JPH04342498A - Production of inp single crystal and production of semiconductor device - Google Patents

Production of inp single crystal and production of semiconductor device

Info

Publication number
JPH04342498A
JPH04342498A JP15555391A JP15555391A JPH04342498A JP H04342498 A JPH04342498 A JP H04342498A JP 15555391 A JP15555391 A JP 15555391A JP 15555391 A JP15555391 A JP 15555391A JP H04342498 A JPH04342498 A JP H04342498A
Authority
JP
Japan
Prior art keywords
single crystal
concentration
heat treatment
cooling
inp single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15555391A
Other languages
Japanese (ja)
Other versions
JPH0798720B2 (en
Inventor
Ryuichi Hirano
立一 平野
Toshiyuki Kanazawa
金沢 利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15555391A priority Critical patent/JPH0798720B2/en
Publication of JPH04342498A publication Critical patent/JPH04342498A/en
Publication of JPH0798720B2 publication Critical patent/JPH0798720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the carrier concentration and the activating ratio of an InP single crystal by heating the InP single crystal to which Zn is added and then rapidly cooling the InP single crystal in specific conditions. CONSTITUTION:An InP single crystal to which Zn is added vacuum-sealed in a quartz ampoule, installed in a heating furnace and heated at 500-900 deg.C, and then cooling at least from, 450 deg.C to 350 deg.C is rapidly carried out at a rate of >=3000 deg.C/Hr.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、P型InP単結晶の製
造方法に関し、特に高キャリア濃度かつ高活性化率のZ
nドープInP単結晶の製造に適用して好適な技術に関
する。
[Industrial Application Field] The present invention relates to a method for producing P-type InP single crystals, and in particular to a method for producing P-type InP single crystals, particularly Z-type with high carrier concentration and high activation rate.
The present invention relates to a technique suitable for manufacturing n-doped InP single crystals.

【0002】0002

【従来の技術】高出力レーザー用基板として使用される
化合物半導体単結晶基板は、低転位密度で高キャリア濃
度であることが要求される。従来、レーザー用基板とし
てはn型基板が使われていたが、最近Znをドープした
P型InP単結晶基板が用いられるようになった。また
、ZnドープInP単結晶は原料融液表面をB2O3等
からなる液体封止剤で覆った状態で融液表面に種結晶を
接触させて回転させながら徐々に結晶を引き上げる液体
封止チョクラルスキー法(以下、LEC法と称する)に
より製造されていた。
2. Description of the Related Art A compound semiconductor single crystal substrate used as a substrate for a high-power laser is required to have a low dislocation density and a high carrier concentration. Conventionally, an n-type substrate has been used as a laser substrate, but recently a P-type InP single crystal substrate doped with Zn has come to be used. In addition, for Zn-doped InP single crystals, the surface of the raw material melt is covered with a liquid sealant made of B2O3, etc., and a seed crystal is brought into contact with the melt surface and the crystal is gradually pulled up while rotating. (hereinafter referred to as the LEC method).

【0003】しかしながら、上記従来方法にあっては、
原料融液中のZn濃度を高めても育成されたInP単結
晶のホール濃度(キャリア濃度)としては7×1018
/cm3が限度で、それ以上のホール濃度(キャリア濃
度)の単結晶を得ることは困難であった。むしろ原料融
液中のZn濃度をある程度以上高めるとホール濃度(キ
ャリア濃度)は低くなるという問題点があった(Jou
rnal  of  Crystal  Growth
;66(1984)p317−p326)。そこで、原
料融液中のZn濃度を7×1018−1×1020/c
m3としてLEC法により引き上げた後の単結晶を、そ
のまま炉内において150℃/Hr−900℃/Hrの
速度で冷却することで、7×1018−5×1019/
cm3の高ホール濃度(高キャリア濃度)のZnドープ
InP単結晶を製造する方法が提案されている(特開昭
62−70298号)。
However, in the above conventional method,
Even if the Zn concentration in the raw material melt is increased, the hole concentration (carrier concentration) of the grown InP single crystal is 7×1018
/cm3, and it was difficult to obtain a single crystal with a hole concentration (carrier concentration) higher than that. Rather, there was a problem in that when the Zn concentration in the raw material melt was increased beyond a certain level, the hole concentration (carrier concentration) decreased (Jou
rnal of Crystal Growth
;66 (1984) p317-p326). Therefore, the Zn concentration in the raw material melt was set to 7×1018-1×1020/c.
By cooling the single crystal after pulling it by the LEC method as m3 in the furnace at a rate of 150°C/Hr-900°C/Hr, 7×1018-5×1019/
A method for producing a Zn-doped InP single crystal with a high hole concentration (high carrier concentration) of cm3 has been proposed (Japanese Patent Laid-Open No. 70298/1983).

【0004】0004

【発明が解決しようとする課題】しかしながら、本発明
者らはZnドープInP単結晶中のZn濃度とホール濃
度(キャリア濃度)との関係について検証した。その結
果、LEC法により引き上げた高Zn濃度の単結晶を、
そのまま炉内において急速冷却しただけではホール濃度
(キャリア濃度)の充分に高いZnドープInP単結晶
を製造することはできないことが明らかになった。図1
に、LEC法により引き上げた後のZnドープInP単
結晶を、そのまま炉内において炉のヒータ電力を瞬時に
切って急冷した場合(特開昭62−70298号の方法
)と、炉のヒータ電力を徐々に下げ(1.5kw/Hr
)て徐冷(炉冷)した場合の単結晶中のZn濃度とホー
ル濃度(キャリア濃度)の関係を示す。図1に示すよう
に、徐冷するとホール濃度(キャリア濃度)は(3〜4
)×1018/cm3で飽和し(●印)、急冷するとホ
ール濃度(キャリア濃度)は(6〜8)×1018/c
m3で飽和した(○印)。
However, the present inventors have verified the relationship between Zn concentration and hole concentration (carrier concentration) in a Zn-doped InP single crystal. As a result, a single crystal with a high Zn concentration pulled by the LEC method was
It has become clear that it is not possible to produce a Zn-doped InP single crystal with a sufficiently high hole concentration (carrier concentration) simply by rapidly cooling it in a furnace. Figure 1
In this case, the Zn-doped InP single crystal pulled by the LEC method is immediately cooled in the furnace by immediately turning off the furnace heater power (method of JP-A-62-70298), and the other case when the furnace heater power is turned off immediately. Gradually lower (1.5kw/Hr
) shows the relationship between Zn concentration and hole concentration (carrier concentration) in a single crystal when it is slowly cooled (furnace cooling). As shown in Figure 1, when slowly cooled, the hole concentration (carrier concentration) is (3 to 4
) x 1018/cm3 (● mark), and when rapidly cooled, the hole concentration (carrier concentration) is (6 to 8) x 1018/c
It was saturated with m3 (○ mark).

【0005】このように、急冷するとホール濃度(キャ
リア濃度)をある程度高くすることはできるものの、ホ
ール濃度(キャリア濃度)/結晶中Zn濃度を活性化率
と定義したとき、従来の方法にあっては活性化率の高い
結晶が得られないことが明らかになった。
As described above, although the hole concentration (carrier concentration) can be increased to some extent by rapid cooling, when the activation rate is defined as the hole concentration (carrier concentration)/Zn concentration in the crystal, the conventional method It became clear that crystals with high activation rate could not be obtained.

【0006】この発明は上記のような問題点を解決すべ
くなされたもので、その目的とするところは、高ホール
濃度(高キャリア濃度)かつ高活性化率のZnドープI
nP単結晶を得ることができる単結晶製造方法を提供す
ることにある。本発明の他の目的は、ZnドープInP
単結晶を用いた半導体装置の製造工程において行なわれ
る熱処理によりホール濃度(キャリア濃度)が低下され
るのを防止できる半導体装置の製造方法を提供すること
にある。
The present invention was made to solve the above-mentioned problems, and its purpose is to provide Zn-doped I with high hole concentration (high carrier concentration) and high activation rate.
An object of the present invention is to provide a single crystal manufacturing method that can obtain an nP single crystal. Another object of the present invention is that Zn-doped InP
An object of the present invention is to provide a method for manufacturing a semiconductor device that can prevent hole concentration (carrier concentration) from being reduced due to heat treatment performed in the manufacturing process of a semiconductor device using a single crystal.

【0007】[0007]

【課題を解決するための手段】本発明者らは、引上げ炉
から取出した後の単結晶の熱処理の条件の選択によって
、高ホール濃度(高キャリア濃度)かつ高活性化率のZ
nドープInP単結晶を得ることができるのではないか
と考え、種々の実験を行なった。その結果、引上げ炉か
ら取り出した後の単結晶を熱処理後に少なくとも450
℃から350℃までの冷却を3,000℃/時以上、好
ましくは5,000℃/時以上の冷却速度で超急冷する
とホール濃度(キャリア濃度)は飽和せず、活性化率を
ほぼ100%にすることができることを見出した。
[Means for Solving the Problems] The present inventors have achieved a high hole concentration (high carrier concentration) and high activation rate Z by selecting the conditions for heat treatment of the single crystal after taking it out from the pulling furnace.
We thought that it might be possible to obtain an n-doped InP single crystal, and conducted various experiments. As a result, the single crystal after being taken out from the pulling furnace has a temperature of at least 450% after heat treatment.
When cooling from ℃ to 350℃ at a cooling rate of 3,000℃/hour or more, preferably 5,000℃/hour or more, the hole concentration (carrier concentration) is not saturated and the activation rate is almost 100%. I found out that it can be done.

【0008】さらに、本発明者らは、熱処理温度が40
0℃程度の場合には、熱処理を施した後、超急冷しても
活性化率は上がらないのみならず、熱処理時間が長くな
るに従ってホール濃度(キャリア濃度)はむしろ低下し
てくることを見出した。図2は、LEC法によって育成
したZnドープInP単結晶の基板を400℃で3時間
熱処理した後、徐冷した場合と超急速冷却した場合の結
晶中のZn濃度とホール濃度(キャリア濃度)との関係
を示す。また、図3には、LEC法によって育成したZ
nドープInP単結晶を400℃と300℃で、30分
、1時間、3時間それぞれ熱処理した後、急冷した場合
の熱処理時間と結晶中のホール濃度(キャリア濃度)と
の関係が示されている。さらに、図4には、LEC法に
よって育成したZnドープInP単結晶を400℃と3
50℃と300℃で、3時間それぞれ熱処理した後、急
冷した場合の結晶中のホール濃度(キャリア濃度)と熱
処理温度との関係が示されている。
Furthermore, the present inventors have determined that the heat treatment temperature is 40
We found that at temperatures around 0°C, not only does the activation rate not increase even when ultra-quenched after heat treatment, but the hole concentration (carrier concentration) actually decreases as the heat treatment time increases. Ta. Figure 2 shows the Zn concentration and hole concentration (carrier concentration) in the crystal when a Zn-doped InP single crystal substrate grown by the LEC method was heat-treated at 400°C for 3 hours and then slowly cooled and ultra-rapidly cooled. shows the relationship between In addition, Fig. 3 shows Z grown by the LEC method.
The relationship between the heat treatment time and the hole concentration (carrier concentration) in the crystal is shown when an n-doped InP single crystal is heat treated at 400°C and 300°C for 30 minutes, 1 hour, and 3 hours, respectively, and then rapidly cooled. . Furthermore, Fig. 4 shows a Zn-doped InP single crystal grown by the LEC method at 400°C and 3°C.
The relationship between the hole concentration (carrier concentration) in the crystal and the heat treatment temperature is shown when the crystal is heat treated at 50° C. and 300° C. for 3 hours and then rapidly cooled.

【0009】図2より400℃で熱処理した後、超急速
冷却した場合には、4×1018で飽和するものの徐冷
した場合に比べてホール濃度(キャリア濃度)が高くな
ることが分かる。一方、図3より、熱処理温度が300
℃の場合には熱処理時間の長くなってもホール濃度(キ
ャリア濃度)は変化しないのに、熱処理温度が400℃
の場合には、熱処理時間が長くなるに従ってホール濃度
(キャリア濃度)はむしろ低下してくることが分かる。 その原因は、400℃近辺の温度下にZnドープInP
単結晶を置くと、アクセプタとなるZnを補償する何ら
かのドナーとなる欠陥が増加したりあるいはZnの析出
物が生じるためと推測される。また、熱処理温度が35
0℃の場合は400℃の場合ほど顕著ではないが同じよ
うにホール濃度(キャリア濃度)は低下する。熱処理温
度が300℃の場合のホール濃度(キャリア濃度)は熱
処理しないもののホール濃度(キャリア濃度)とほぼ同
じ値であり、300℃の熱処理では活性化率の向上の効
果はないことが分かった。
From FIG. 2, it can be seen that when ultra-rapid cooling is performed after heat treatment at 400° C., the hole concentration (carrier concentration) becomes higher than when cooling slowly, although it is saturated at 4×10 18 . On the other hand, from Figure 3, the heat treatment temperature is 300
℃, the hole concentration (carrier concentration) does not change even if the heat treatment time becomes longer, but the heat treatment temperature is 400℃.
In this case, it can be seen that the hole concentration (carrier concentration) actually decreases as the heat treatment time increases. The reason is that Zn-doped InP was produced at a temperature around 400°C.
It is presumed that this is because, when a single crystal is placed, the number of defects that serve as some sort of donor that compensates for Zn, which serves as an acceptor, increases or a precipitate of Zn is generated. In addition, the heat treatment temperature is 35
At 0° C., the hole concentration (carrier concentration) decreases in the same way, although not as markedly as at 400° C. It was found that the hole concentration (carrier concentration) when the heat treatment temperature was 300°C was almost the same as the hole concentration (carrier concentration) without heat treatment, and it was found that heat treatment at 300°C had no effect on improving the activation rate.

【0010】本発明は、上記知見に基づいてなされたも
ので、Znを添加したInP単結晶を、500℃−90
0℃に加熱した後、少なくとも450℃から350℃ま
での冷却を強制冷却により3,000℃/Hr以上、好
ましくは5000℃/Hr以上の速度で超急速冷却する
ことにより、例えば高出力レーザーダイオードのような
デバイスの基板となるZnドープInP単結晶を得るこ
とを提案するものである。上記熱処理される単結晶は、
インゴットのままでもよいが、冷却効率を良くするため
にはブロックもしくはウェーハの状態で行なうのがよい
。また、本発明は、ZnドープInP単結晶を用いたデ
バイスの製造工程において、行なわれる熱処理の温度条
件を、500℃以上とし、少なくとも450℃から35
0℃までの冷却を強制冷却により3,000℃/Hr以
上の速度で急速冷却することを提案するものである。 ZnドープInP単結晶を用いたデバイスの製造工程に
おいて行なわれる熱処理としては、例えば金属電極形成
後に良好なオーミック接触を得るために行なう熱処理等
がある。
The present invention has been made based on the above findings, and is based on the above findings.
After heating to 0°C, ultra-rapid cooling from at least 450°C to 350°C is performed by forced cooling at a rate of 3,000°C/Hr or more, preferably 5000°C/Hr or more, for example, a high-power laser diode. This paper proposes to obtain a Zn-doped InP single crystal that can serve as a substrate for such devices. The single crystal subjected to the above heat treatment is
Although it may be done as an ingot, it is preferable to use a block or wafer in order to improve the cooling efficiency. Further, in the present invention, in the manufacturing process of a device using a Zn-doped InP single crystal, the temperature condition of the heat treatment performed is 500°C or higher, and at least 450°C to 35°C.
This proposal proposes rapid cooling down to 0°C at a rate of 3,000°C/Hr or more by forced cooling. Heat treatment performed in the manufacturing process of a device using a Zn-doped InP single crystal includes, for example, heat treatment performed after forming a metal electrode in order to obtain good ohmic contact.

【0011】[0011]

【作用】上記した手段によれば、InP単結晶中のZn
は結晶温度が高いと充分に活性化しているが、冷却する
につれて400℃付近で活性化率が下がってしまう。し
かるに上記した手段によれば、熱処理後に結晶を超急速
冷却しているため、アクセプタとなるZnを補償する何
らかの欠陥が増加する温度帯(400℃近辺)での熱処
理が回避され、冷却過程でもこの温度帯を素早く通り過
ぎるように急速冷却される。その結果、冷却に伴ってド
ープされたZnの活性化率が下がってしまう不具合を防
止し、かつアクセプタとなるZnを補償する欠陥あるい
はZnの析出物の増加を防止することができる。さらに
、熱処理温度を900℃以下としたので、InP単結晶
が表面より熱分解するのを防止することができる。
[Operation] According to the above-mentioned means, Zn in the InP single crystal
is sufficiently activated when the crystal temperature is high, but as it is cooled, the activation rate decreases around 400°C. However, according to the above-mentioned method, since the crystal is cooled extremely rapidly after heat treatment, heat treatment in the temperature range (near 400°C) where some defects that compensate for Zn, which is an acceptor, increase, is avoided, and even in the cooling process, these defects are avoided. It is rapidly cooled so that it quickly passes through the temperature range. As a result, it is possible to prevent a problem in which the activation rate of doped Zn decreases with cooling, and also to prevent an increase in defects or Zn precipitates that compensate for Zn as an acceptor. Furthermore, since the heat treatment temperature was set to 900° C. or lower, thermal decomposition of the InP single crystal from the surface can be prevented.

【0012】0012

【実施例】【Example】

(実施例1)本発明を適用してInP単結晶の製造を行
なった。先ず、るつぼ内にInP多結晶を入れかつ融液
中の濃度が3×1018−8×1018/cm3となる
量のZnを添加して、B2O3を封止剤としてLEC法
によってZnドープInP単結晶を10本育成した。引
上げ炉内での冷却は先に述べた徐冷のもの5本と急冷の
もの5本とした。
(Example 1) InP single crystal was manufactured by applying the present invention. First, an InP polycrystal is placed in a crucible, Zn is added in an amount such that the concentration in the melt is 3 x 1018-8 x 1018/cm3, and a Zn-doped InP single crystal is formed by the LEC method using B2O3 as a sealant. I grew 10 plants. The cooling in the pulling furnace was performed using the aforementioned five slow cooling methods and five rapid cooling methods.

【0013】次に、各InP単結晶インゴットをウェー
ハ状に切断した後、各インゴット#1〜#10から隣接
するウェーハを3枚ずつそれぞれ取り出した。そして、
3枚1組のウェーハのうち1枚ずつ計10枚のウェーハ
は未処理の評価用として残した。また、他の10枚のウ
ェーハは、650℃で0.5atmの蒸気圧となる量の
赤燐とともに石英アンプル内に真空封入し、上記石英ア
ンプルを加熱炉内に設置して650℃に加熱し、3時間
保持した後、水中に入れて強制冷却を行なった。さらに
、残る10枚のウェーハは、比較のため上記と同一の条
件で熱処理した後に400℃/Hrの速度で冷却した。 そして、上記30枚のウェーハについてそれぞれホール
濃度(キャリア濃度)と結晶中Zn濃度を測定し、その
活性化率を算出した。また、引上げ炉内での冷却条件も
示した。その結果を、表1に示す。
Next, after each InP single crystal ingot was cut into wafer shapes, three adjacent wafers were taken out from each ingot #1 to #10. and,
A total of 10 wafers, one wafer in each set of three wafers, were left unprocessed for evaluation. The other 10 wafers were vacuum-sealed in a quartz ampoule with red phosphorus in an amount that would give a vapor pressure of 0.5 atm at 650°C, and the quartz ampoule was placed in a heating furnace and heated to 650°C. After holding the sample for 3 hours, it was placed in water for forced cooling. Furthermore, the remaining 10 wafers were heat treated under the same conditions as above for comparison, and then cooled at a rate of 400° C./Hr. Then, the hole concentration (carrier concentration) and the Zn concentration in the crystal were measured for each of the 30 wafers, and the activation rate was calculated. The cooling conditions within the pulling furnace are also shown. The results are shown in Table 1.

【0014】[0014]

【表1】 上記表1より、熱処理しなかったウェーハの活性化率は
引上げ炉内で急冷してもZn濃度(6.6〜7.5)×
1018/cm3では85%−94%、また冷却速度を
400℃/Hr(徐冷)としたときの活性化率はZn濃
度(6.6〜7.5)×1018/cm3では51%−
62%であるのに対し、本実施例を適用したものでは活
性化率がすべてのZn濃度で98%−109%とほぼ1
00%になっていることが分かる。
[Table 1] From Table 1 above, the activation rate of wafers that were not heat treated was Zn concentration (6.6 to 7.5) x
At 1018/cm3, the activation rate is 85%-94%, and when the cooling rate is 400°C/Hr (slow cooling), the activation rate is 51% at Zn concentration (6.6 to 7.5) x 1018/cm3.
62%, whereas in the case where this example is applied, the activation rate is 98%-109% at all Zn concentrations, which is almost 1.
You can see that it is 00%.

【0015】図5は、上記測定結果を、横軸にZn濃度
、縦軸にホール濃度(キャリア濃度)をそれぞれとって
プロットしたグラフである。同図において、□印は熱処
理前のもの、○印は650℃で3時間熱処理した後徐冷
したもの、+印は650℃で3時間熱処理したのち超急
速冷却したものの測定値を示す。同図より、Zn濃度が
高くなるほど本発明(熱処理後の超急速冷却)を適用す
ることによって、活性化率が低下するのを有効に防止で
きることが分かる。なお、Zn濃度は原子吸光法により
、またホール濃度(キャリア濃度)をファン・デル・パ
ウ法により測定した。
FIG. 5 is a graph plotting the above measurement results with the horizontal axis representing the Zn concentration and the vertical axis representing the hole concentration (carrier concentration). In the figure, the □ mark indicates the measured value before heat treatment, the ○ mark indicates the measured value after heat treatment at 650°C for 3 hours and then slow cooling, and the + mark indicates the measured value after heat treatment at 650°C for 3 hours and then ultra-rapid cooling. From the figure, it can be seen that the higher the Zn concentration, the more effectively the activation rate can be prevented from decreasing by applying the present invention (ultra-rapid cooling after heat treatment). Note that the Zn concentration was measured by atomic absorption method, and the hole concentration (carrier concentration) was measured by van der Pauw method.

【0016】上記実施例では強制冷却を水冷にて行なっ
ているが、冷却方法はそれに限定されるものでなく、例
えば熱処理炉内で送風を行なって冷却してもよい。さら
に、上記実施例では結晶をウェーハに切断して熱処理を
行なっているが、数cm角のブロックあるいは直径が2
インチ以下のような小径の単結晶ではインゴットのまま
熱処理を行なうようにしてもよい。また、熱処理時間は
結晶の大きさや形状等によって最適時間が変わってくる
ので、結晶の大きさや形状に応じて適宜決定してやれば
よい。
[0016] In the above embodiment, forced cooling is performed by water cooling, but the cooling method is not limited thereto; for example, cooling may be performed by blowing air inside a heat treatment furnace. Furthermore, in the above embodiment, the crystal is cut into wafers and heat-treated, but the crystal is cut into wafers and the crystal is cut into blocks of several cm square or blocks with a diameter of 2 cm.
Single crystals with a small diameter, such as an inch or less, may be heat treated as an ingot. Further, since the optimum time for heat treatment varies depending on the size and shape of the crystal, it may be determined as appropriate depending on the size and shape of the crystal.

【0017】(実施例2)るつぼ内にInP多結晶を入
れ、かつ融液中の濃度が5×1018−9×1018/
cm3となる量のZnを添加して、B2O3を封止剤と
してLEC法によって単結晶を引き上げた。次に、各I
nP単結晶インゴットをウェーハ状に切断した後、各ウ
ェーハを5つのグループに分け、このうち1つのグルー
プは0.5atmのリン蒸気圧下で900℃まで加熱し
10時間熱処理した後、徐冷した。他の2つは0.5a
tmのリン蒸気圧下で500℃まで加熱し、それぞれ1
0時間熱処理したのち徐冷および3時間熱処理したのち
急冷した。また、残りのうち1つは0.005atmの
リン蒸気圧下で650℃まで加熱し3時間熱処理したの
ち徐冷し、他の1つは熱処理せず評価用とした。
(Example 2) InP polycrystals were placed in a crucible, and the concentration in the melt was 5×10 18 -9×10 18 /
cm3 of Zn was added, and the single crystal was pulled by the LEC method using B2O3 as a sealant. Next, each I
After cutting the nP single crystal ingot into wafer shapes, each wafer was divided into five groups, one group of which was heated to 900° C. under a phosphorous vapor pressure of 0.5 atm, heat-treated for 10 hours, and then slowly cooled. The other two are 0.5a
Heating to 500°C under phosphorus vapor pressure of tm, each
After heat treatment for 0 hours, it was slowly cooled, and after heat treatment for 3 hours, it was rapidly cooled. In addition, one of the remaining samples was heated to 650° C. under a phosphorus vapor pressure of 0.005 atm, heat-treated for 3 hours, and then slowly cooled, and the other one was used for evaluation without heat treatment.

【0018】図6は、上記各ウェーハのZn濃度および
ホール濃度(キャリア濃度)を測定した結果を、横軸に
Zn濃度、縦軸にホール濃度(キャリア濃度)をそれぞ
れとってプロットしたグラフである。同図において、○
印は熱処理前のもの、△印は900℃で10時間熱処理
したのち徐冷したもの、●印は500℃で10時間熱処
理したのち徐冷したもの、■印は650℃で3時間熱処
理したのち急冷したもの、□印は0.005atmのリ
ン蒸気圧下で650℃まで加熱し3時間熱処理したのち
徐冷したものの測定値を示す。
FIG. 6 is a graph plotting the results of measuring the Zn concentration and hole concentration (carrier concentration) of each of the wafers, with the horizontal axis representing the Zn concentration and the vertical axis representing the hole concentration (carrier concentration). . In the same figure, ○
The mark is before heat treatment, the △ mark is after heat treatment at 900℃ for 10 hours and then slow cooling, the ● mark is after heat treatment at 500℃ for 10 hours and then slow cooling, the ■ mark is after heat treatment at 650℃ for 3 hours. The □ mark indicates the measured value of the sample that was heated to 650° C. under a phosphorus vapor pressure of 0.005 atm, heat-treated for 3 hours, and then slowly cooled.

【0019】同図より、500℃においても、徐冷する
よりも急冷したほうがホール濃度(キャリア濃度)が高
くなることが分かる。従って、熱処理後に超急速冷却を
おこなうことによりさらにホール濃度(キャリア濃度)
を高め、Zn濃度の高い領域で活性化率が低下するのを
防止できると推定される。また、図6における□印(0
.005atmのリン蒸気圧下で650℃まで加熱し3
時間熱処理した後、徐冷したものの測定値)と、図5に
おける○印(0.5atmのリン蒸気圧下で650℃で
3時間熱処理した後徐冷したものの測定値)とを比較す
ると分かるように、ホール濃度(キャリア濃度)とリン
蒸気圧との因果関係はあまり見られない。熱処理雰囲気
はリン蒸気圧下に限らず、N2雰囲気や真空中でも同様
の効果が得られる。
From the figure, it can be seen that even at 500° C., the hole concentration (carrier concentration) is higher when rapidly cooled than when slowly cooled. Therefore, by performing ultra-rapid cooling after heat treatment, the hole concentration (carrier concentration) can be further reduced.
It is estimated that this can increase the Zn concentration and prevent the activation rate from decreasing in regions with high Zn concentrations. In addition, the □ mark (0
.. Heating to 650°C under phosphorus vapor pressure of 0.005 atm 3
As can be seen by comparing the measured value of the product after heat treatment for 3 hours and then slow cooling) with the circle mark in Figure 5 (measured value of the product after heat treatment at 650 ° C. for 3 hours under 0.5 atm phosphorus vapor pressure and then slow cooling). , there is not much of a causal relationship between hole concentration (carrier concentration) and phosphorus vapor pressure. The heat treatment atmosphere is not limited to phosphorus vapor pressure, but similar effects can be obtained even in N2 atmosphere or vacuum.

【0020】[0020]

【発明の効果】以上説明したように、本発明にあっては
、Znを添加したInP単結晶を500℃−900℃に
加熱した後、少なくとも450℃から350℃までの冷
却を強制冷却により3000℃/Hr以上、好ましくは
5000℃/Hr以上の速度で急速冷却するようにした
ので、アクセプタとなるZnを補償する何らかの欠陥が
増加する温度帯(400℃近辺)での熱処理が回避され
、冷却過程でもこの温度帯を素早く通り過ぎてしまうた
め、冷却に伴ってドープされたZnの活性化率が下がっ
てしまう不具合が防止され、かつアクセプタとなるZn
を補償する欠陥あるいはZnの析出物の増加を防止され
、高ホール濃度(高キャリア濃度)かつ高活性化率のZ
nドープInP単結晶が得られるようになるという効果
がある。また、ZnドープInP単結晶を用いた半導体
装置の製造工程において行なわれる熱処理を、500℃
以上の温度にて行なった後、少なくとも450℃から3
50℃までの冷却を強制冷却により3000℃/Hr以
上の速度で急速冷却するようにしたので、熱処理により
基板表面の活性領域のホール濃度(キャリア濃度)が低
下されるのを防止できるという効果がある。
As explained above, in the present invention, after heating an InP single crystal doped with Zn to 500°C to 900°C, cooling from at least 450°C to 350°C is performed by forced cooling for 3000°C. Since rapid cooling is performed at a rate of ℃/Hr or more, preferably 5000℃/Hr or more, heat treatment in the temperature range (near 400℃) where some defects that compensate for the acceptor Zn increase is avoided, and cooling Since the process quickly passes through this temperature range, the problem that the activation rate of doped Zn decreases with cooling is prevented, and the Zn that becomes an acceptor
Zn with high hole concentration (high carrier concentration) and high activation rate is prevented from increasing defects or Zn precipitates to compensate for
This has the effect that an n-doped InP single crystal can be obtained. In addition, the heat treatment performed in the manufacturing process of semiconductor devices using Zn-doped InP single crystal is heated to 500°C.
After carrying out at a temperature of at least 450°C
Since cooling down to 50°C is rapidly cooled at a rate of 3000°C/Hr or more by forced cooling, it is possible to prevent the hole concentration (carrier concentration) in the active region of the substrate surface from decreasing due to heat treatment. be.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来のZnドープInP単結晶の製造方法にお
ける融液中Zn濃度とホール濃度(キャリア濃度)との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Zn concentration in the melt and the hole concentration (carrier concentration) in a conventional method for manufacturing a Zn-doped InP single crystal.

【図2】LEC法によって育成したZnドープInP単
結晶の基板を400℃で3時間熱処理した後、徐冷した
場合と超急速冷却した場合の結晶中のZn濃度とホール
濃度(キャリア濃度)との関係を示すグラフである。
[Figure 2] Zn concentration and hole concentration (carrier concentration) in the crystal when a Zn-doped InP single crystal substrate grown by the LEC method was heat-treated at 400°C for 3 hours and then slowly cooled and ultra-rapidly cooled. It is a graph showing the relationship.

【図3】LEC法によって育成したZnドープInP単
結晶を400℃と300℃で、30分、1時間、3時間
それぞれ熱処理した後、徐冷した場合の熱処理時間と結
晶中のホール濃度(キャリア濃度)との関係を示すグラ
フである。
[Fig. 3] Heat treatment time and hole concentration (carrier FIG.

【図4】LEC法によって育成したZnドープInP単
結晶を400℃と350℃と300℃で、3時間それぞ
れ熱処理した後、徐冷した場合の結晶中のホール濃度(
キャリア濃度)と熱処理温度との関係を示すグラフであ
る。
FIG. 4: Hole concentration in the crystal (
2 is a graph showing the relationship between carrier concentration) and heat treatment temperature.

【図5】本発明の第1の実施例を適用して得られたZn
ドープInP単結晶と従来の熱処理方法により得られた
ZnドープInP単結晶および熱処理前のZnドープI
nP単結晶のZn濃度とホール濃度(キャリア濃度)と
の関係を示すグラフである。
FIG. 5: Zn obtained by applying the first example of the present invention
Doped InP single crystal, Zn-doped InP single crystal obtained by conventional heat treatment method, and Zn-doped I before heat treatment
2 is a graph showing the relationship between Zn concentration and hole concentration (carrier concentration) of an nP single crystal.

【図6】従来の熱処理方法により得られたZnドープI
nP単結晶および熱処理前のZnドープInP単結晶の
Zn濃度とホール濃度(キャリア濃度)との関係を示す
グラフである。
[Fig. 6] Zn-doped I obtained by conventional heat treatment method
2 is a graph showing the relationship between Zn concentration and hole concentration (carrier concentration) in an nP single crystal and a Zn-doped InP single crystal before heat treatment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Zn(亜鉛)を添加したInP単結晶
を、500℃−900℃に加熱した後、少なくとも45
0℃から350℃までの冷却を強制冷却により3000
℃/Hr以上の速度で急速冷却するようにしたことを特
徴とするInP単結晶の製造方法。
Claim 1: After heating an InP single crystal to which Zn (zinc) has been added to 500°C to 900°C,
Cooling from 0℃ to 350℃ by forced cooling
A method for producing an InP single crystal, characterized in that rapid cooling is performed at a rate of at least ℃/Hr.
【請求項2】  ZnドープInP単結晶を基板とする
半導体装置の製造工程において行なわれる熱処理を、5
00℃以上の温度にて行なった後、少なくとも450℃
から350℃までの冷却を強制冷却により3000℃/
Hr以上の速度で急速冷却するようにしたことを特徴と
する半導体装置の製造方法。
2. Heat treatment performed in the manufacturing process of a semiconductor device using a Zn-doped InP single crystal as a substrate is
At least 450℃ after carrying out at a temperature of 00℃ or higher
Cooling from 350℃ to 3000℃/300℃ by forced cooling
A method for manufacturing a semiconductor device, characterized in that rapid cooling is performed at a rate of Hr or more.
JP15555391A 1990-10-23 1991-05-31 InP single crystal manufacturing method and semiconductor device manufacturing method Expired - Lifetime JPH0798720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15555391A JPH0798720B2 (en) 1990-10-23 1991-05-31 InP single crystal manufacturing method and semiconductor device manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-285478 1990-10-23
JP28547890 1990-10-23
JP15555391A JPH0798720B2 (en) 1990-10-23 1991-05-31 InP single crystal manufacturing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH04342498A true JPH04342498A (en) 1992-11-27
JPH0798720B2 JPH0798720B2 (en) 1995-10-25

Family

ID=26483518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15555391A Expired - Lifetime JPH0798720B2 (en) 1990-10-23 1991-05-31 InP single crystal manufacturing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JPH0798720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179567A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Compound semiconductor and method for producing single crystal of compound semiconductor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179567A1 (en) * 2017-03-31 2018-10-04 Jx金属株式会社 Compound semiconductor and method for producing single crystal of compound semiconductor
KR20190043626A (en) * 2017-03-31 2019-04-26 제이엑스금속주식회사 Compound semiconductor and method for manufacturing compound semiconductor single crystal
CN109963967A (en) * 2017-03-31 2019-07-02 Jx金属株式会社 The manufacturing method of compound semiconductor and compound semiconductor single crystal
JPWO2018179567A1 (en) * 2017-03-31 2020-02-13 Jx金属株式会社 Method for producing compound semiconductor and compound semiconductor single crystal
TWI699464B (en) * 2017-03-31 2020-07-21 日商Jx金屬股份有限公司 Compound semiconductor and compound semiconductor single crystal manufacturing method
EP3591102A4 (en) * 2017-03-31 2021-01-06 JX Nippon Mining & Metals Corporation Compound semiconductor and method for producing single crystal of compound semiconductor
CN109963967B (en) * 2017-03-31 2021-07-20 Jx金属株式会社 Compound semiconductor and method for producing compound semiconductor single crystal
US11371164B2 (en) 2017-03-31 2022-06-28 Jx Nippon Mining & Metals Corporation Compound semiconductor and method for producing single crystal of compound semiconductor

Also Published As

Publication number Publication date
JPH0798720B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JP2874834B2 (en) Intrinsic gettering method for silicon wafer
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
US20030175532A1 (en) Silicon single crystal, silicon wafer, and epitaxial wafer
US6238478B1 (en) Silicon single crystal and process for producing single-crystal silicon thin film
KR100526427B1 (en) Silicon semiconductor substrate and method for production thereof
JPH04342498A (en) Production of inp single crystal and production of semiconductor device
JPH0514418B2 (en)
JPH04298042A (en) Method of heat-treating semiconductor
JPH0557239B2 (en)
CN1017487B (en) Technology to control defect on silicon chip used for silicon semiconductor device
JPS61201692A (en) Method for pulling and growing silicon single crystal with less generation of defect
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPS56167335A (en) Manufacture of semiconductor device
JPS6344720B2 (en)
Druminski Optimization of the Deposition Conditions for Epitaxial Silicon Films on Czochralski Sapphire in the Silane‐Hydrogen System
CN115233311A (en) Method for reducing dislocation density of monocrystalline silicon
JPH0411518B2 (en)
JPH03193698A (en) Silicon single crystal and its production
JPH01242499A (en) Method of decreasing dislocation of znse single crystal
JPS5869800A (en) Growing method for semiconductor crystal of 3[5 group element compound
JPH0784360B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPS6270300A (en) Semi-insulating gaas single crystal
JPH0323287A (en) Liquid phase epitaxial growth method for silicon carbide single crystal
JPH04224196A (en) Semiconducting gaas single crystal and its production
JPH02254715A (en) Manufacture of compound semiconductor crystal layer

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16