JPH04344854A - Tundish for continuous casting - Google Patents

Tundish for continuous casting

Info

Publication number
JPH04344854A
JPH04344854A JP14065591A JP14065591A JPH04344854A JP H04344854 A JPH04344854 A JP H04344854A JP 14065591 A JP14065591 A JP 14065591A JP 14065591 A JP14065591 A JP 14065591A JP H04344854 A JPH04344854 A JP H04344854A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
area
slag
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14065591A
Other languages
Japanese (ja)
Other versions
JP2684261B2 (en
Inventor
Kazuhisa Fukuda
和久 福田
Mitsutoshi Mimura
三村 満俊
Tokiya Shirai
登喜也 白井
Teruyoshi Hiraoka
照祥 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3140655A priority Critical patent/JP2684261B2/en
Publication of JPH04344854A publication Critical patent/JPH04344854A/en
Application granted granted Critical
Publication of JP2684261B2 publication Critical patent/JP2684261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide tundish shape by which surface defect and inner defect caused by slag and non-metallic inclusion flowing in the tundish from a ladle are not developed in successive part between the previous heat and the following heat in continuous casting. CONSTITUTION:In the tundish for continuous casting providing a recessed part, at the time of starting the pouring from a following ladle, the vol. of the recessed part in the tundish formed in a molten steel pouring flow dropping range is decided so as to be slag involving index (epsilon/H<2>)<1/33 indicated with a function using EPSILON to be the ratio of the max. kinetic energy of the molten steel poured through a long nozzle and the molten steel quantity existing in stirring range and H for the molten steel depth existing in the stirring range just before pouring from the following ladle to be to the min. molten steel depth. In the stirring range in the tundish, the involution of slag is prevented and in the float-up area, the floating-up property of the slag is improved and the good quality cast slab is obtd. without product defect at the successive part between the previous heat and the following heat.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、連続鋳造する分野にお
いて、取鍋からタンディッシュに流入したスラグ・非金
属介在物起因による製品の表面欠陥や内部欠陥を生じさ
せないタンディッシュ形状に関するものである。
[Field of Industrial Application] The present invention relates to a tundish shape that does not cause surface defects or internal defects in products due to slag and nonmetallic inclusions flowing into the tundish from the ladle in the field of continuous casting. .

【0002】0002

【従来の技術】連続鋳造作業において同一タンディッシ
ュを用い異なるチャージを連続的に多連鋳するとき、チ
ャージとチャージの継目部分でスラグ・非金属介在物が
モールドへ流入し、品質悪化が生じる事が一般的によく
知られている。
[Prior Art] In continuous casting operations, when the same tundish is used to continuously cast multiple charges, slag and non-metallic inclusions flow into the mold at the joints between the charges, resulting in quality deterioration. is generally well known.

【0003】継目部において、前鍋のタンディッシュへ
の溶鋼注入終了後、取鍋交換をし次鍋溶鋼を注入する。 取鍋交換時間には数分を要し、その間にタンディッシュ
内溶鋼重量が低下し、溶鋼深さも浅くなる。
At the joint, after pouring molten steel into the tundish of the front ladle, the ladle is replaced and the next ladle is poured with molten steel. It takes several minutes to replace the ladle, and during that time the weight of the molten steel in the tundish decreases, and the depth of the molten steel also becomes shallow.

【0004】次鍋開口時においては、取鍋スライディン
グノズル全開操業、タンディッシュ溶鋼量回復等のため
操業上、取鍋からの初期注入量を鋳造量よりも大きくせ
ざるを得ない。
[0004] When the ladle is next opened, the initial injection amount from the ladle must be larger than the casting amount due to operational reasons such as fully opening the ladle sliding nozzle and recovering the amount of molten steel in the tundish.

【0005】このため、タンディッシュに浮上している
スラグが、初期の大注入流の反転流により再度巻き込ま
れ、巻き込まれたスラグの溶鋼再酸化による非金属介在
物濃度の増加、モールドへのスラグ流入が生じている。
For this reason, the slag floating on the tundish is re-engulfed by the reverse flow of the initial large injection flow, and the molten steel re-oxidizes the engulfed slag, increasing the concentration of non-metallic inclusions and causing slag to flow into the mold. There is an influx.

【0006】継目部での製品欠陥の原因として、上記に
述べたスラグ巻き込みが上げられる。従来の鋳片品質悪
化防止策として、(1)取鍋からタンディッシュへのス
ラグ流出防止および(2)タンディッシュのスラグ浮上
性確保等が知られている。
[0006] One of the causes of product defects at joints is the above-mentioned slag entrainment. Conventional measures to prevent deterioration of slab quality include (1) preventing slag from flowing out from the ladle to the tundish, and (2) ensuring slag flotation in the tundish.

【0007】(1)の取鍋からタンディッシュへのスラ
グ流出については、従来種々の対策がなされているが完
全にスラグ流出をなくす事は出来ておらず、流出したス
ラグの再巻き込み問題を解決していない。
Regarding (1) slag flowing out from the ladle into the tundish, various countermeasures have been taken in the past, but it has not been possible to completely eliminate the slag flowing out, and the problem of re-engulfment of the spilled slag has not been solved. I haven't.

【0008】(2)のタンディッシュのスラグ浮上性確
保については、大容量タンディッシュにて対応している
が、取鍋注入量と鋳造量が等しい場合(定常操業)のス
ラグの浮上性を議論しており、継目部の初期大注入流に
対するものではなく、またスラグ巻き込み防止対策にも
なっていない。
(2) Ensuring the slag floating property of the tundish is handled by using a large capacity tundish, but the slag floating property when the ladle injection amount and casting amount are equal (steady operation) is discussed. However, it is not designed to deal with the initial large injection flow at the joint, nor is it a measure to prevent slag entrainment.

【0009】このように従来は、タンディッシュに浮上
したスラグの再巻き込み、モールドへの流入といった取
鍋交換時の初期注入量増大に対する対応技術はなかった
と言える。
[0009] As described above, it can be said that conventionally, there was no technique for dealing with an increase in the initial injection amount when replacing the ladle, such as re-engaging of the slag floating on the tundish or flowing into the mold.

【0010】特公昭52−36085号公報にて、粉末
添加材の添加による非金属介在物の除去を目的に攪拌槽
である凹部を設けたタンディッシュが開示されており、
特開昭62−64461号公報にて、取鍋注入量と鋳造
量が等しい場合(定常操業)の非金属介在物の浮上性を
良くするため凹部を設けたタンディッシュが開示されて
いるが、どちらもスラグ巻き込み防止の議論はなされて
おらず、本発明を解決するための設計思想はなく、また
示唆するものでもない。
[0010] Japanese Patent Publication No. 52-36085 discloses a tundish provided with a concave portion serving as a stirring tank for the purpose of removing non-metallic inclusions due to the addition of powder additives.
Japanese Unexamined Patent Publication No. 62-64461 discloses a tundish having a recessed portion to improve the floating property of non-metallic inclusions when the ladle injection amount and casting amount are equal (regular operation). In neither case is there any discussion of prevention of slag entrainment, and there is no design concept for solving the present invention, nor is there any suggestion.

【0011】[0011]

【発明が解決しようとする課題】本発明は、チャージと
チャージの継目部分の製品欠陥を無くすために、その原
因となるタンディッシュにおけるスラグ巻き込み防止を
図り、かつタンディッシュにおけるスラグ浮上性を改善
するものである。
[Problems to be Solved by the Invention] In order to eliminate product defects at the joint between charges, the present invention aims to prevent slag from being caught in the tundish, which causes such defects, and improves slag flotation in the tundish. It is something.

【0012】0012

【課題を解決するための手段】本発明の要旨は次の通り
である。
[Means for Solving the Problems] The gist of the present invention is as follows.

【0013】取鍋からロングノズルを介して注入される
溶鋼注入流落下領域に凹部を形成し、注入流落下領域下
流にスラグ・非金属介在物の浮上領域を設けた連続鋳造
用タンディッシュにおいて、次鍋注入開始時、ロングノ
ズルを介して注入される溶鋼の最大運動エネルギー(1
/2・ρ・Q・v2 )と凹部を形成したタンディッシ
ュの溶鋼注入流落下領域(攪拌領域内)に存在する溶鋼
量(ρ・S・L)との比を下記数1で表されるεとし、
最小の溶鋼深さとなる次鍋注入直前の凹部を形成したタ
ンディッシュの溶鋼注入流落下領域(攪拌領域内)に存
在する溶鋼深さHの関数で表されるスラグ巻き込み指数
(ε/H2)1/3 が3より小さくなるように溶鋼注
入流落下領域に形成されるタンデッシュの凹部の深さ、
長さ、幅(凹部体積)を決定したことを特徴とする連続
鋳造用タンディッシュである。
[0013] In a tundish for continuous casting, a recess is formed in the falling area of the molten steel injected from the ladle through a long nozzle, and a floating area for slag and nonmetallic inclusions is provided downstream of the falling area of the injection stream. At the start of the next pot injection, the maximum kinetic energy (1
/2・ρ・Q・v2) and the amount of molten steel (ρ・S・L) existing in the molten steel injection flow falling area (inside the stirring area) of the tundish with a recessed part is expressed by the following equation 1. Let ε,
Slag entrainment index (ε/H2) 1 expressed as a function of the molten steel depth H existing in the molten steel injection flow fall area (inside the stirring area) of the tundish that forms the concave part immediately before the next pot injection where the molten steel depth is the minimum The depth of the recess of the tundish formed in the molten steel injection flow fall area such that /3 is smaller than 3,
This is a tundish for continuous casting, characterized in that the length and width (recess volume) are determined.

【0014】[0014]

【数1】             ε=〔(1/2・ρ・Q・v
2 )/(ρ・S・L)〕x1000ただし、  ε:
攪拌エネルギー(W/t)ρ:溶鋼密度(ton/m3
 ) Q:溶鋼注入量(ロングノズル吐出流量)(m3 /s
)v:ロングノズル吐出流速(m/s) S:攪拌領域巾方向断面積(m2 ) L:攪拌領域長さ(m) H:攪拌領域溶鋼深さ(m)
[Mathematical 1] ε=[(1/2・ρ・Q・v
2)/(ρ・S・L)]x1000 However, ε:
Stirring energy (W/t) ρ: Molten steel density (ton/m3
) Q: Molten steel injection amount (long nozzle discharge flow rate) (m3/s
) v: Long nozzle discharge flow rate (m/s) S: Stirring area width direction cross-sectional area (m2) L: Stirring area length (m) H: Stirring area molten steel depth (m)

【0015】また前記タンディッシュにおいて、溶鋼注
入流落下領域と浮上領域とを分けている凹部の浮上領域
側側面を浮上領域にむかって傾けた連続鋳造用タンディ
ッシュである。
[0015] Furthermore, in the above-mentioned tundish, the tundish for continuous casting is such that the side surface of the recess on the floating area side that separates the molten steel injection flow falling area from the floating area is inclined toward the floating area.

【0016】[0016]

【作用】上記課題を解決するために、取鍋交換時、次鍋
注入初期をシミュレートした水モデルテストを行いスラ
グ巻き込み挙動を解明した。水モデル実験装置は図11
に示すモデルを用いた。1は取鍋そして2はロングノズ
ルである。
[Operation] In order to solve the above problem, we conducted a water model test that simulated the initial stage of pouring into the next ladle when replacing the ladle, and clarified the slag entrainment behavior. The water model experimental equipment is shown in Figure 11.
The model shown in was used. 1 is a ladle and 2 is a long nozzle.

【0017】スラグ巻き込み量を定量化するため、取鍋
注入流落下領域(攪拌領域)3の下流側に図11に示す
堰4を設け、スラグ相当トレーサー5を攪拌領域3に浮
かべ、堰4を通過するトレーサーの重量と攪拌領域に浮
かべたトレーサーの重量との比をスラグ巻き込み率と見
なした。
In order to quantify the amount of slag entrainment, a weir 4 as shown in FIG. The ratio of the weight of the passing tracer to the weight of the tracer floating in the stirring area was regarded as the slag entrainment rate.

【0018】イマージョンノズル6からモールドへの流
入量を一定とし、取鍋1からの注入量Q、タンディッシ
ュ7の液深さHの条件を変化させて実験を行った。
An experiment was conducted by keeping the amount of liquid flowing into the mold from the immersion nozzle 6 constant, and varying the conditions of the amount Q of liquid poured from the ladle 1 and the depth H of the liquid in the tundish 7.

【0019】水モデルテストより、スラグ相当トレーサ
ー5は取鍋注入流の反転流8により巻き込まれており、
反転流8が大きい程、スラグ相当トレーサー5の巻き込
み率は大きい。反転流は、取鍋注入流の攪拌エネルギー
εに比例して増大し、注入流落下領域の液深さHの二乗
に比例し減衰する。スラグ巻き込み現象は、反転流起因
のスラグ・メタル界面流速により引き起こされると考え
られ、ある臨界速度以上でなければ巻き込みは生じない
From the water model test, the slag-equivalent tracer 5 is caught up in the reverse flow 8 of the ladle injection flow.
The larger the reverse flow 8 is, the larger the entrainment rate of the slag-equivalent tracer 5 is. The reverse flow increases in proportion to the stirring energy ε of the ladle injection flow, and attenuates in proportion to the square of the liquid depth H in the injection flow falling area. The slag entrainment phenomenon is thought to be caused by the flow velocity at the slag-metal interface due to reverse flow, and entrainment does not occur unless the velocity exceeds a certain critical velocity.

【0020】図2に示す水モデル結果より、タンディッ
シュに浮上したスラグの巻き込みは、取鍋からの注入量
Q、液深さHにかかわらず、(ε/H2 )1/3 に
て決まり、(ε/H2 )1/3が大きい程スラグ相当
トレーサー5の巻き込み率は大きい。また、(ε/H2
 )1/3 が臨界値3よりも小さい場合、スラグ巻き
込みは生じない。 即ち、(ε/H2 )1/3 は、反転流起因のスラグ
・メタル界面流速を表していると言える。
From the water model results shown in FIG. 2, the entrainment of the slag floating on the tundish is determined by (ε/H2)1/3, regardless of the injection amount Q from the ladle and the liquid depth H. The larger (ε/H2)1/3 is, the larger the entrainment rate of the slag-equivalent tracer 5 is. Also, (ε/H2
)1/3 is smaller than the critical value 3, no slag entrainment occurs. That is, it can be said that (ε/H2)1/3 represents the flow velocity at the slag-metal interface due to reverse flow.

【0021】以上より、水モデルにて見出した関数であ
る(ε/H2 )1/3 は、スラグ巻き込み挙動に対
する汎用式と考えられ、この関数をスラグ巻き込み指数
と見なす。スラグによる溶鋼再酸化を防止し、かつモー
ルドへの流入を防止するには、スラグ巻き込みを無くす
必要があり、スラグ巻き込み指数を図2に示す臨界値よ
り小さくする事である。
From the above, the function (ε/H2)1/3 found in the water model is considered to be a general expression for the slag entrainment behavior, and this function is regarded as the slag entrainment index. In order to prevent slag from reoxidizing molten steel and preventing it from flowing into the mold, it is necessary to eliminate slag entrainment, and the slag entrainment index must be made smaller than the critical value shown in FIG. 2.

【0022】具体的方法としては、εを低下させる事で
あり、溶鋼深さを上げる事である。εを低下させるには
、取鍋交換時の初期注入量を低下させる事が考えられる
が、操業上注入量をおさえる事は困難であり、一方タン
ディッシュ全体の容量を上げεを低下させる方法は、ハ
ード制約、コスト高が懸念される。
A specific method is to lower ε and increase the depth of molten steel. In order to reduce ε, it is possible to reduce the initial injection amount when replacing the ladle, but it is difficult to suppress the injection amount due to operational reasons.On the other hand, there is no way to reduce ε by increasing the overall capacity of the tundish. , hard constraints, and high costs are concerns.

【0023】スラグ巻き込み指数を低下させる最も効果
的方法は、溶鋼深さを上げる事でありコンパクトかつ低
コストで巻き込み量を低下させるには、注入流の落下領
域のみ凹化し、攪拌領域の溶鋼深さを上げる事である。 例えば、図1に示すように攪拌領域を凹化し、凹部の深
さ、溶鋼量をスラグ巻き込みが起こらない様、臨界スラ
グ巻き込み指数3より小さく設計する事により、スラグ
巻き込み防止を図ることが出来る。
The most effective method for reducing the slag entrainment index is to increase the depth of the molten steel.In order to reduce the amount of entrainment in a compact and low-cost manner, only the falling area of the injection flow is concave, and the depth of the molten steel in the stirring area is reduced. It is to raise the level. For example, as shown in FIG. 1, slag entrainment can be prevented by making the stirring region concave and designing the depth of the concave portion and the amount of molten steel to be smaller than the critical slag entrainment index 3 to prevent slag entrainment.

【0024】このように注入流の落下領域を凹化し、凹
部を臨界スラグ巻き込み指数3より小さく設計したタン
ディッシュにおいてスラグ巻き込み防止について良い結
果を得たが、更に、取鍋からタンディッシュに流入する
スラグ・非金属介在物がタンディッシュに浮上せず、継
目部の大注入流による直送流により、直接モールドへ流
入する問題について検討した。
Although good results were obtained in preventing slag entrainment in the tundish in which the falling area of the injected flow was made concave and the concave portion was designed to be smaller than the critical slag entrainment index of 3, furthermore, the slag that flows from the ladle into the tundish was obtained. We investigated the problem that slag and nonmetallic inclusions do not float to the tundish and flow directly into the mold due to the direct flow caused by the large injection flow at the joint.

【0025】取鍋からスラグ相当トレーサーを添加した
水モデル実験を実施し、取鍋からモールドへのスラグ流
入挙動を解明した。スラグ相当トレーサーのモールドへ
の流入重量と取鍋1への添加トレーサー重量の比を取鍋
スラグモールド流入率と見なした。
A water model experiment was conducted in which a tracer equivalent to slag was added from the ladle, and the behavior of slag flowing from the ladle into the mold was clarified. The ratio of the weight of the tracer equivalent to slag flowing into the mold and the weight of the tracer added to ladle 1 was regarded as the ladle slag mold flow rate.

【0026】図3に示す水モデル実験装置において、取
鍋1からの注入量Q、液深さH、凹部10深さh、イマ
ージョンノズル6からモールドへの流入量を一定とし、
取鍋注入流落下領域3と浮上領域9とを分けている凹部
10の浮上領域側側面の傾きθを変化させて実験を行っ
た。
In the water model experimental apparatus shown in FIG. 3, the injection amount Q from the ladle 1, the liquid depth H, the depth h of the recess 10, and the amount flowing into the mold from the immersion nozzle 6 are constant,
Experiments were conducted by varying the inclination θ of the side surface on the floating region side of the recess 10 that separates the ladle injection flow fall region 3 and the floating region 9.

【0027】水モデルテストより、傾きθが大きくなる
とタンディッシュに直送流が生じ浮上領域9の浮上性が
悪化する。また、傾きθが小さい場合、タンディッシュ
内の直送流は防止されるが、凹部から浮上領域への上昇
流が強くなり渦が発生し浮上領域9の浮上性が低下する
The water model test shows that when the inclination θ becomes large, a direct flow is generated in the tundish, and the flotability of the flotation area 9 deteriorates. Further, when the inclination θ is small, direct flow within the tundish is prevented, but the upward flow from the recessed portion to the floating region becomes strong, a vortex is generated, and the floating performance of the floating region 9 is reduced.

【0028】図4の水モデルテスト結果より凹部10の
浮上領域側側面の傾きθは10°〜80°にて、スラグ
の浮上性は最適となる。この最適な傾きに設計する事に
より、浮上領域9で渦発生を伴わない溶鋼上昇流が実現
出来、ロングノズル2から直接モールドへ流入する直送
流を防止し、取鍋から流入するスラグ・非金属介在物の
モールドへの流入防止を図る事が出来る。
From the results of the water model test shown in FIG. 4, the buoyancy of the slag is optimal when the inclination θ of the side surface of the recess 10 on the floating region side is 10° to 80°. By designing with this optimal inclination, it is possible to realize an upward flow of molten steel without generating a vortex in the floating area 9, to prevent a direct flow of molten steel from flowing directly into the mold from the long nozzle 2, and to prevent slag and non-metallic metal from flowing from the ladle. It is possible to prevent inclusions from flowing into the mold.

【0029】[0029]

【実施例】以下に本発明に係わる実施例を図に基づいて
説明する。
Embodiments Examples of the present invention will be described below with reference to the drawings.

【0030】DI缶向きブリキ板を対象に本発明を実施
した。まず、本発明実施前の凹部を有しない通常タンデ
ィッシュを準備した。その仕様を以下に示す。 タンディッシュ内の溶鋼容量:15t タンディッシュ全長:7.4m
The present invention was applied to a tinplate plate suitable for DI cans. First, a normal tundish without a concave portion prior to implementation of the present invention was prepared. Its specifications are shown below. Molten steel capacity in tundish: 15t Tundish total length: 7.4m

【0031】図12に本発明の対象となる凹部を有しな
い通常タンディッシュにおけるチャージとチャージの継
目部分の操業条件を示す。取鍋交換時の初期注入量は、
5ton/minであり、次鍋注入直前の溶鋼深さHは
350mm、タンディッシュ内の溶鋼容量は10tであ
る。
FIG. 12 shows the operating conditions of the joint portion between the charges in a normal tundish having no recesses, which is the object of the present invention. The initial injection amount when replacing the ladle is
The molten steel depth H immediately before pouring into the next pot is 350 mm, and the molten steel capacity in the tundish is 10 tons.

【0032】次に実施例1を説明する。Next, Example 1 will be explained.

【0033】スラグによる溶鋼再酸化を防止し、かつモ
ールドへの流入を防止するため、溶鋼注入流落下領域に
凹部を形成し、凹部の深さ、凹部体積をスラグ巻き込み
が生じないよう設計する。
In order to prevent slag from reoxidizing the molten steel and preventing it from flowing into the mold, a recess is formed in the molten steel injection flow fall area, and the depth and volume of the recess are designed to prevent slag from being entrained.

【0034】上記DI缶向きブリキ板の鋳造条件より、
本発明の実施前のスラグ巻き込み指数は5程度であり、
凹部を有しない通常タンディッシュにおけるチャージと
チャージの継目部でのスラグ巻き込みが生じ、品質悪化
を招いている。
From the above casting conditions for the tin plate for DI cans,
The slag entrainment index before implementation of the present invention was about 5,
In a normal tundish that does not have a recessed part, slag entrainment occurs at the joint between the charges, causing quality deterioration.

【0035】そこで溶鋼注入流落下領域に凹部を形成し
、溶鋼深さが次鍋注入直前の深さのときスラグ巻き込み
指数(ε/H2 )1/3 <3を満たすよう溶鋼注入
流落下領域を設計する。
Therefore, a recess is formed in the molten steel injection flow falling area, and the molten steel injection flow falling area is set so that the slag entrainment index (ε/H2) 1/3 < 3 is satisfied when the molten steel depth is the depth immediately before the next injection into the ladle. design.

【0036】凹部を形成したタンディッシュの溶鋼注入
流落下領域(攪拌領域域内)の長さLは、初期注入量5
ton/minに対応する攪拌影響域の長さをとり、2
.7mと決定する。
The length L of the molten steel injection flow falling area (within the stirring area) of the tundish in which the concave portion is formed is equal to the initial injection amount 5.
Take the length of the stirring influence zone corresponding to ton/min, and
.. It is determined to be 7m.

【0037】図1に示すように、タンディッシュのテー
パーを本発明実施前と同一とし、タンディッシュ底部に
凹部10を取りつけた。溶鋼深さを次鍋注入直前の深さ
とした。このときの溶鋼注入流落下領域下流のスラグ・
非金属介在物の浮上領域の深さは350mmであった。
As shown in FIG. 1, the taper of the tundish was the same as before the present invention, and a recess 10 was attached to the bottom of the tundish. The molten steel depth was set to the depth immediately before the next pot injection. At this time, the slag and
The depth of the floating region of nonmetallic inclusions was 350 mm.

【0038】次鍋注入直前の溶鋼条件は下記の値をしめ
した。 溶鋼密度ρ:7.2(ton/m3 )溶鋼注入量(ロ
ングノズル吐出流量)Q:0.0116(m3 /s) ロングノズル吐出流速v:1.23(m/s)浮上領域
巾方向断面積S’:0.1873(m2 )攪拌領域長
さL:2.7(m)
The molten steel conditions immediately before pouring into the next ladle had the following values. Molten steel density ρ: 7.2 (ton/m3) Molten steel injection amount (long nozzle discharge flow rate) Q: 0.0116 (m3/s) Long nozzle discharge flow velocity v: 1.23 (m/s) Floating area width direction cross section Area S': 0.1873 (m2) Stirring area length L: 2.7 (m)

【0039】凹部を形成したタンディッシュの溶鋼注入
流落下領域(攪拌領域内)に存在する溶鋼量(ρ・S・
L)とHの関係が、上記スラグ巻き込み指数<3の条件
を満たすようディメンジョンを決定する。
The amount of molten steel (ρ・S・
The dimensions are determined so that the relationship between L) and H satisfies the above condition of slag entrainment index <3.

【0040】ρ,Q,vが条件として与えられており、
溶鋼の運動エネルギー1/2・ρ・Q・v2 を計算し
た。(ε/H2 )1/3 <3より、(1)式:(1
/2・ρ・Q・v2 )x(1000/ρ・S・L)x
(1/H2 )<27を得た。図1より、攪拌領域巾方
向断面積S=S’+0.35xh=0.1873+0.
35xhおよび攪拌領域溶鋼深さH=0.35+hを得
た。よって(1)式は凹部深さhのみの関数となり、h
>0.295(m)を得た。よってhを300mmと決
定し、S,H,εを算出した。
[0040]ρ, Q, v are given as conditions,
The kinetic energy of molten steel 1/2・ρ・Q・v2 was calculated. (ε/H2)1/3 <3, formula (1): (1
/2・ρ・Q・v2)x(1000/ρ・S・L)x
(1/H2)<27 was obtained. From FIG. 1, the widthwise cross-sectional area of the stirring region S=S'+0.35xh=0.1873+0.
35xh and stirring zone molten steel depth H=0.35+h were obtained. Therefore, equation (1) is a function only of the recess depth h, and h
>0.295 (m) was obtained. Therefore, h was determined to be 300 mm, and S, H, and ε were calculated.

【0041】以下に決定したディメンジョンを示す。 攪拌領域巾方向断面積S:0.2923(m2 )攪拌
領域溶鋼量ρ・S・L:5.68(ton)攪拌エネル
ギーε:11.12(W/t)攪拌領域溶鋼深さH:6
50mm
The determined dimensions are shown below. Stirring zone width direction cross-sectional area S: 0.2923 (m2) Stirring zone molten steel amount ρ・S・L: 5.68 (ton) Stirring energy ε: 11.12 (W/t) Stirring zone molten steel depth H: 6
50mm

【0042】従って凹部深さhを300mmと決定した
Therefore, the depth h of the recess was determined to be 300 mm.

【0043】上記に示す設計方法にて、スラグを巻き込
まないタンディッシュを設計出来た。この設計方法は、
高ton/minにも有効であり、図5に示すような1
レードル2ストランドにも適用出来る。
[0043] By using the design method described above, it was possible to design a tundish that does not involve slag. This design method is
It is also effective for high ton/min, as shown in Figure 5.
It can also be applied to ladle 2 strands.

【0044】また、ハード制約があり凹部深さに制限が
ある場合、図6に示すように凹部を形成したタンディッ
シュ部分の巾を他のタンディッシュ部分よりも拡げ、必
要凹部深さを低減し対応する事が出来る。
[0044] Furthermore, if there is a hard constraint and the depth of the recess is limited, the width of the tundish portion in which the recess is formed is made wider than the other tundish portions to reduce the required depth of the recess, as shown in Fig. 6. I can deal with it.

【0045】次に、実施例2について説明する。Next, Example 2 will be explained.

【0046】注入流の落下領域を凹化し、凹部を臨界ス
ラグ巻き込み指数3より小さく設計したタンディッシュ
において、取鍋から流入するスラグ・非金属介在物のモ
ールドへの流入防止を図るため、図7に示すように、凹
部10の浮上領域側側面の傾きを10°〜80°になる
よう凹部の浮上領域側側面の傾きを決定する。
In order to prevent slag and nonmetallic inclusions flowing from the ladle from flowing into the mold in a tundish in which the falling region of the injection flow is concave and the concave portion is designed to be smaller than the critical slag entrainment index 3, the method shown in FIG. The inclination of the side surface of the recess 10 on the floating region side is determined so that the slope of the side surface of the recess 10 on the floating region side is 10° to 80°.

【0047】注入流の落下領域を凹化し、凹部を臨界ス
ラグ巻き込み指数3より小さく設計し、かつ凹部の浮上
領域側側面の傾きを60°にした実機タンディッシュを
製作し、上記条件によりD1缶向きブリキ板を対象に実
機にて鋳造実験を行った。
[0047] An actual tundish was manufactured in which the falling area of the injection flow was concave, the concave part was designed to be smaller than the critical slag entrainment index of 3, and the side surface of the concave part on the floating area side had an inclination of 60 degrees. A casting experiment was conducted using an actual machine for oriented tin plate.

【0048】実機における本発明改造タンディッシュ使
用時のスラグ巻き込み指数(ε/H2 )1/3 を図
8に示す。次鍋注入開始直後、スラグ巻き込み指数は急
激に大きくなるが、取鍋よりの注入量と鋳造量が同一と
なる時点より低位に安定する。この傾向は、凹部を有し
ない通常タンディッシュにおいても同様であるが本発明
タンディッシュは、凹部を有しない通常タンディッシュ
に比べ大幅にスラグ巻き込み指数が低減している。
FIG. 8 shows the slag entrainment index (ε/H2) 1/3 when the modified tundish of the present invention is used in an actual machine. Immediately after the start of the next ladle injection, the slag entrainment index increases rapidly, but it stabilizes at a lower level than when the amount of injection from the ladle and the amount of casting become the same. Although this tendency is the same for ordinary tundishes that do not have recesses, the slag entrainment index of the tundish of the present invention is significantly lower than that of ordinary tundishes that do not have recesses.

【0049】品質指標として磁粉探傷欠陥法により評価
し、スラグ巻き込み指数と対応を取った結果を図9に示
す。図中、●印は本発明タンディッシュによる製品、ま
た○印は凹部を有しない通常タンディッシュによる製品
の場合を示す。図9から判るようにスラグ巻き込み指数
が3より小さい場合には磁粉探欠陥の発生比率は低位に
安定しており、図10に示すようにDI缶等の製缶時に
発生する割れも少ない。
FIG. 9 shows the results of evaluation using the magnetic particle flaw detection method as a quality index, and the correspondence with the slag entrainment index. In the figure, the ● mark indicates a product using the tundish of the present invention, and the ○ mark indicates a product using a normal tundish having no recesses. As can be seen from FIG. 9, when the slag entrainment index is less than 3, the rate of occurrence of magnetic particle detection defects is stable at a low level, and as shown in FIG. 10, there are few cracks that occur during the manufacturing of DI cans and the like.

【0050】このように本発明タンディッシュおよび凹
部を有しない通常タンディッシュの品質は、スラグ巻き
込み指数にて良く整理出来、本発明タンディッシュによ
り、継目部にてもブリキ板の表面欠陥や内部欠陥の発生
しない鋳片が得られる事が確認出来た。
[0050] As described above, the quality of the tundish of the present invention and the normal tundish without recesses can be well classified by the slag entrainment index, and the tundish of the present invention eliminates surface defects and internal defects of the tin plate even at joints. It was confirmed that slabs with no occurrence of .

【0051】[0051]

【発明の効果】以上のように構成される本発明は、下記
の如き効果を奏する。
[Effects of the Invention] The present invention constructed as described above has the following effects.

【0052】チャージとチャージの継目においてタンデ
ィッシュに浮上しているスラグが初期の大注入流の反転
流により再度巻き込まれるのを防止し、スラグ巻き込み
によるチャージとチャージの継目部分の製品欠陥を無く
すことが出来る。
[0052] To prevent the slag floating on the tundish at the joint between the charges from being re-engulfed by the reverse flow of the initial large injection flow, and to eliminate product defects at the joint between the charges due to slag entrainment. I can do it.

【0053】タンディッシュの浮上領域で渦発生を伴わ
ない溶鋼上昇流を実現し、かつタンディッシュのロング
ノズルから直接モールドへ流入する直送流を防止するこ
とによって、取鍋から流入するスラグ・非金属介在物の
モールドへの流入防止を図る事が出来る。
[0053] By realizing an upward flow of molten steel without generating a vortex in the floating area of the tundish, and by preventing a direct flow from flowing directly into the mold from the long nozzle of the tundish, slag and non-metallic materials flowing from the ladle are prevented. It is possible to prevent inclusions from flowing into the mold.

【0054】取鍋からタンディッシュに流入したスラグ
をチャージとチャージの継目において下流側に流出させ
ない事が可能となり、継目部にて表面欠陥と内部欠陥の
全く発生しない高清浄度鋳片の製造が可能である。
[0054] It is possible to prevent the slag that has flowed from the ladle into the tundish from flowing downstream at the joint between the charges, and it is possible to produce highly clean slabs with no surface defects or internal defects at the joint. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1(a)は、最小の溶鋼深さとなる次鍋注入
直前における本発明実施例の連続鋳造用タンディッシュ
の構造例を示す縦断面説明図である。図1(b)は図1
(a)のA−A縦断面図である。
FIG. 1(a) is an explanatory longitudinal cross-sectional view showing a structural example of a tundish for continuous casting according to an embodiment of the present invention immediately before pouring the next ladle at which the molten steel reaches the minimum depth. Figure 1(b) is Figure 1
It is an AA vertical cross-sectional view of (a).

【図2】タンディッシュスラグ巻き込み率とスラグ巻き
込み指数(ε/H2 )1/3 との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the tundish slag entrainment rate and the slag entrainment index (ε/H2) 1/3.

【図3】本発明の水モデル実験装置の構造を示す縦断面
説明図である。
FIG. 3 is an explanatory longitudinal cross-sectional view showing the structure of the water model experiment apparatus of the present invention.

【図4】取鍋スラグのモールドへの流入率と浮上領域側
側面の傾きとの関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the inflow rate of ladle slag into the mold and the inclination of the side surface on the floating region side.

【図5】本発明実施例の連続鋳造用タンディッシュの構
造例を示す縦断面説明図である。
FIG. 5 is an explanatory longitudinal cross-sectional view showing a structural example of a tundish for continuous casting according to an embodiment of the present invention.

【図6】図6(a)は、本発明実施例の連続鋳造用タン
ディッシュの構造例を示す縦断面説明図である。図6(
b)は、図6(a)の平面説明図である。
FIG. 6(a) is an explanatory longitudinal cross-sectional view showing a structural example of a tundish for continuous casting according to an embodiment of the present invention. Figure 6 (
b) is an explanatory plan view of FIG. 6(a).

【図7】図7(a)は、最小の溶鋼深さとなる次鍋注入
直前における本発明実施例の連続鋳造用タンディッシュ
の構造例を示す縦断面説明図である。図7(b)は図7
(a)のA−A縦断面図である。
FIG. 7(a) is an explanatory longitudinal cross-sectional view showing a structural example of a tundish for continuous casting according to an embodiment of the present invention immediately before the next ladle injection when the molten steel reaches the minimum depth. Figure 7(b) is Figure 7
It is an AA vertical cross-sectional view of (a).

【図8】スラグ巻き込み指数(ε/H2 )1/3 と
取鍋開孔からの経過時間との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the slag entrainment index (ε/H2) 1/3 and the elapsed time from the opening of the ladle.

【図9】磁粉探傷欠陥個数とスラグ巻き込み指数(ε/
H2 )1/3 との関係を示すグラフである。
[Figure 9] Number of magnetic particle detection defects and slag entrainment index (ε/
It is a graph which shows the relationship with H2)1/3.

【図10】DI缶割れ発生率と磁粉探傷欠陥個数との関
係を示すグラフである。
FIG. 10 is a graph showing the relationship between the DI can cracking occurrence rate and the number of defects detected by magnetic particle testing.

【図11】従来の連続鋳造用タンディッシュの構造例を
示す縦断面説明図である。
FIG. 11 is an explanatory longitudinal cross-sectional view showing a structural example of a conventional continuous casting tundish.

【図12】従来の凹部を有しない通常タンディッシュ内
の溶鋼容量および取鍋交換時の初期注入量の時間経過に
おける変化を示すグラフである。
FIG. 12 is a graph showing changes over time in the molten steel capacity in a conventional tundish without a concave portion and the initial injection amount when replacing the ladle.

【符号の説明】[Explanation of symbols]

1    取鍋 2    ロングノズル 3    取鍋注入落下領域(攪拌領域)4    堰 5    スラグ相当トレーサー 6    イマージョンノズル 7    タンディッシュ 8    反転流 9    浮上領域 10  凹部 1 Ladle 2. Long nozzle 3 Ladle pouring fall area (stirring area) 4 Weir 5 Slag equivalent tracer 6 Immersion nozzle 7 Tundish 8 Reverse flow 9 Levitation area 10 Recess

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  取鍋からロングノズルを介して注入さ
れる溶鋼注入流落下領域に凹部を形成し、注入流落下領
域下流にスラグ・非金属介在物の浮上領域を設けた連続
鋳造用タンディッシュにおいて、次鍋注入開始時、ロン
グノズルを介して注入される溶鋼の最大運動エネルギー
(1/2・ρ・Q・v2 )と凹部を形成したタンディ
ッシュの溶鋼注入流落下領域(攪拌領域内)に存在する
溶鋼量(ρ・S・L)との比を下記数1で表されるεと
し、最小の溶鋼深さとなる次鍋注入直前の凹部を形成し
たタンディッシュの溶鋼注入流落下領域(攪拌領域内)
に存在する溶鋼深さHの関数で表されるスラグ巻き込み
指数(ε/H2 )1/3 が3より小さくなるように
溶鋼注入流落下領域に形成されるタンディッシュの凹部
の深さ、長さ、幅(凹部体積)を決定したことを特徴と
する連続鋳造用タンディッシュ。 【数1】             ε=〔(1/2・ρ・Q・v
2 )/(ρ・S・L)〕x1000ただし、  ε:
攪拌エネルギー(W/t)ρ:溶鋼密度(ton/m3
 ) Q:溶鋼注入量(ロングノズル吐出流量)(m3 /s
)v:ロングノズル吐出流速(m/s) S:攪拌領域巾方向断面積(m2 ) L:攪拌領域長さ(m) H:攪拌領域溶鋼深さ(m)
1. A tundish for continuous casting in which a recess is formed in the falling area of the molten steel injected from the ladle through a long nozzle, and a floating area for slag and nonmetallic inclusions is provided downstream of the falling area of the injection stream. At the start of injection into the next ladle, the maximum kinetic energy (1/2・ρ・Q・v2) of the molten steel injected through the long nozzle and the falling area of the molten steel injection flow in the tundish (within the stirring area) that formed the concave part. Let ε be the ratio to the amount of molten steel (ρ・S・L) present in (within stirring area)
The depth and length of the concave part of the tundish formed in the molten steel injection flow fall area so that the slag entrainment index (ε/H2) 1/3 expressed as a function of the molten steel depth H existing in the area is smaller than 3. A tundish for continuous casting, characterized in that the width (recess volume) is determined. [Mathematical 1] ε=[(1/2・ρ・Q・v
2)/(ρ・S・L)]x1000 However, ε:
Stirring energy (W/t) ρ: Molten steel density (ton/m3
) Q: Molten steel injection amount (long nozzle discharge flow rate) (m3/s
) v: Long nozzle discharge flow rate (m/s) S: Stirring area width direction cross-sectional area (m2) L: Stirring area length (m) H: Stirring area molten steel depth (m)
【請求項2】  前記タンディッシュにおいて溶鋼注入
流落下領域と浮上領域とを分けている凹部の浮上領域側
側面を浮上領域にむかって傾けた請求項1記載の連続鋳
造用タンディッシュ。
2. The continuous casting tundish according to claim 1, wherein a side surface of the recess on the floating area side of the recess separating the molten steel injection flow falling area and the floating area is inclined toward the floating area.
JP3140655A 1991-05-17 1991-05-17 Continuous casting method Expired - Lifetime JP2684261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140655A JP2684261B2 (en) 1991-05-17 1991-05-17 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140655A JP2684261B2 (en) 1991-05-17 1991-05-17 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH04344854A true JPH04344854A (en) 1992-12-01
JP2684261B2 JP2684261B2 (en) 1997-12-03

Family

ID=15273695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140655A Expired - Lifetime JP2684261B2 (en) 1991-05-17 1991-05-17 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2684261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119791A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Steel production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236085A (en) * 1975-09-16 1977-03-19 Nippon Steel Corp Method of detecting surface flaws of metal materials
JPS6264461A (en) * 1985-09-17 1987-03-23 Sumitomo Metal Ind Ltd Device for accelerating flotation of inclusion in molten steel
JPH0466251A (en) * 1990-07-02 1992-03-02 Kawasaki Steel Corp Method for preventing involution of slag into molten steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236085A (en) * 1975-09-16 1977-03-19 Nippon Steel Corp Method of detecting surface flaws of metal materials
JPS6264461A (en) * 1985-09-17 1987-03-23 Sumitomo Metal Ind Ltd Device for accelerating flotation of inclusion in molten steel
JPH0466251A (en) * 1990-07-02 1992-03-02 Kawasaki Steel Corp Method for preventing involution of slag into molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119791A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Steel production method

Also Published As

Publication number Publication date
JP2684261B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US5882577A (en) Tundish
KR100259887B1 (en) Refractory article for preventing vortexing in a metallurgical vessel
JP4772798B2 (en) Method for producing ultra-low carbon slab
TW201318733A (en) Double entry channel ladle bottom
JPH04344854A (en) Tundish for continuous casting
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JPH04351251A (en) Tundish for hot-circulating tundish
Brower et al. Oxygen in liquid open-hearth steel—oxidation during tapping and ladle filling
JP2006239746A (en) Tundish for continuous casting of steel
CN210632928U (en) Tundish for reducing molten steel inclusion
JP2938323B2 (en) Inclusion removal method in tundish for continuous casting
JPS6092054A (en) Method and device for preventing slag inclusion in tundish for continuous casting
JP7215361B2 (en) Continuous casting method
JP6527069B2 (en) Operating method of intermediate container for molten steel
JP6638142B2 (en) Injection lump method
KR20100035821A (en) Tundish
US2366289A (en) Casting ingots
JP7269480B2 (en) Continuous casting method
US5173244A (en) Slag control apparatus and method
JP5673162B2 (en) Continuous casting method and continuous casting apparatus
JP2010274321A (en) Tundish for continuous casting
JP2004283848A (en) Immersion nozzle for continuous casting of steel
EP3725430A1 (en) Molten material processing device
JPH081295A (en) Method for pouring molten steel into tundish for continuous casting
JP2004209512A (en) Continuous casting method and immersion nozzle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14