JPH04344383A - Magnetic thin film memory and its read-out method - Google Patents

Magnetic thin film memory and its read-out method

Info

Publication number
JPH04344383A
JPH04344383A JP3116415A JP11641591A JPH04344383A JP H04344383 A JPH04344383 A JP H04344383A JP 3116415 A JP3116415 A JP 3116415A JP 11641591 A JP11641591 A JP 11641591A JP H04344383 A JPH04344383 A JP H04344383A
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
film memory
magnetic
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116415A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
浩 小林
Tatsuya Fukami
達也 深見
Motohisa Taguchi
元久 田口
Yuuzou Oodoi
雄三 大土井
Shinji Tanabe
信二 田辺
Kazuhiko Tsutsumi
和彦 堤
Hiroshi Shibata
浩 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3116415A priority Critical patent/JPH04344383A/en
Priority to DE69225920T priority patent/DE69225920T2/en
Priority to EP92301857A priority patent/EP0507451B1/en
Priority to US07/847,964 priority patent/US5361226A/en
Priority to KR1019920003622A priority patent/KR970009765B1/en
Publication of JPH04344383A publication Critical patent/JPH04344383A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a structure capable of integrating a magnetic thin film memory recording information depending upon a direction of magnetization of a thin film magnetic body in a large scale and a read-out method thereon. CONSTITUTION:Sensor lines 12a, 12b are provide in a matrix form and a magnetic thin film memory element 11A and a diode 20 are connected in series at a point corresponding to the crossing point. Hence a sense current flows through the magnetic thin film memory element 11a only in one direction, so there is no sneak path from the magnetic thin film memory element positioning at other crossing positions when each one line of the sense lines 12a, 12b is selected and the specific magnetic thin film memory element 11A is selected, and the signal only for one element can be taken out from an amplifier 21. Hitherto one amplifier was necessary to a few of elements and the integration degrees is not increased but a highest integration as a solid memory is realized, since it can attain the same level as a semiconductor memory in a plane and also attain multilayers.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、磁性薄膜メモリおよ
びその読み出し方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic thin film memory and a reading method thereof.

【0002】0002

【従来の技術】図18および図19は、夫々例えばIE
EE  TRANSACTICNS  ON  MAG
NETICS  VOL  26.NO5  2828
(1990)「REPROGRAMMABLE  LO
GICARRAYUSING  M−R  ELEME
NTS」に示された従来の磁性薄膜メモリ素子の斜視図
と、それを用いた磁性薄膜メモリの回路図である。図1
8および図19において、1a,1bは磁気抵抗効果を
有した例えばパーマロイなどの磁性薄膜、2は磁性薄膜
1a,1bにはさまれた例えば銅などの金属薄膜である
。3は磁性薄膜1a,1bに外部磁界を印加するための
ワード線である。 また11は磁性薄膜メモリ素子、12は磁性薄膜1a,
1bおよび金属薄膜2より構成されるセンス線、13は
センス線12に対応するダミー線、14はセンス線12
に流す電圧の向きを決めるスイッチング素子、15は零
信号を自動的に検出する自動零点検出器、16は差動増
幅器、17はアクセスするセンス線12を決めるスイッ
チング素子、25はダミー線13上の比較抵抗である。
2. Description of the Related Art FIGS. 18 and 19 show, for example, IE
EE TRANSACTICNS ON MAG
NETICS VOL 26. NO5 2828
(1990) “REPROGRAM MABLE LO
GICARRAYUSING M-R ELEME
1 is a perspective view of a conventional magnetic thin film memory element shown in "NTS" and a circuit diagram of a magnetic thin film memory using the same. Figure 1
8 and FIG. 19, 1a and 1b are magnetic thin films, such as permalloy, having a magnetoresistive effect, and 2 is a metal thin film, such as copper, sandwiched between the magnetic thin films 1a and 1b. 3 is a word line for applying an external magnetic field to the magnetic thin films 1a and 1b. Further, 11 is a magnetic thin film memory element, 12 is a magnetic thin film 1a,
1b and a sense line composed of a metal thin film 2, 13 is a dummy line corresponding to the sense line 12, and 14 is a sense line 12.
15 is an automatic zero point detector that automatically detects a zero signal, 16 is a differential amplifier, 17 is a switching element that determines the sense line 12 to be accessed, and 25 is a switch on the dummy line 13. It is comparative resistance.

【0003】次に動作について説明する。まず磁気抵抗
効果について述べる。図20に示すように磁性薄膜1の
磁化の向き52が磁化容易軸方向50とθの角度を有す
るように磁化困難軸方向51に外部磁界Hex60を印
加する。この時磁性薄膜1の両端に電圧E64を印加し
電流計62により流れるセンサ電流i63を測定すると
、図21に示すような磁化の向きと電流iの関係となる
。即ち流れる電流の方向(ここでは磁化困難軸方向51
)に磁化の向き52が平行の時磁性薄膜1の抵抗は最大
となり直角の時最小(もっとも電流が流れる)となる。
Next, the operation will be explained. First, we will discuss the magnetoresistive effect. As shown in FIG. 20, an external magnetic field Hex 60 is applied in the hard magnetization axis direction 51 such that the magnetization direction 52 of the magnetic thin film 1 has an angle of θ with the easy magnetization axis direction 50. At this time, when a voltage E64 is applied to both ends of the magnetic thin film 1 and a flowing sensor current i63 is measured by an ammeter 62, the relationship between the magnetization direction and the current i is as shown in FIG. That is, the direction of the current flowing (here, the direction of the difficult magnetization axis 51
) When the direction of magnetization 52 is parallel, the resistance of the magnetic thin film 1 is maximum, and when it is perpendicular, it is minimum (the most current flows).

【0004】次に図18に示した磁性薄膜メモリ素子の
動作について説明する。まず記録について述べる。ワー
ド線3に図中矢印の方向にワード電流を流すと、その電
流により発生する磁界の向きは磁性薄膜1の磁化困難軸
方向51となり、充分に電流を流すことにより磁化の向
き52(図20参照)は磁化困難軸方向51になる。次
に磁化の向きを決定するためセンス線12に電流を流す
。この電流により生ずる磁界は磁性薄膜1aと1bでは
逆方向となるが、いずれも磁化容易軸方向50となる。 この時ワード線3の電流を切れば磁化の方向は一意に決
まる。図22にその関係を示す。センス線12に流れる
電流63の向きで磁性薄膜1a,1bの磁化の向き52
a,52bは決まる。
Next, the operation of the magnetic thin film memory element shown in FIG. 18 will be explained. First, let's talk about records. When a word current is passed through the word line 3 in the direction of the arrow in the figure, the direction of the magnetic field generated by the current becomes the direction 51 of the difficult magnetization axis of the magnetic thin film 1, and by passing a sufficient current, the direction of magnetization 52 (Fig. 20 ) is the direction of the hard magnetization axis 51. Next, a current is passed through the sense line 12 to determine the direction of magnetization. The magnetic fields generated by this current are in opposite directions in the magnetic thin films 1a and 1b, but both are in the easy magnetization axis direction 50. At this time, if the current in the word line 3 is cut off, the direction of magnetization is uniquely determined. FIG. 22 shows the relationship. The direction of magnetization 52 of the magnetic thin films 1a and 1b depends on the direction of the current 63 flowing through the sense line 12.
a and 52b are determined.

【0005】次に再生について述べる。ワード線3に記
録時よりは小さい電流を流した図が図23で簡単のため
に磁性薄膜1aについてのみ下面図で示してする。ワー
ド線3の電流によって発生する磁界Hex60により磁
化の向き52aは磁化容易軸方向50に対してθ1 傾
く。これは図23(a)および(b)共同じであり、角
度θ1 の正負が逆になっているだけである。次にセン
ス線12に電流63を流す。図24にこのセンス線12
によって発生した磁界Hsf66を示すと共に外部磁界
Hex60よって決まる磁化の向き52aを示す。これ
によって記録された磁化の状態により磁化の向き52a
と磁化容易軸方向50aの成す角度θ2 が異なり、図
21により結局記録された磁化の状態が、電気抵抗の増
加および減少として検出できる。
Next, reproduction will be described. FIG. 23 shows a diagram in which a current smaller than that during recording is passed through the word line 3, and for simplicity, only the magnetic thin film 1a is shown in a bottom view. Due to the magnetic field Hex60 generated by the current in the word line 3, the magnetization direction 52a is tilted by θ1 with respect to the easy magnetization axis direction 50. This is the same in FIGS. 23(a) and 23(b), only that the sign of the angle θ1 is reversed. Next, a current 63 is caused to flow through the sense line 12. This sense line 12 is shown in FIG.
It shows the magnetic field Hsf66 generated by the external magnetic field Hex60, and also shows the magnetization direction 52a determined by the external magnetic field Hex60. The direction of magnetization 52a is determined by the state of magnetization recorded thereby.
The angle θ2 formed by the easy magnetization axis direction 50a is different, and the state of magnetization finally recorded as shown in FIG. 21 can be detected as an increase and a decrease in electrical resistance.

【0006】次にメモリとしての動作について図19を
参照しながら説明する。記録については、ワード線3と
センス線12が同時にスイッチオンとなったメモリ素子
11のみ記録される。記録状態は、上記に説明したよう
にセンス線12に流れる電流の向きによって決まるが、
電流の向きは、スイッチング素子によって決定する。再
生については、まずワード線3に電流を流さずにアクセ
スするセンス線12のスイッチング素子17をオンにし
て図中接続点Xの電位と、ダミー線13の接続点の電位
を自動零点検出器15で比較し、記憶する。そのあと、
ワード線3に電流を流し、記憶した電位差より大きくな
るか、小さくなるかによりアクセスした素子の記録され
ていた状態を判別する。
Next, the operation as a memory will be explained with reference to FIG. Regarding recording, only the memory element 11 whose word line 3 and sense line 12 are switched on at the same time is recorded. As explained above, the recording state is determined by the direction of the current flowing through the sense line 12.
The direction of the current is determined by the switching element. For reproduction, first, the switching element 17 of the sense line 12 that accesses the word line 3 is turned on without passing a current, and the automatic zero point detector 15 detects the potential at the connection point X in the figure and the potential at the connection point of the dummy line 13. Compare and memorize. after that,
A current is passed through the word line 3, and the recorded state of the accessed element is determined based on whether the potential difference becomes larger or smaller than the stored potential difference.

【0007】[0007]

【発明が解決しようとする課題】このように従来の磁性
薄膜メモリはメモリ素子11をセンス線12に直列につ
ないでいるため、各メモリ素子11の抵抗が直列に入り
センス線12のインピーダンスがつなぐメモリ素子11
の数に比例して大きくなる。そのため信号のS/Nを確
保するためには1本のセンス線にかぎられた数(従来例
では4)のメモリ素子しか配置できない。しかも信号の
検出を基本的には、センス線12の抵抗値を静的な状態
で行なっているため、比較抵抗25が必要である。この
ため、メモリ素子11の抵抗の温度特性の補償も必要で
、結局比較抵抗25も磁性薄膜で作らなければならない
など構造も複雑で設計ゆう度があまりとれない等の問題
点があった。
[Problems to be Solved by the Invention] As described above, since the conventional magnetic thin film memory connects the memory element 11 in series to the sense line 12, the resistance of each memory element 11 enters in series and the impedance of the sense line 12 connects. Memory element 11
increases in proportion to the number of Therefore, in order to ensure the signal-to-noise ratio of the signal, only a limited number of memory elements (four in the conventional example) can be arranged on one sense line. Moreover, since the signal is basically detected with the resistance value of the sense line 12 in a static state, the comparison resistor 25 is necessary. Therefore, it is necessary to compensate for the temperature characteristics of the resistance of the memory element 11, and the comparative resistor 25 must also be made of a magnetic thin film, resulting in problems such as a complicated structure and limited flexibility in design.

【0008】この発明は上記のような問題点を解決する
ためになされたもので、極めて多数のメモリ数のメモリ
素子を高密度に実装でき、しかも設計ゆう度の確保の容
易な磁性薄膜メモリおよびその読み出し方法を提供する
ことを目的とする。
The present invention was made in order to solve the above-mentioned problems, and it provides a magnetic thin film memory and a magnetic thin film memory that can mount an extremely large number of memory elements at high density and easily ensure design likelihood. The purpose is to provide a method for reading the information.

【0009】[0009]

【課題を解決するための手段】この発明に係る磁性薄膜
メモリは、薄膜磁性体の磁化の向きによって情報を記録
する磁性薄膜メモリ素子を複数個有する磁性薄膜メモリ
であって、上記磁性薄膜メモリ素子の1つの記憶単位が
すくなくとも磁性薄膜と非線形の電流−電圧特性を有す
る半導体素子で構成されているものである。
[Means for Solving the Problems] A magnetic thin film memory according to the present invention is a magnetic thin film memory having a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material, wherein the magnetic thin film memory element One memory unit is composed of at least a magnetic thin film and a semiconductor element having nonlinear current-voltage characteristics.

【0010】また、この発明に係る磁性薄膜メモリは、
薄膜磁性体の磁化の向きによって情報を記録する磁性薄
膜メモリ素子を複数個有する磁性薄膜メモリであって、
1つの記憶単位がすくなくとも磁性薄膜と非線形の電流
−電圧特性を有する半導体素子で構成されている磁性薄
膜メモリ素子を行列状に配置したものである。
[0010] Furthermore, the magnetic thin film memory according to the present invention includes:
A magnetic thin film memory having a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material,
One memory unit is formed by arranging magnetic thin film memory elements in a matrix, each of which is composed of at least a magnetic thin film and a semiconductor element having nonlinear current-voltage characteristics.

【0011】また、この発明に係る磁性薄膜メモリは、
薄膜磁性体の磁化の向きによって情報を記録する磁性薄
膜メモリ素子を複数個有する磁性薄膜メモリであって、
1つの記憶単位がすくなくとも磁性薄膜と非線形の電流
−電圧特性を有する半導体素子で構成されている磁性薄
膜メモリ素子を行列状に配置し、該行列状に配置した磁
性薄膜メモリを複数段に積層したものである。
[0011] Furthermore, the magnetic thin film memory according to the present invention has the following features:
A magnetic thin film memory having a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material,
Magnetic thin film memory elements in which one memory unit is composed of at least a magnetic thin film and a semiconductor element having nonlinear current-voltage characteristics are arranged in a matrix, and the magnetic thin film memories arranged in the matrix are stacked in multiple stages. It is something.

【0012】また、この発明に係る磁性発明メモリは、
基板上に半導体材料を用いて能動素子を形成し、該基板
上に薄膜磁性体の磁化の向きによって情報を記録する磁
性薄膜メモリ素子を絶縁体を介して積層した磁性薄膜メ
モリであり、上記能動素子と上記磁性薄膜メモリ素子が
配線材料により接続されているものである。
[0012] Furthermore, the magnetic invention memory according to the present invention includes:
This is a magnetic thin film memory in which an active element is formed using a semiconductor material on a substrate, and a magnetic thin film memory element that records information according to the direction of magnetization of a thin film magnetic material is laminated on the substrate via an insulator. The element and the magnetic thin film memory element are connected by a wiring material.

【0013】また、この発明に係る磁性薄膜メモリの読
み出し方法は、薄膜磁性体の磁化の向きによって情報を
記録する磁性薄膜メモリ素子を複数個有する磁性薄膜メ
モリの再生方法が、磁性薄膜にバイアス磁界を印加する
ことにより磁性薄膜メモリ素子の出力変化を読み出すも
のである。
[0013] Furthermore, the reading method for a magnetic thin film memory according to the present invention is such that the reproducing method for a magnetic thin film memory having a plurality of magnetic thin film memory elements that record information according to the direction of magnetization of the thin film magnetic material is performed by applying a bias magnetic field to the magnetic thin film. The change in the output of the magnetic thin film memory element is read out by applying .

【0014】[0014]

【作用】この発明においては、磁性薄膜メモリ素子の1
つの記憶単位をすくなくとも磁性薄膜と非線形の電流−
電圧特性を有する半導体素子で構成する。これにより、
ノイズや消費電力がメモリ素子数にあまり依存せず、大
規模な磁性薄膜メモリを供給できる。
[Operation] In this invention, one of the magnetic thin film memory elements is
Magnetic thin film and nonlinear current with at least two memory units
Constructed of semiconductor elements with voltage characteristics. This results in
Noise and power consumption do not depend much on the number of memory elements, making it possible to supply large-scale magnetic thin film memories.

【0015】また、この発明においては、磁性薄膜メモ
リ素子を行列状に配置し、半導体素子により読み出すメ
モリ素子の再生信号が実効的に他のメモリ素子を通らな
いように構成する。これにより、単一基板上に大規模な
磁性薄膜メモリを形成し、高いS/Nを有する出力信号
を得ることができる。
Further, in the present invention, the magnetic thin film memory elements are arranged in rows and columns so that the reproduction signal of the memory element read by the semiconductor element does not effectively pass through other memory elements. This makes it possible to form a large-scale magnetic thin film memory on a single substrate and obtain an output signal with a high S/N ratio.

【0016】また、この発明においては、磁性薄膜メモ
リ素子を行列状に配置し、これを複数段に積層する。こ
れにより、大規模な磁性薄膜メモリを形成できる。
Further, in the present invention, the magnetic thin film memory elements are arranged in rows and columns and stacked in a plurality of stages. Thereby, a large-scale magnetic thin film memory can be formed.

【0017】また、この発明においては、基板に半導体
材料を用いて一層目に能動素子を形成し、メモリ層を上
層に配する。これにより、能動素子の性能が向上し、信
頼性の高い磁性薄膜メモリを形成できる。
Further, in the present invention, a semiconductor material is used for the substrate, active elements are formed in the first layer, and a memory layer is arranged in the upper layer. This improves the performance of the active element and makes it possible to form a highly reliable magnetic thin film memory.

【0018】また、この発明においては、再生信号の読
み出し方法に、バイアス磁界の変化による動的な信号を
用いる。これにより、メモリ素子の抵抗の温度特性の補
償を行わずに、簡単な回路構成で、磁性薄膜メモリを構
成することができる。
Further, in the present invention, a dynamic signal based on a change in the bias magnetic field is used in the readout method of the reproduced signal. Thereby, a magnetic thin film memory can be constructed with a simple circuit configuration without compensating for the temperature characteristics of the resistance of the memory element.

【0019】[0019]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。なお、各図において、従来装置と対応する部分に
は同一符号を付して説明する。図1は磁性薄膜メモリ中
の1つの記録単位の斜視図である。図において、センス
線12b上の一部に半導体素子例えばダイオード20(
20aはp型半導体、20bはn型半導体よりなるPN
接合ダイオード)を形成し、更にPN接合ダイオード2
0aに接するように、磁性薄膜1b、金属薄膜2及び磁
性薄膜1aをセンス線12bに絶縁体19aを介して形
成し、磁性薄膜メモリ素子11Aを構成する。また、磁
性薄膜メモリ素子11Aの他端をセンス線12aに接続
する。センス線12aはセンス線12bと絶縁体19a
によって電気的に絶縁されている。また、磁性薄膜1a
上に絶縁体19bを介してワード線3が横断している。 図2は図1の磁性薄膜メモリ素子11Aを用いた例えば
4ビット×4ビットの磁性薄膜メモリの回路図である。 ここで、17a,17bはセンス線12を選択するスイ
ッチング素子、18はワード線3を選択するスイッチン
グ素子、21は再生出力の増幅器である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In each figure, parts corresponding to those of the conventional device are designated by the same reference numerals and explained. FIG. 1 is a perspective view of one recording unit in a magnetic thin film memory. In the figure, a semiconductor element such as a diode 20 (
20a is a p-type semiconductor, and 20b is a PN consisting of an n-type semiconductor.
A PN junction diode 2 is formed, and a PN junction diode 2 is formed.
A magnetic thin film 1b, a metal thin film 2, and a magnetic thin film 1a are formed on the sense line 12b via an insulator 19a so as to be in contact with the magnetic thin film memory element 11A. Further, the other end of the magnetic thin film memory element 11A is connected to the sense line 12a. The sense line 12a is connected to the sense line 12b and the insulator 19a.
electrically isolated by Moreover, the magnetic thin film 1a
A word line 3 crosses over it with an insulator 19b interposed therebetween. FIG. 2 is a circuit diagram of a 4-bit×4-bit magnetic thin film memory using the magnetic thin film memory element 11A of FIG. 1, for example. Here, 17a and 17b are switching elements for selecting the sense line 12, 18 is a switching element for selecting the word line 3, and 21 is an amplifier for reproduction output.

【0020】次に動作について説明する。図2上の斜線
で示す磁性薄膜メモリ素子11Aを記録する場合につい
て述べる。磁性薄膜1aの磁化容易軸方向50は図3に
示すように従来例の磁化困難軸方向である。まず、スイ
ッチング素子17a3,17b3をオンし、記録電流I
rs70(図4)をセンス線12に流す。この電流によ
り発生する磁界Hsf66(図4)の向きは磁化困難軸
方向51にほぼ平行となり、磁化の向き52aは、磁化
困難軸方向51に傾く。この記録電流Irs70を充分
に流した状態を図4に示す。次にスイッチング素子18
3 をオンし、スイッチング素子14でワード線3に流
れる電流の向きを決める。このワード線3に流れる電流
によって発生する磁界Hex60(図5)は磁化容易軸
方向50に平行であるから、ワード線3に流れる電流I
rw61,71の向きによって磁化の向き52aを決め
ることができる。この状態を図5に示す。最後にスイッ
チング素子17a3,17b3,183 をオフして磁
性薄膜1aに対する印加磁界を取り除くと、磁化向き5
2aは磁化容易軸方向50のいずれかの方向に向く。こ
の状態を図6に示す。但し、図6(a),(b)は各々
図5(a),(b)に対応する。
Next, the operation will be explained. The case where recording is performed on the magnetic thin film memory element 11A indicated by diagonal lines in FIG. 2 will be described. The easy magnetization axis direction 50 of the magnetic thin film 1a is the hard magnetization axis direction of the conventional example, as shown in FIG. First, the switching elements 17a3 and 17b3 are turned on, and the recording current I
rs70 (FIG. 4) is applied to the sense line 12. The direction of the magnetic field Hsf66 (FIG. 4) generated by this current is approximately parallel to the hard magnetization axis direction 51, and the magnetization direction 52a is inclined to the hard magnetization axis direction 51. FIG. 4 shows a state in which this recording current Irs70 is sufficiently applied. Next, the switching element 18
3 is turned on, and the switching element 14 determines the direction of the current flowing through the word line 3. Since the magnetic field Hex60 (FIG. 5) generated by the current flowing through the word line 3 is parallel to the easy axis direction 50, the current I flowing through the word line 3
The direction of magnetization 52a can be determined by the directions of rw61 and rw71. This state is shown in FIG. Finally, when the switching elements 17a3, 17b3, and 183 are turned off to remove the magnetic field applied to the magnetic thin film 1a, the magnetization direction is 5.
2a faces in either direction of the easy magnetization axis direction 50. This state is shown in FIG. However, FIGS. 6A and 6B correspond to FIGS. 5A and 5B, respectively.

【0021】次に図2上の斜線の磁性薄膜メモリ素子1
1Aを再生する場合について述べる。再生動作に入る前
の磁性薄膜メモリ素子11Aの状態は図6(a)あるい
は(b)の状態にある。再生動作は記録と同様スイッチ
ング素子17a3,17b3をオンし、磁性薄膜1aに
バイアス磁界を印加する。ただしこの時センス線12a
に流す電流Irs70は記録時より小さくする。この状
態を図7に示す。但し、図7(a)と(b)は各々図6
(a),(b)に対応する。次にスイッチング素子18
3 をオンし、一方向にワード線3に電流71を流すと
、図8に示すような磁化状態になる。この図8(a),
(b)も図6,図7の(a),(b)に対応する。これ
はセンス線12aに流れる電流に対して磁化の向き52
aのなす角が記録状態の違いによって異なるため磁気抵
抗効果(図22参照)により抵抗の差として記録状態が
わかることを意味する。ここでワード線3に流す電流を
ステップ状とすると、磁性薄膜メモリ素子11Aの抵抗
はステップ状に変化する。これを図9に示す。但し図9
(a),(b)は図8(a),(b)に対応したもので
、図9(c)はワード線3の電流を示す。この時図2上
のX点における電位は、記録磁化が図6(a)の場合図
10(a)に示すように、下にピークを持つ波形になり
、一方、記録磁化が図6(b)の場合、図10(b)に
示すように、上にピークを持つ波形になる。この信号の
交流部分を増幅器21で増幅して所定の再生出力を得る
Next, the diagonally shaded magnetic thin film memory element 1 in FIG.
The case of reproducing 1A will be described. The state of the magnetic thin film memory element 11A before starting the reproduction operation is as shown in FIG. 6(a) or (b). In the reproducing operation, similarly to recording, the switching elements 17a3 and 17b3 are turned on and a bias magnetic field is applied to the magnetic thin film 1a. However, at this time, the sense line 12a
The current Irs70 passed through is made smaller than that during recording. This state is shown in FIG. However, Fig. 7(a) and (b) are respectively Fig. 6
Corresponds to (a) and (b). Next, the switching element 18
3 is turned on and a current 71 is passed through the word line 3 in one direction, a magnetized state as shown in FIG. 8 is obtained. This figure 8(a),
(b) also corresponds to (a) and (b) in FIGS. 6 and 7. This is due to the magnetization direction 52 with respect to the current flowing through the sense line 12a.
This means that the recorded state can be determined as a difference in resistance due to the magnetoresistive effect (see FIG. 22) because the angle formed by a differs depending on the recording state. If the current flowing through the word line 3 is made stepwise, the resistance of the magnetic thin film memory element 11A changes stepwise. This is shown in FIG. However, Figure 9
(a) and (b) correspond to FIGS. 8(a) and (b), and FIG. 9(c) shows the current in the word line 3. At this time, when the recorded magnetization is in FIG. 6(a), the potential at point X in FIG. ), the waveform has a peak at the top, as shown in FIG. 10(b). The AC portion of this signal is amplified by an amplifier 21 to obtain a predetermined reproduction output.

【0022】図2において、各磁性薄膜メモリ素子11
Aにダイオード20を入れてある理由を以下に説明する
。ダイオード20を除いた場合の簡略化した回路図を図
11に示す。但し、Sijは図2の各磁性薄膜メモリ素
子に相当する。この場合、センス線12a,12bに接
続されている磁性薄膜メモリ素子はS33以外にも例え
ばS13,S14,S34を通過するなど磁性薄膜メモ
リ素子3素子を経由すれば回路が多数存在する。この回
路は、アクセスした磁性薄膜メモリ素子に対して並列に
入るため、メモリ構成が大規模になる程合計のインピー
ダンスは小さくなり、消費電力が大きくなりしかもノイ
ズが増加する。これに対して、本実施例の如くダイオー
ド20を磁性薄膜メモリ素子11Aに直列にそう入すれ
ば、並列に入る回路は存在しなくなるので、基本的には
メモリ構成をいくら大規模にしても消費電力やノイズは
変らない。
In FIG. 2, each magnetic thin film memory element 11
The reason why the diode 20 is inserted at A will be explained below. A simplified circuit diagram without the diode 20 is shown in FIG. However, Sij corresponds to each magnetic thin film memory element in FIG. In this case, if the magnetic thin film memory elements connected to the sense lines 12a and 12b pass through the three magnetic thin film memory elements in addition to S33, such as through S13, S14, and S34, there are many circuits. Since this circuit is connected in parallel to the accessed magnetic thin film memory element, the larger the memory configuration, the smaller the total impedance, which increases power consumption and noise. On the other hand, if the diode 20 is inserted in series with the magnetic thin film memory element 11A as in this embodiment, there will be no parallel circuit, so basically no matter how large the memory configuration is, the consumption will be reduced. Power and noise remain unchanged.

【0023】実施例2.なお、上記実施例では、平面構
造のものについて示したが、この構造を多層化すること
により一層大規模メモリが実現できる。また、磁性薄膜
メモリ素子の配線を3次元に配置する方法もある。これ
について図12によって説明する。磁性薄膜メモリ素子
11Aおよびダイオード20、ワード線3、センス線1
2aを形成し、ダイオード20のn型半導体のPN接合
ダイオード20bに接するようにスルーホールをあけ、
センス線12bを埋めこんでゆく。但し図12において
、空いた空間は絶縁体19a,19bなどでおおわれて
いる。このような層を何層か積み重ねていくことにより
大規模メモリを形成する。この場合、半導体基板上の第
一層目にスイッチング素子や増幅器を形成し、二層目以
上をメモリ層とすると、特性の良い、周辺回路が得れる
ので望ましい。但し一層目の空いた空間にメモリを形成
してももちろんよい。また、この実施例ではセンス線1
2bをスルーホールに入れたが他の配線であってもよい
Example 2. In the above embodiment, a planar structure is shown, but a larger scale memory can be realized by forming this structure into multiple layers. There is also a method of three-dimensionally arranging the wiring of the magnetic thin film memory element. This will be explained with reference to FIG. Magnetic thin film memory element 11A, diode 20, word line 3, sense line 1
2a, and a through hole is formed so as to be in contact with the n-type semiconductor PN junction diode 20b of the diode 20,
Embed the sense line 12b. However, in FIG. 12, the empty space is covered with insulators 19a, 19b, etc. A large-scale memory is formed by stacking several such layers. In this case, it is preferable to form switching elements and amplifiers in the first layer on the semiconductor substrate, and use the second or higher layers as memory layers, since a peripheral circuit with good characteristics can be obtained. However, it is of course possible to form a memory in the empty space of the first layer. In addition, in this embodiment, the sense line 1
2b is placed in a through hole, but other wiring may be used.

【0024】実施例3.また、以上の実施例では読み出
しに磁気抵抗効果を用いていたが読み出しに異常ホール
効果を用いてもよい。以下図によって説明する。図13
は磁性薄膜メモリ素子11Bに電流Irs70を流した
ものである。ここでは磁性薄膜メモリ素子11BにTb
HoCoなどの垂直磁化膜を用いている。図中図13(
a)は磁化の向きが上向き、図13(b)は下向きであ
る。この時、電流Trs70と磁化方向に直角方向に電
圧VH が発生するが、磁化の向きによって正負が逆に
なる。この異常ホール効果を用いた磁性薄膜メモリ素子
11Bを図14にそのメモリの回路の一部を図15に示
す。図14,図15は夫々ほぼ図1,図2に対応するが
、本実施例では磁性薄膜メモリ素子11Bに垂直磁化膜
を用いているため、ワード線3より発生する磁界のうち
磁性薄膜メモリ素子11Bの垂直成分だけが有効となる
。そのためワード線3は磁性薄膜メモリ素子11Bの横
に接近させて配置している。動作原理は、磁気抵抗効果
を用いた実施例と同様である。但し、80は磁性薄膜メ
モリ素子11Bの電位をグランドにおとすグランド線で
ある。
Example 3. Further, in the above embodiments, the magnetoresistive effect was used for reading, but the anomalous Hall effect may be used for reading. This will be explained below using figures. Figure 13
In the figure, a current Irs70 is passed through the magnetic thin film memory element 11B. Here, Tb is applied to the magnetic thin film memory element 11B.
A perpendicular magnetization film such as HoCo is used. Figure 13 (
In a), the direction of magnetization is upward, and in FIG. 13(b), the direction of magnetization is downward. At this time, a voltage VH is generated in a direction perpendicular to the current Trs70 and the magnetization direction, but the polarity is reversed depending on the magnetization direction. A magnetic thin film memory element 11B using this anomalous Hall effect is shown in FIG. 14, and a part of the memory circuit is shown in FIG. 14 and 15 roughly correspond to FIGS. 1 and 2, respectively. However, in this embodiment, since a perpendicular magnetization film is used for the magnetic thin film memory element 11B, the magnetic thin film memory element Only the vertical component of 11B is valid. Therefore, the word line 3 is placed close to the side of the magnetic thin film memory element 11B. The operating principle is similar to the embodiment using the magnetoresistive effect. However, 80 is a ground line that connects the potential of the magnetic thin film memory element 11B to ground.

【0025】実施例4.以上の実施例では、磁性薄膜メ
モリ素子11A,11B部分が磁性薄膜1a、金属薄膜
2、磁性薄膜1bの3層構造となっており、記録および
再生時にセンス線12に流れる電流により自らの電流で
磁界がかかるいわゆるセルフバイアス方式について述べ
たが、センス線12に接続される磁性薄膜メモリ素子を
磁性薄膜1a1層としバイアス線を別に設けてもよい。 このときの磁性薄膜メモリ素子11Cの断面図を図16
に示す。センス線12a,12b、磁性薄膜1aの下側
に絶縁体19を介してバイアス線81を設け、前述の実
施例における磁界Hsf66をこのバイアス線81に流
れる電流によって得る。
Example 4. In the above embodiment, the magnetic thin film memory elements 11A and 11B have a three-layer structure of the magnetic thin film 1a, the metal thin film 2, and the magnetic thin film 1b, and generate their own current by the current flowing through the sense line 12 during recording and reproduction. Although the so-called self-bias method in which a magnetic field is applied has been described, the magnetic thin film memory element connected to the sense line 12 may be made of a layer of magnetic thin film 1a1, and a bias line may be provided separately. FIG. 16 shows a cross-sectional view of the magnetic thin film memory element 11C at this time.
Shown below. A bias line 81 is provided below the sense lines 12a, 12b and the magnetic thin film 1a via an insulator 19, and the magnetic field Hsf66 in the above embodiment is obtained by the current flowing through the bias line 81.

【0026】実施例5.また、以上の実施例におけるワ
ード線3およびバイアス線81は各磁界薄膜に対して1
本が対応しているが、磁性薄膜メモリ素子に対してほぼ
対称な位置にもう1本設け1対で磁界を発生させると、
磁性薄膜全体に必要量の磁界を印加することが容易とな
る。この場合1対の各々は逆向きに電流を流すこととな
る。ワード線を1対にした時の図1に対応した断面図を
図17に示す。図中3a,3bが1対のワード線であり
、11Dが磁性薄膜メモリ素子である。
Example 5. In addition, the word line 3 and bias line 81 in the above embodiment are connected to each other for each magnetic field thin film.
The book corresponds to this, but if you install another one at a position almost symmetrical to the magnetic thin film memory element and generate a magnetic field as a pair,
It becomes easy to apply the necessary amount of magnetic field to the entire magnetic thin film. In this case, each of the pair causes current to flow in opposite directions. FIG. 17 shows a cross-sectional view corresponding to FIG. 1 when word lines are paired. In the figure, 3a and 3b are a pair of word lines, and 11D is a magnetic thin film memory element.

【0027】実施例6.また、以上の実施例では、磁性
薄膜メモリ素子に直列にダイオード20をつないでいた
が、センス線12bからセンス線12aに向かって電流
が流れなければよいのでそれを実現する方法であればよ
い。例えば半導体素子としてダイオードのかわりにトラ
ンジスタにしても同様の効果を発揮する。また、上述の
実施例では、記録した情報を読み出す手段として薄膜磁
性体の磁性抵抗効果または異常ホール効果を用いたが異
常磁気抵抗効果を用いてもよい。また、上述の実施例で
は、記録線すなわちワード線3の直下に磁性薄膜メモリ
素子を形成したが、記録線の直上に形成してもよい。更
に磁性薄膜メモリを構成する電流線すなわちワード線3
、センス線12を超伝導線で形成してもよい。
Example 6. Further, in the above embodiment, the diode 20 is connected in series with the magnetic thin film memory element, but since it is sufficient that no current flows from the sense line 12b toward the sense line 12a, any method that realizes this may be used. For example, a similar effect can be obtained by using a transistor instead of a diode as the semiconductor element. Furthermore, in the above embodiments, the magnetoresistance effect of the thin film magnetic material or the anomalous Hall effect is used as a means for reading recorded information, but the anomalous magnetoresistance effect may also be used. Further, in the above-described embodiment, the magnetic thin film memory element was formed directly under the recording line, that is, the word line 3, but it may be formed directly above the recording line. Furthermore, a current line, that is, a word line 3 constituting the magnetic thin film memory
, the sense line 12 may be formed of a superconducting wire.

【0028】[0028]

【発明の効果】以上のようにこの発明によれば、複数の
磁性薄膜メモリ素子の1つの記憶単位が少なくとも磁性
薄膜と電気抵抗が印加電圧の正負,大小に依存する性質
を有する半導体素子で構成されるので、ノイズや消費電
力がメモリ素子数にあまり依存せず、大規模なメモリを
供給することができるという効果を奏する。
As described above, according to the present invention, one storage unit of a plurality of magnetic thin film memory elements is composed of at least a magnetic thin film and a semiconductor element whose electric resistance depends on the sign and magnitude of the applied voltage. Therefore, noise and power consumption do not depend much on the number of memory elements, and a large-scale memory can be provided.

【0029】また、この発明によれば、磁性薄膜メモリ
素子の記録単位を行列状に配置し、しかも半導体素子に
より読み出す磁性薄膜メモリ素子の再生信号が実効的に
他の磁性薄膜メモリ素子を通らないようにしたので、単
一基板上に大規模なメモリを形成し、高いS/Nを有す
る出力信号を得ることができるという効果を奏する。
Further, according to the present invention, the recording units of the magnetic thin film memory element are arranged in a matrix, and the reproduction signal of the magnetic thin film memory element read by the semiconductor element does not effectively pass through other magnetic thin film memory elements. As a result, a large-scale memory can be formed on a single substrate, and an output signal with a high S/N ratio can be obtained.

【0030】また、この発明によれば、磁性薄膜メモリ
素子の記録単位を3次元に配置することにより大規模な
メモリを形成することができるという効果を奏する。
Further, according to the present invention, it is possible to form a large-scale memory by arranging the recording units of the magnetic thin film memory element three-dimensionally.

【0031】また、この発明によれば、基板に半導体材
料を用い、一層目に能動素子を形成し、メモリ層を上層
に配するようにしたので、能動素子の性能を向上させ、
信頼性の高い磁性薄膜メモリを形成することができると
いう効果を奏する。
Further, according to the present invention, since a semiconductor material is used for the substrate, the active element is formed in the first layer, and the memory layer is arranged in the upper layer, the performance of the active element is improved.
This has the effect that a highly reliable magnetic thin film memory can be formed.

【0032】また、この発明によれば、再生信号の読み
出し方法にバイアス磁界の変化による動的な信号を用い
たので、抵抗の温度特性の補償などを行なわずに簡単な
回路構成で磁性薄膜メモリを構成することができるとい
う効果を奏する。
Further, according to the present invention, since a dynamic signal based on a change in the bias magnetic field is used as the readout method of the reproduced signal, a magnetic thin film memory can be manufactured with a simple circuit configuration without having to compensate for the temperature characteristics of the resistance. This has the effect that it is possible to configure the following.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による磁性薄膜メモリの素
子の斜視図である。
FIG. 1 is a perspective view of a magnetic thin film memory element according to an embodiment of the present invention.

【図2】この発明の一実施例による磁性薄膜メモリの回
路図である。
FIG. 2 is a circuit diagram of a magnetic thin film memory according to an embodiment of the present invention.

【図3】磁性薄膜メモリ素子に対する記録動作を説明す
る原理図である。
FIG. 3 is a principle diagram illustrating a recording operation for a magnetic thin film memory element.

【図4】磁性薄膜メモリ素子に対する記録動作を説明す
る原理図である。
FIG. 4 is a principle diagram illustrating a recording operation for a magnetic thin film memory element.

【図5】磁性薄膜メモリ素子に対する記録動作を説明す
る原理図である。
FIG. 5 is a principle diagram illustrating a recording operation for a magnetic thin film memory element.

【図6】磁性薄膜メモリ素子に対する再生動作を説明す
る原理図である。
FIG. 6 is a principle diagram illustrating a read operation for a magnetic thin film memory element.

【図7】磁性薄膜メモリ素子に対する再生動作を説明す
る原理図である。
FIG. 7 is a principle diagram illustrating a read operation for a magnetic thin film memory element.

【図8】磁性薄膜メモリ素子に対する再生動作を説明す
る原理図である。
FIG. 8 is a principle diagram illustrating a read operation for a magnetic thin film memory element.

【図9】磁性薄膜メモリ素子に対する再生動作を説明す
る原理図である。
FIG. 9 is a principle diagram illustrating a read operation for a magnetic thin film memory element.

【図10】磁性薄膜メモリ素子に対する再生動作を説明
する原理図である。
FIG. 10 is a principle diagram illustrating a read operation for a magnetic thin film memory element.

【図11】この発明を用いない場合の磁性薄膜メモリの
簡略化した回路図である。
FIG. 11 is a simplified circuit diagram of a magnetic thin film memory without using the present invention.

【図12】この発明の他の実施例による磁性薄膜メモリ
素子の斜視図である。
FIG. 12 is a perspective view of a magnetic thin film memory device according to another embodiment of the present invention.

【図13】図12の実施例による磁性薄膜に対する再生
動作を説明する原理図である。
13 is a principle diagram illustrating the reproduction operation for the magnetic thin film according to the embodiment of FIG. 12; FIG.

【図14】この発明の他の実施例による磁性薄膜メモリ
の素子の斜視図である。
FIG. 14 is a perspective view of a magnetic thin film memory element according to another embodiment of the present invention.

【図15】図14の実施例による磁性薄膜メモリの回路
図である。
FIG. 15 is a circuit diagram of a magnetic thin film memory according to the embodiment of FIG. 14;

【図16】この発明の他の実施例による磁性薄膜メモリ
の素子の断面図である。
FIG. 16 is a cross-sectional view of a magnetic thin film memory element according to another embodiment of the present invention.

【図17】この発明の他の実施例による磁性薄膜メモリ
の素子の断面図である。
FIG. 17 is a cross-sectional view of a magnetic thin film memory element according to another embodiment of the present invention.

【図18】従来の磁性薄膜メモリの素子の斜視図である
FIG. 18 is a perspective view of a conventional magnetic thin film memory element.

【図19】従来の磁性薄膜メモリの回路図である。FIG. 19 is a circuit diagram of a conventional magnetic thin film memory.

【図20】磁気抵抗効果の説明図である。FIG. 20 is an explanatory diagram of the magnetoresistive effect.

【図21】磁気抵抗効果の説明図である。FIG. 21 is an explanatory diagram of the magnetoresistive effect.

【図22】従来の磁性薄膜メモリ素子の記録状態図であ
る。
FIG. 22 is a recording state diagram of a conventional magnetic thin film memory element.

【図23】従来の磁性薄膜メモリ素子の再生の原理図で
ある。
FIG. 23 is a diagram illustrating the principle of reproducing a conventional magnetic thin film memory element.

【図24】従来の磁性薄膜メモリ素子の再生の原理図で
ある。
FIG. 24 is a diagram illustrating the principle of reproducing a conventional magnetic thin film memory element.

【符号の説明】[Explanation of symbols]

1,1a,1b    磁性薄膜 3    ワード線 11A〜11D    磁性薄膜メモリ素子12,12
a,12b    センス線19,19a,19b  
  絶縁体 20    ダイオード
1, 1a, 1b magnetic thin film 3 word lines 11A to 11D magnetic thin film memory elements 12, 12
a, 12b sense lines 19, 19a, 19b
Insulator 20 Diode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  薄膜磁性体の磁化の向きによって情報
を記録する磁性薄膜メモリ素子を複数個有する磁性薄膜
メモリであって、上記磁性薄膜メモリ素子の1つの記憶
単位がすくなくとも磁性薄膜と非線形の電流−電圧特性
を有する半導体素子で構成されていることを特徴とする
磁性薄膜メモリ。
1. A magnetic thin film memory comprising a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material, wherein one storage unit of the magnetic thin film memory element has at least a magnetic thin film and a nonlinear current. - A magnetic thin film memory comprising a semiconductor element having voltage characteristics.
【請求項2】  薄膜磁性体の磁化の向きによって情報
を記録する磁性薄膜メモリ素子を複数個有する磁性薄膜
メモリであって、1つの記憶単位がすくなくとも磁性薄
膜と非線形の電流−電圧特性を有する半導体素子で構成
されている磁性薄膜メモリ素子を行列状に配置したこと
を特徴とする磁性薄膜メモリ。
2. A magnetic thin film memory comprising a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material, wherein one memory unit is a semiconductor having at least nonlinear current-voltage characteristics with the magnetic thin film. A magnetic thin film memory characterized in that magnetic thin film memory elements made up of elements are arranged in a matrix.
【請求項3】  薄膜磁性体の磁化の向きによって情報
を記録する磁性薄膜メモリ素子を複数個有する磁性薄膜
メモリであって、1つの記憶単位がすくなくとも磁性薄
膜と非線形の電流−電圧特性を有する半導体素子で構成
されている磁性薄膜メモリ素子を行列状に配置し、該行
列状に配置した磁性薄膜メモリを複数段に積層したこと
を特徴とする磁性薄膜メモリ。
3. A magnetic thin film memory comprising a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material, wherein one memory unit is a semiconductor having at least nonlinear current-voltage characteristics with the magnetic thin film. 1. A magnetic thin film memory characterized in that magnetic thin film memory elements made up of elements are arranged in a matrix, and the magnetic thin film memories arranged in the matrix are stacked in multiple stages.
【請求項4】  基板上に半導体材料を用いて能動素子
を形成し、該基板上に薄膜磁性体の磁化の向きによって
情報を記録する磁性薄膜メモリ素子を絶縁体を介して積
層した磁性薄膜メモリであり、上記能動素子と上記磁性
薄膜メモリ素子が配線材料により接続されていることを
特徴とする磁性薄膜メモリ。
4. A magnetic thin film memory in which an active element is formed using a semiconductor material on a substrate, and a magnetic thin film memory element that records information according to the direction of magnetization of a thin film magnetic material is laminated on the substrate via an insulator. A magnetic thin film memory, wherein the active element and the magnetic thin film memory element are connected by a wiring material.
【請求項5】  薄膜磁性体の磁化の向きによって情報
を記録する磁性薄膜メモリ素子を複数個有する磁性薄膜
メモリの再生方法が、磁性薄膜にバイアス磁界を印加す
ることにより磁性薄膜メモリ素子の出力変化を読み出す
ことを特徴とする磁性薄膜メモリの読み出し方法。
5. A method for reproducing a magnetic thin film memory having a plurality of magnetic thin film memory elements that record information depending on the direction of magnetization of a thin film magnetic material, which changes the output of the magnetic thin film memory element by applying a bias magnetic field to the magnetic thin film. A reading method for a magnetic thin film memory characterized by reading out.
JP3116415A 1991-03-06 1991-05-22 Magnetic thin film memory and its read-out method Pending JPH04344383A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3116415A JPH04344383A (en) 1991-05-22 1991-05-22 Magnetic thin film memory and its read-out method
DE69225920T DE69225920T2 (en) 1991-03-06 1992-03-04 Magnetic thin film memory device
EP92301857A EP0507451B1 (en) 1991-03-06 1992-03-04 Magnetic thin film memory device
US07/847,964 US5361226A (en) 1991-03-06 1992-03-05 Magnetic thin film memory device
KR1019920003622A KR970009765B1 (en) 1991-03-06 1992-03-05 Memory thin film memory device and recorded/regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116415A JPH04344383A (en) 1991-05-22 1991-05-22 Magnetic thin film memory and its read-out method

Publications (1)

Publication Number Publication Date
JPH04344383A true JPH04344383A (en) 1992-11-30

Family

ID=14686508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116415A Pending JPH04344383A (en) 1991-03-06 1991-05-22 Magnetic thin film memory and its read-out method

Country Status (1)

Country Link
JP (1) JPH04344383A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110961A (en) * 1997-10-02 1999-04-23 Canon Inc Magnetic thin film memory
JP2003068983A (en) * 2001-06-28 2003-03-07 Sharp Corp Cross point memory having low crosstalk and electrically programmable resistance characteristics
JP2003068984A (en) * 2001-06-28 2003-03-07 Sharp Corp Cross point memory having low crosstalk and electrically programmable resistance characteristics
JP2005505888A (en) * 2001-10-09 2005-02-24 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Semiconductor memory device in which magnetoresistive memory cell is arranged at intersection of word line and bit line
KR100878306B1 (en) * 2001-01-29 2009-01-14 삼성전자주식회사 Cross point memory array including shared devices for blocking sneak path currents
US7723827B2 (en) 2002-05-13 2010-05-25 Nec Corporation Semiconductor storage device and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110961A (en) * 1997-10-02 1999-04-23 Canon Inc Magnetic thin film memory
KR100878306B1 (en) * 2001-01-29 2009-01-14 삼성전자주식회사 Cross point memory array including shared devices for blocking sneak path currents
JP2003068983A (en) * 2001-06-28 2003-03-07 Sharp Corp Cross point memory having low crosstalk and electrically programmable resistance characteristics
JP2003068984A (en) * 2001-06-28 2003-03-07 Sharp Corp Cross point memory having low crosstalk and electrically programmable resistance characteristics
JP2009146562A (en) * 2001-06-28 2009-07-02 Sharp Corp Cross point memory having electrically programmable resistance characteristic
JP2005505888A (en) * 2001-10-09 2005-02-24 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Semiconductor memory device in which magnetoresistive memory cell is arranged at intersection of word line and bit line
US7723827B2 (en) 2002-05-13 2010-05-25 Nec Corporation Semiconductor storage device and production method therefor

Similar Documents

Publication Publication Date Title
KR970009765B1 (en) Memory thin film memory device and recorded/regeneration method
US5448515A (en) Magnetic thin film memory and recording/reproduction method therefor
US5432373A (en) Magnetic spin transistor
US6111784A (en) Magnetic thin film memory element utilizing GMR effect, and recording/reproduction method using such memory element
US6191972B1 (en) Magnetic random access memory circuit
US5793697A (en) Read circuit for magnetic memory array using magnetic tunnel junction devices
EP1109170B1 (en) Magnetic memory device
US5565695A (en) Magnetic spin transistor hybrid circuit element
US5734605A (en) Multi-layer magnetic tunneling junction memory cells
US20020000597A1 (en) Nonvolatile semiconductor memory device and method for recording information
JP3869682B2 (en) Semiconductor device
US20040160800A1 (en) Stacked hybrid semiconductor-magnetic spin based memory
KR100397246B1 (en) Ferromagnetic GMR material
JP2002314164A (en) Magnetic tunnel element and its manufacturing method, thin film magnetic head, magnetic memory and magnetic sensor
US5969978A (en) Read/write memory architecture employing closed ring elements
KR20000017086A (en) Non-volatile magnetic memory cell and devices
CN1459792A (en) Triple sampling readout of magnetic RAM having series diode
EP0436274B1 (en) Thin film magnetic core memory and method of making same
US20050152180A1 (en) Separate write and read access architecture for a magnetic tunnel junction
US5864498A (en) Ferromagnetic memory using soft magnetic material and hard magnetic material
US6597618B2 (en) Magnetic tunnel junction magnetic random access memory
JP2911312B2 (en) Magnetic thin film memory and recording method thereof
JP3868699B2 (en) Magnetic memory device
JPH04344383A (en) Magnetic thin film memory and its read-out method
US7227771B2 (en) Magnetoresistive effect element and magnetic memory device