JPH04342810A - Oil feed device for hydraulically driven variable valve timing device - Google Patents

Oil feed device for hydraulically driven variable valve timing device

Info

Publication number
JPH04342810A
JPH04342810A JP11596391A JP11596391A JPH04342810A JP H04342810 A JPH04342810 A JP H04342810A JP 11596391 A JP11596391 A JP 11596391A JP 11596391 A JP11596391 A JP 11596391A JP H04342810 A JPH04342810 A JP H04342810A
Authority
JP
Japan
Prior art keywords
valve timing
variable valve
hydraulic
camshaft
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11596391A
Other languages
Japanese (ja)
Inventor
Nobuyuki Murakami
村 上 伸 之
Shuji Morita
森 田 修 二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11596391A priority Critical patent/JPH04342810A/en
Publication of JPH04342810A publication Critical patent/JPH04342810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To cool lubricant oil by providing a lubricant oil feed passage led to a variable valve timing device, in the vicinity of a wall surface upon which running air impinges. CONSTITUTION:A variable valve timing mechanism 20 is disposed between an air-intake cam shaft and a timing pulley 20, and changes the valve timing by hydraulically changing the phases of the cam shaft and the crankshaft. A solenoid control valve 56 is incorporated for the directional control of lubricant oil so as to control the direction of hydraulic pressure applied upon the variable valve timing mechanism 20. A lubricant oil passage led to the solenoid control valve 56 is provided in the vicinity of an engine wall surface 10 in front of a vehicle. The stream (a) of lubricant oil fed to a hydraulic drive mechanism is cooled by running air as shown by A.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は内燃機関の油圧駆動可
変バルブタイミング装置においてバルブタイミングを変
化させるための油圧駆動機構への作動油の給油装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for supplying hydraulic oil to a hydraulic drive mechanism for changing valve timing in a hydraulically driven variable valve timing system for an internal combustion engine.

【0002】0002

【従来の技術】カムシャフトとクランクシャフトとの間
の相対位相を制御するための油圧式駆動機構をカムシャ
フトとカムシャフトにクランクシャフトの回転を伝達す
る動力伝達部材との間に設けた油圧駆動可変バルブタイ
ミング装置は知られている。例えば、特開昭62−19
1636 号公報では、カムシャフトとクランク軸上の
タイミングプーリにタイミングベルトにて連結されるタ
イミングプーリとの間にヘリカル状の歯(スプライン)
を内周及び外周に形成したリングギヤを設け、このリン
グギヤをタイミングプーリ及びカムシャフトに係合させ
、このリングギヤを油圧によってカムシャフトの軸線と
平行な方向に移動させている。リングギヤの移動によっ
てヘリカルスプラインを介してタイミングプーリとカム
シャフトとは相対的に回転されバルブタイミングを可変
とすることができる。
[Prior Art] A hydraulic drive mechanism in which a hydraulic drive mechanism for controlling the relative phase between the camshaft and the crankshaft is provided between the camshaft and a power transmission member that transmits the rotation of the crankshaft to the camshaft. Variable valve timing devices are known. For example, JP-A-62-19
In the 1636 publication, helical teeth (splines) are installed between the camshaft and the timing pulley connected to the timing pulley on the crankshaft by a timing belt.
A ring gear is provided on the inner and outer peripheries, and this ring gear is engaged with a timing pulley and a camshaft, and this ring gear is moved by hydraulic pressure in a direction parallel to the axis of the camshaft. As the ring gear moves, the timing pulley and camshaft are rotated relative to each other via the helical spline, making it possible to vary the valve timing.

【0003】0003

【発明が解決しようとする課題】バルブタイミングを変
化させるため油圧駆動機構に作動油、例えば、内燃機関
の潤滑用の潤滑油が供給される。即ち、オイルポンプに
よってオイルパンから潤滑油が油圧駆動機構に供給され
る。ところが、潤滑油の冷却を強制的には行っていない
ため油圧機構への潤滑油の温度が高くなり易く、潤滑油
の温度が高いことにより潤滑油の粘度が小さくなり、制
御弁等における潤滑油のリーク量が多くなり、応答性が
悪化する問題がある。潤滑油の温度を降下するため潤滑
油の供給通路をエンジン本体の独立の潤滑油冷却装置を
設けることはもとより可能であるが、これはコストの点
でも設置スペースの点でも不利となることはいうまでも
ない。この発明は油圧駆動機構への作動油の温度を特別
な冷却装置を使用することなく効果的に低減することが
できる構成を提供することを目的とする。
In order to change the valve timing, a hydraulic oil, for example a lubricating oil for lubricating an internal combustion engine, is supplied to the hydraulic drive mechanism. That is, lubricating oil is supplied from the oil pan to the hydraulic drive mechanism by the oil pump. However, since the lubricating oil is not forcibly cooled, the temperature of the lubricating oil flowing into the hydraulic mechanism tends to rise, and the high temperature of the lubricating oil reduces the viscosity of the lubricating oil, causing the lubricating oil in control valves, etc. There is a problem that the amount of leakage increases and the responsiveness deteriorates. It is of course possible to install an independent lubricant cooling system in the engine body for the lubricant supply passage in order to lower the temperature of the lubricant, but this is disadvantageous in terms of both cost and installation space. Not even. An object of the present invention is to provide a configuration that can effectively reduce the temperature of hydraulic oil supplied to a hydraulic drive mechanism without using a special cooling device.

【0004】0004

【課題を解決するための手段】この発明によれば、カム
シャフトとクランクシャフトとの間の相対位相を制御す
るための油圧式駆動機構をカムシャフトとカムシャフト
にクランクシャフトの回転を伝達する動力伝達部材との
間に設けた油圧駆動可変バルブタイミング装置において
、油圧式駆動機構への駆動油圧用の作動油の供給通路を
エンジンのフロント側の外壁近傍に設けたことを特徴と
する内燃機関の油圧駆動可変バルブタイミング装置の給
油装置が提供される。
[Means for Solving the Problems] According to the present invention, a hydraulic drive mechanism for controlling the relative phase between the camshaft and the crankshaft is connected to the camshaft and a power source for transmitting the rotation of the crankshaft to the camshaft. An internal combustion engine characterized in that, in a hydraulically driven variable valve timing device provided between a transmission member and a hydraulically driven variable valve timing device, a passage for supplying hydraulic oil for driving hydraulic pressure to a hydraulic drive mechanism is provided near an outer wall on the front side of the engine. A refueling system for a hydraulically driven variable valve timing device is provided.

【0005】[0005]

【作用】油圧式駆動機構用の油圧はエンジンのフロント
側の外壁近傍の供給通路を通過するため、走行風によっ
て冷却を受け、作動油の温度が降下される。そのため、
バルブタイミング制御時の潤滑油の漏れが少なくなり、
応答性を上げることができる。
[Operation] Since the hydraulic pressure for the hydraulic drive mechanism passes through the supply passage near the outer wall on the front side of the engine, it is cooled by the running wind and the temperature of the hydraulic oil is lowered. Therefore,
Leakage of lubricating oil during valve timing control is reduced,
Responsiveness can be improved.

【0006】[0006]

【実施例】図1において、10はDOHC型内燃機関の
シリンダヘッド、12はカムシャフトカバーを概略的に
示している。この場合内燃機関は横置きとなっている。 そのため、走行風は矢印Aに示すようにエンジン本体に
その側面より当る。14は吸気カムシャフト駆動用のタ
イミングプーリ、16は排気カムシャフト駆動用のタイ
ミングプーリ示しており、これらのタイミングプーリ1
4及び16はタイミングベルト18を介して図示しない
クランク軸上のタイミングプーリに巻き掛けられている
。図示しないがタイミングプーリ14及び16並びにタ
イミングベルト18はタイミングベルトカバーによって
被覆されている。吸気カムシャフト用タイミングプーリ
14と吸気カムシャフトとの間に可変バルブタイミング
機構20が設けられる。この可変バルブタイミング機構
20を図2によって詳細に説明すると、タイミングプー
リ14は吸気カム駆動用カムシャフト22の一端に回転
自在に嵌合される。タイミングプーリ14にカップ状部
材24がその外周部24A で回転自在に嵌合され、か
つカップ状部材24の中心ボス部24B はカムシャフ
ト22の端部の小径部に嵌合され、ボルト28によって
カップ状部材24はカムシャフト22に一体連結される
。リングギヤ30はカップ状部材24とタイミングプー
リ14の中心ボス部32との間に配置される。周知のよ
うにリングギヤ30はその外周及び内周にヘリカル状の
歯30−1,30−2 を形成しており、外周のヘリカ
ル歯30−1はカップ状部材24の内周に形成されるヘ
リカル状歯34と係合され、内周のヘリカル歯30−2
はタイミングプーリのボス部32に形成されるヘリカル
歯40と噛み合いしている。従って、リングギヤ30を
カムシャフトの軸線と平行な方向に移動させることによ
りタイミングプーリ14とカップ状部材24、即ち、カ
ムシャフト22との間の相対回転角度位置が変化され、
バルブタイミングを変化させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 10 schematically indicates a cylinder head of a DOHC type internal combustion engine, and 12 schematically indicates a camshaft cover. In this case, the internal combustion engine is placed horizontally. Therefore, the wind from the vehicle hits the engine body from the side as shown by arrow A. Reference numeral 14 indicates a timing pulley for driving the intake camshaft, and reference numeral 16 indicates a timing pulley for driving the exhaust camshaft.
4 and 16 are wound around a timing pulley on a crankshaft (not shown) via a timing belt 18. Although not shown, the timing pulleys 14 and 16 and the timing belt 18 are covered by a timing belt cover. A variable valve timing mechanism 20 is provided between the intake camshaft timing pulley 14 and the intake camshaft. This variable valve timing mechanism 20 will be explained in detail with reference to FIG. 2. The timing pulley 14 is rotatably fitted to one end of an intake cam driving camshaft 22. A cup-shaped member 24 is rotatably fitted to the timing pulley 14 at its outer circumferential portion 24A, and a center boss portion 24B of the cup-shaped member 24 is fitted to a small diameter portion at the end of the camshaft 22, and the cup is connected to the timing pulley 14 by a bolt 28. The shaped member 24 is integrally connected to the camshaft 22. The ring gear 30 is disposed between the cup-shaped member 24 and the central boss portion 32 of the timing pulley 14. As is well known, the ring gear 30 has helical teeth 30 - 1 and 30 - 2 formed on its outer and inner peripheries, and the outer helical teeth 30 - 1 are helical teeth formed on the inner periphery of the cup-shaped member 24 . The helical teeth 30-2 on the inner circumference are engaged with the shaped teeth 34.
meshes with helical teeth 40 formed on the boss portion 32 of the timing pulley. Therefore, by moving the ring gear 30 in a direction parallel to the axis of the camshaft, the relative rotational angular position between the timing pulley 14 and the cup-shaped member 24, that is, the camshaft 22, is changed.
Valve timing can be changed.

【0007】リングギヤ30はその断面がU字状をなし
、環状の溝44が形成され、この環状の溝44の底面と
タイミングプーリ14のハブ部との間にスプリング46
が配置され、このスプリング46はリングギヤ30を図
の左方向に、リングギヤ30の底面がカップ状部材24
の対向底面に突き当たる位置まで動くように付勢してい
る。リングギヤ30がこの位置にあるときバルブタイミ
ングは通常のタイミングにあり、スプリング46に抗し
てリングギヤ30を図の右方に移動させることでバルブ
タイミングは通常のタイミングとは変化される。リング
ギヤ30とカップ状部材24との対向面間に油圧室48
が形成され、油圧室48内の油圧によってリングギヤ3
0の前記運動を惹起させることができる。
The ring gear 30 has a U-shaped cross section, and has an annular groove 44 formed therein, and a spring 46 between the bottom surface of the annular groove 44 and the hub portion of the timing pulley 14.
is arranged, and this spring 46 moves the ring gear 30 toward the left side in the figure, so that the bottom surface of the ring gear 30 is aligned with the cup-shaped member 24.
It is biased so that it moves to the position where it hits the opposite bottom surface of the. When the ring gear 30 is in this position, the valve timing is at the normal timing, and by moving the ring gear 30 to the right in the figure against the spring 46, the valve timing is changed from the normal timing. A hydraulic chamber 48 is provided between the opposing surfaces of the ring gear 30 and the cup-shaped member 24.
is formed, and the ring gear 3 is activated by the hydraulic pressure in the hydraulic chamber 48.
0 said movements can be induced.

【0008】リングギヤ30はその内周面30a でタ
イミングプーリ14のボス部32の対向外周面に密接し
、外周面30b でカップ状部材24の対向内周面に密
接し、これらの接触面にて油圧室48のシールが行われ
ている。
The ring gear 30 has an inner circumferential surface 30a in close contact with the opposing outer circumferential surface of the boss portion 32 of the timing pulley 14, an outer circumferential surface 30b in close contact with the opposing inner circumferential surface of the cup-shaped member 24, and these contact surfaces The hydraulic chamber 48 is being sealed.

【0009】次に、油圧室48への油圧系の構成を説明
すると、カムシャフト22内に潤滑油通路50が形成さ
れ、この通路50を介して潤滑油の導入及び排出が行わ
れる。通路50はシリンダヘッド10に形成される通路
52を介して電磁制御弁56に接続される。電磁制御弁
56は図1に示すようにシリンダヘッド10のフロント
側の側壁に取り付けられる。電磁制御弁56は弁本体6
0と、弁本体60内の筒状摺動弁62と、電磁アクチュ
エータ64とから成り、電磁アクチュエータ64は制御
回路67に接続され、エンジンの運転条件に応じてアク
チュエータ64が駆動され、エンジン運転条件に応じた
バルブタイミングを得ることができる。 制御弁56は環状の共通ポート68と、環状の第1切替
ポート70と、軸線上の第2切替ポート72とを備えた
3ポートバルブであり、アクチュエータ64をONした
場合は図2の上側の状態をとり、共通ポート68が環状
溝74を介して環状の第1切替ポート70と連通され、
第1切替ポート70からの潤滑油が共通ポート68を経
て実線矢印Xのように通路52,50 を介して油圧室
48に導入され、リングギヤ30はスプリング46に抗
して移動され、バルブタイミングは通常の値とは変化さ
れる。アクチュエータ64をOFF した場合は図2の
下側に図示した状態をとり、共通ポート68が環状溝7
4、中心孔76を介して第2切替ポート72と連通され
、油圧室48からの油圧は破線矢印Yのように通路50
,52 より共通ポート68、溝74、中心孔76を経
て第2切替ポート72より排出され、スプリング46に
よってリングギヤ30は押し戻され、バルブタイミング
は通常の値とされる。
Next, the configuration of the hydraulic system to the hydraulic chamber 48 will be explained. A lubricating oil passage 50 is formed in the camshaft 22, and lubricating oil is introduced and discharged through this passage 50. The passage 50 is connected to an electromagnetic control valve 56 via a passage 52 formed in the cylinder head 10. The electromagnetic control valve 56 is attached to the front side wall of the cylinder head 10, as shown in FIG. The electromagnetic control valve 56 is the valve body 6
0, a cylindrical sliding valve 62 inside the valve body 60, and an electromagnetic actuator 64.The electromagnetic actuator 64 is connected to a control circuit 67, and the actuator 64 is driven according to the engine operating conditions. It is possible to obtain valve timing according to the The control valve 56 is a three-port valve that includes an annular common port 68, an annular first switching port 70, and a second axial switching port 72, and when the actuator 64 is turned on, the state, the common port 68 is communicated with the annular first switching port 70 via the annular groove 74,
Lubricating oil from the first switching port 70 passes through the common port 68 and is introduced into the hydraulic chamber 48 through the passages 52, 50 as indicated by the solid arrow X, the ring gear 30 is moved against the spring 46, and the valve timing is adjusted. The normal value will be changed. When the actuator 64 is turned off, the state shown in the lower part of FIG. 2 is assumed, and the common port 68 is connected to the annular groove 7.
4. It communicates with the second switching port 72 through the center hole 76, and the hydraulic pressure from the hydraulic chamber 48 flows through the passage 50 as indicated by the broken line arrow Y.
, 52 through the common port 68, the groove 74, and the center hole 76, and is discharged from the second switching port 72, and the ring gear 30 is pushed back by the spring 46, and the valve timing is set to the normal value.

【0010】図1において破線矢印にて油圧の流れを模
式的に示しており、オイルパンからの潤滑油は図示しな
い油圧ポンプより矢印aのように上向きに電磁制御弁5
6の第1切替ポート70に導入される。図3において、
シリンダヘッド10内に油圧通路80が垂直方向に形成
され、油圧ポンプからの潤滑油はシリンダブロック側か
ら通路80に導入され、水平方向の通路82、通路84
より制御弁56の環状の第1切替ポート70に導入され
る。図3の94は制御弁56の取り付け孔を示し、図2
の制御弁56を取り付けた状態では通路84は切替ポー
ト70と連通する。電磁制御弁56がONされたときは
油圧は図2の共通ポート68より図1の矢印bのように
水平方向に取出される。即ち、図3において通路86が
制御弁の環状共通ポート68に整列するようにシリンダ
ヘッド10内に穿設されている。通路86に取り出され
た油圧は図4に示すほぼ水平な通路88を通過し(図1
 の矢印c)、図4の通路90を通り(図1 の矢印d
)、通路52より(図1 の矢印e)カムシャフト22
内の通路50を経て、油圧室48に導入され、リングギ
ヤ30はスプリング46に抗して駆動され、バルブタイ
ミングの切替が行われる。バルブタイミングを通常位置
に戻す場合は、制御弁56がOFF され、油圧室48
から通路50,52,90,88,86と反対方向に油
圧が放出され、共通ポート68より電磁制御弁56に入
り、ポート72より図1の矢印fのように放出される。 即ち、図3に示すように電磁制御弁56を取り付け孔9
4に取り付けた状態でポート72はシリンダヘッド10
内の空間98に開口されており、潤滑油は矢印fのよう
にオイルパンに向けて放出される。
In FIG. 1, the flow of hydraulic pressure is schematically shown by broken line arrows, and the lubricating oil from the oil pan is sent upward from the hydraulic pump (not shown) to the electromagnetic control valve 5 as shown by arrow a.
6 is introduced into the first switching port 70 of No.6. In Figure 3,
A hydraulic passage 80 is formed vertically in the cylinder head 10, lubricating oil from the hydraulic pump is introduced into the passage 80 from the cylinder block side, and horizontal passages 82, 84
is introduced into the annular first switching port 70 of the control valve 56. Reference numeral 94 in FIG. 3 indicates a mounting hole for the control valve 56;
When the control valve 56 is attached, the passage 84 communicates with the switching port 70. When the electromagnetic control valve 56 is turned on, hydraulic pressure is taken out from the common port 68 in FIG. 2 in the horizontal direction as indicated by arrow b in FIG. That is, in FIG. 3, a passageway 86 is drilled into the cylinder head 10 in alignment with the annular common port 68 of the control valve. The hydraulic pressure taken out to the passage 86 passes through a substantially horizontal passage 88 shown in FIG.
arrow c) in Figure 4, passing through passage 90 in Figure 4 (arrow d in Figure 1
), from the passage 52 (arrow e in Figure 1), the camshaft 22
The ring gear 30 is introduced into the hydraulic chamber 48 through a passage 50 therein, and the ring gear 30 is driven against the spring 46 to switch the valve timing. When returning the valve timing to the normal position, the control valve 56 is turned off and the hydraulic chamber 48 is turned off.
Hydraulic pressure is released in the direction opposite to the passages 50, 52, 90, 88, and 86, enters the electromagnetic control valve 56 through the common port 68, and is released from the port 72 as indicated by arrow f in FIG. That is, as shown in FIG.
4, the port 72 is connected to the cylinder head 10.
It opens into a space 98 inside, and lubricating oil is discharged toward the oil pan as indicated by arrow f.

【0011】この発明の実施例によれば、図1に示すよ
うに電磁制御弁56への潤滑油の供給はエンジンの走行
風が直接当る面である横置きエンジンの側壁において行
われる。即ち、電磁制御弁56への潤滑油の供給通路を
構成する通路80,82 はシリンダヘッドにおける走
行風の直接当る車両前面に面した側壁100 の付近に
設けられる。そのため、制御弁56への潤滑油の温度を
低く維持することができ、粘度を適当に低く維持するこ
とができるためピストンのシール面30a,30b か
らの潤滑油の漏洩が少なくなり制御応答性を高めること
ができる。
According to an embodiment of the present invention, as shown in FIG. 1, lubricating oil is supplied to the electromagnetic control valve 56 at the side wall of the horizontally mounted engine, which is the surface directly exposed to the engine running air. That is, the passages 80 and 82 constituting the supply passage for lubricating oil to the electromagnetic control valve 56 are provided near the side wall 100 facing the front of the vehicle, which is directly exposed to the traveling wind in the cylinder head. Therefore, the temperature of the lubricating oil to the control valve 56 can be maintained low and the viscosity can be maintained appropriately low, which reduces the leakage of lubricating oil from the seal surfaces 30a and 30b of the piston and improves control responsiveness. can be increased.

【0012】図3、図4において、可変バルブタイミン
グ機構への潤滑油通路80,88 等はエンジン本体の
冷却水ジャケット102,102’の付近を通されてい
るため、これより冷却を受けることもできる。実施例の
場合は制御弁56は通常時は潤滑油は流れておらず、バ
ルブタイミングの切替時のみ潤滑油を油圧室48に導く
構成であるため、制御前は制御弁56への潤滑油は通路
80,82 の部分に溜められており、流れがないため
走行風によって潤滑油の温度を効率的に降下せしめるこ
とができる。制御時にこの溜められた温度の降下した潤
滑油が制御弁56を介して油圧室48に導入される。そ
のため高い制御応答性を得ることができる。
In FIGS. 3 and 4, the lubricating oil passages 80, 88, etc. to the variable valve timing mechanism pass near the cooling water jackets 102, 102' of the engine body, so they may be cooled from there. can. In the case of the embodiment, lubricating oil does not flow through the control valve 56 under normal conditions, and the lubricating oil is introduced to the hydraulic chamber 48 only when switching the valve timing, so the lubricating oil does not flow into the control valve 56 before control. The lubricating oil is stored in the passages 80 and 82, and since there is no flow, the temperature of the lubricating oil can be efficiently lowered by the wind. During control, this stored lubricating oil whose temperature has dropped is introduced into the hydraulic chamber 48 via the control valve 56. Therefore, high control responsiveness can be obtained.

【0013】[0013]

【発明の効果】この発明によれば、油圧駆動機構への潤
滑油の供給通路を車両の前面側の外壁面に近接して設け
ることによって油圧機構への潤滑油の温度を下げている
ため、作動油の流動性が上がり過ぎるのを防止し、バル
ブタイミング切替時の潤滑油の漏洩を少なくすることに
より応答性の向上を図ることができる。
According to the present invention, the temperature of the lubricating oil to the hydraulic mechanism is lowered by providing the passage for supplying the lubricating oil to the hydraulic drive mechanism close to the outer wall surface on the front side of the vehicle. Responsiveness can be improved by preventing the fluidity of the hydraulic oil from increasing too much and by reducing the leakage of lubricating oil during valve timing switching.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は可変バルブタイミング機構を備えた内燃
機関を示す斜視図であり、かつ可変バルブタイミング用
の油圧機構への作動油の流れは破線にて示している。
FIG. 1 is a perspective view of an internal combustion engine equipped with a variable valve timing mechanism, and the flow of hydraulic oil to a hydraulic mechanism for variable valve timing is indicated by broken lines.

【図2】図2は可変バルブタイミング機構の断面図を示
し、かつ制御弁の夫々の状態における油圧の流れを実線
と破線にて示している。
FIG. 2 shows a cross-sectional view of the variable valve timing mechanism, and shows the flow of hydraulic pressure in each state of the control valve using solid lines and broken lines.

【図3】図3は図1のIII−III 線に沿う断面図
である。
FIG. 3 is a sectional view taken along line III-III in FIG. 1;

【図4】図4は図1のIV−IV 線に沿う断面図であ
る。
FIG. 4 is a sectional view taken along line IV-IV in FIG. 1;

【符号の説明】[Explanation of symbols]

10…シリンダヘッド 14…吸気カムシャフト用タイミングプーリ20…可変
バルブタイミング機構 22…吸気カムシャフト 30…リングギヤ 46…スプリング 48…油圧室 50,52 …潤滑油通路 56…電磁制御弁 64…アクチュエータ 68…共通ポート 70…第1切替ポート 72…第2切替ポート
10...Cylinder head 14...Intake camshaft timing pulley 20...Variable valve timing mechanism 22...Intake camshaft 30...Ring gear 46...Spring 48...Hydraulic chambers 50, 52...Lubricating oil passage 56...Solenoid control valve 64...Actuator 68... Common port 70...first switching port 72...second switching port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  カムシャフトとクランクシャフトとの
間の相対位相を制御するための油圧式駆動機構をカムシ
ャフトとカムシャフトにクランクシャフトの回転を伝達
する動力伝達部材との間に設けた油圧駆動可変バルブタ
イミング装置において、油圧式駆動機構への駆動油圧用
の作動油の供給通路をエンジンのフロント側の外壁近傍
に設けたことを特徴とする油圧駆動可変バルブタイミン
グ装置の給油装置。
Claim 1: A hydraulic drive in which a hydraulic drive mechanism for controlling the relative phase between the camshaft and the crankshaft is provided between the camshaft and a power transmission member that transmits rotation of the crankshaft to the camshaft. 1. A refueling device for a hydraulically driven variable valve timing device, characterized in that a passage for supplying hydraulic oil for driving hydraulic pressure to a hydraulic drive mechanism is provided near an outer wall on the front side of an engine.
JP11596391A 1991-05-21 1991-05-21 Oil feed device for hydraulically driven variable valve timing device Pending JPH04342810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11596391A JPH04342810A (en) 1991-05-21 1991-05-21 Oil feed device for hydraulically driven variable valve timing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11596391A JPH04342810A (en) 1991-05-21 1991-05-21 Oil feed device for hydraulically driven variable valve timing device

Publications (1)

Publication Number Publication Date
JPH04342810A true JPH04342810A (en) 1992-11-30

Family

ID=14675474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11596391A Pending JPH04342810A (en) 1991-05-21 1991-05-21 Oil feed device for hydraulically driven variable valve timing device

Country Status (1)

Country Link
JP (1) JPH04342810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505588B2 (en) 2001-04-11 2003-01-14 Ina- Schaeffler Kg Internal combustion engine with at least two cam shafts arranged adjacent to each other in the cylinder head, particularly with an intake camshaft and an exhaust camshaft
KR20040049645A (en) * 2002-12-06 2004-06-12 현대자동차주식회사 Oil cooling device of a continuously variable valve timing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505588B2 (en) 2001-04-11 2003-01-14 Ina- Schaeffler Kg Internal combustion engine with at least two cam shafts arranged adjacent to each other in the cylinder head, particularly with an intake camshaft and an exhaust camshaft
KR20040049645A (en) * 2002-12-06 2004-06-12 현대자동차주식회사 Oil cooling device of a continuously variable valve timing system

Similar Documents

Publication Publication Date Title
US5797363A (en) Engine valve adjuster
US6244230B1 (en) Variable valve timing apparatus
JP3834890B2 (en) Valve characteristic control device for internal combustion engine
EP0356162B1 (en) Timing control system
US5353755A (en) Arrangement of variable valve timing control system on V-type engine
EP0801212B1 (en) Engine variable valve timing mechanism
US7025023B2 (en) Hydraulic camshaft adjuster for an internal combustion engine
US7681542B2 (en) Camshaft adjustment device
JP3014893B2 (en) Valve timing adjustment device
US6302071B1 (en) Oil passage system of valve moving apparatus for internal combustion engine
JPH08232616A (en) Control-time changing devcie for changing control time of internal combustion engine
US6640757B2 (en) Variable valve drive mechanism for an internal combustion engine
US6523513B2 (en) Camshaft timing device for internal combustion engines
JP3168537B2 (en) Intake and exhaust valve control system for internal combustion engine
JP2005344718A (en) Device for changing internal combustion engine control time
EP0821139B1 (en) Oil supply structure in variable valve timing mechanism
US6308673B1 (en) Enclosure chamber for a camshaft driving endless flexible member of an internal combustion engine
EP0777037B2 (en) Intenal combustion engine with valve timing control device
EP0801211B1 (en) Variable valve timing mechanism of engine
US7415952B2 (en) Valve timing control device
JPH04171205A (en) Valve timing control device for internal combustion engine
US6131541A (en) Variable valve performance mechanism in internal combustion engine
JPH04342810A (en) Oil feed device for hydraulically driven variable valve timing device
JP2001241312A (en) Attaching structure of oil control valve
JPH077648Y2 (en) Lubrication structure of automatic transmission