARATUS
SU1751700A1 (en) Device for determination of distance to point of insulation fault of cable conductors
JPH04331381A (en) Calibrating method of partial discharge measurement
JPS596137Y2 (en) Insulation monitoring device for rotating machine windings
JPH067147B2 (en) Partial discharge measurement method
RU1803889C (en) Ground fault detection method for several phases of buried cable line
JPH0631435Y2 (en) Cable diagnostic equipment
SU116051A1 (en) Device for detecting a fault in an electrical cable
SU1684748A1 (en) Device for measurement of distance to site of damage of insulation of cable
JPH067150B2 (en) Partial discharge measurement method
JPH038710B2 (en)
JPH0627766B2 (en) CV cable insulation deterioration diagnosis device
JPH0718908B2 (en) Insulation test equipment for power cables
JPH04223281A (en) Method and device for judging partial electric discharge generation location
JPH07111452B2 (en) Partial discharge measurement method
JPH04215077A (en) Partial discharge measuring method
JPH068845B2 (en) Partial discharge measurement method
JPH03199982A (en) System for spotting fault point in transmission line