JPH04342425A - Protection of electrode - Google Patents

Protection of electrode

Info

Publication number
JPH04342425A
JPH04342425A JP14120591A JP14120591A JPH04342425A JP H04342425 A JPH04342425 A JP H04342425A JP 14120591 A JP14120591 A JP 14120591A JP 14120591 A JP14120591 A JP 14120591A JP H04342425 A JPH04342425 A JP H04342425A
Authority
JP
Japan
Prior art keywords
electrode
glass
protective cover
gap
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14120591A
Other languages
Japanese (ja)
Inventor
Osamu Asano
修 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP14120591A priority Critical patent/JPH04342425A/en
Publication of JPH04342425A publication Critical patent/JPH04342425A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prevent the oxidation and corrosion of electrodes by cylindrically covering the surface of each electrode portion not immersed in a molten glass in a glass melting furnace with a refractory protective cover. CONSTITUTION:Each rodlike electrode 1 made of e.g. Pt is vertically inserted through a penetrating hole 6 provided on the ceiling wall 4 of a working tank 3 and the lower portion of this electrode is immersed in a molten glass 5 in a furnace. The outside surface of the electrode 1 is cylindrically covered with a Al2O3 protective cover 2 so that the lower edge of cover is positioned onto a stopping collar 10, and the space between the cover 2 and the electrode 1 is fed with an inert gas at a flow rate of 0.5-3l/min through an inlet of the upper end holder 8, thereby preventing the volatiles in the glass from intrusion into the space. Thus, the electrode's wastage due to oxidation or corrosion is prevented in such operations as to inject current into the electrodes 1 in the melting furnace and the temperature of the glass is raised to melt it.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガラス溶融炉で使用さ
れる電極の保護方法に関し、さらに詳細には作業槽にお
いて上方から溶融ガラスに浸漬される加熱電極の保護方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for protecting electrodes used in glass melting furnaces, and more particularly to a method for protecting heating electrodes that are immersed in molten glass from above in a working tank.

【0002】0002

【従来の技術】ガラス溶融物中に電極を浸漬し、電極間
に通電して発生するジュール熱を熱源とする電気溶融法
は、古くから研究が進められ実用化されている。電極材
料としては、ガラス溶液に浸食されないこと、また若干
の浸食を受けてガラス溶液中に溶解した場合でもガラス
品質を損なうことの無いことなどが要求される。これら
の要求を満たして現在実際に使用されている電極材料に
は、モリブデン、白金、白金−ロジウム合金あるいは酸
化錫などがある。
2. Description of the Related Art Electric melting methods, in which electrodes are immersed in a glass melt and electricity is passed between the electrodes to generate Joule heat as a heat source, have been studied and put to practical use for a long time. The electrode material is required to not be eroded by the glass solution, and not to impair the quality of the glass even if it is slightly eroded and dissolved in the glass solution. Electrode materials currently in actual use that meet these requirements include molybdenum, platinum, platinum-rhodium alloys, and tin oxide.

【0003】上記した各電極は、高融点を有しガラス溶
液に対する浸食抵抗性も大きい。しかしながら、高温の
酸化雰囲気に曝されると容易に酸化され、昇華して消耗
してしまう欠点がある。
[0003] Each of the above-mentioned electrodes has a high melting point and a high resistance to erosion by a glass solution. However, it has the drawback of being easily oxidized, sublimated, and consumed when exposed to a high-temperature oxidizing atmosphere.

【0004】例えばモリブデン電極は、約600℃以上
の高温大気中に曝されると急速に酸化される。このため
、モリブデン電極を使用する場合には、炉壁の貫通孔付
近など空気中に露出した高温部に直接水を掛けて電極を
冷却する方法、あるいは電極の周囲に水冷ホルダを取り
付けて電極を冷却する方法により電極の保護がなされて
いる。
[0004] For example, molybdenum electrodes are rapidly oxidized when exposed to high temperature air of about 600°C or higher. Therefore, when using molybdenum electrodes, it is recommended to cool the electrodes by directly spraying water on high-temperature areas exposed to the air, such as near through-holes in the furnace wall, or by attaching a water-cooled holder around the electrodes. The electrodes are protected by cooling.

【0005】さらに、水冷ホルダと電極との空間を真空
にして電極の酸化を最小限に抑える方法も知られている
(例えば特開昭61−14142号公報参照)。
Furthermore, there is also known a method of minimizing oxidation of the electrode by creating a vacuum in the space between the water-cooled holder and the electrode (see, for example, Japanese Patent Laid-Open No. 14142/1982).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た冷却方式による電極の保護方法においては、ガラス溶
融物を加熱している電極の周辺部分をも必要以上に冷却
するため、溶融炉の熱効率が低下するという問題が生じ
る。
[Problems to be Solved by the Invention] However, in the electrode protection method using the cooling method described above, the surrounding area of the electrode that is heating the glass melt is also cooled more than necessary, which reduces the thermal efficiency of the melting furnace. The problem arises.

【0007】本発明は、上記した従来の問題点を解決す
るためになされたもので、電極の酸化や浸食を効果的に
防止できる電極の保護方法を提供することを目的とする
ものである。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for protecting electrodes that can effectively prevent oxidation and corrosion of electrodes.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、ガラ
ス溶融炉の作業槽の天井壁を貫通して炉内の溶融ガラス
中に浸漬させた加熱電極の保護方法であって、前記溶融
ガラスに浸漬していない電極部分の表面を筒状に覆って
耐火物製の保護カバーを配置したことを特徴とする電極
の保護方法である。
[Means for Solving the Problems] That is, the present invention is a method for protecting a heating electrode that penetrates the ceiling wall of a working tank of a glass melting furnace and is immersed in molten glass in the furnace, This method of protecting an electrode is characterized in that a protective cover made of a refractory material is arranged to cover the surface of the electrode portion that is not immersed in a cylindrical shape.

【0009】本発明においては、電極と該電極表面を筒
状に覆う耐火物製の保護カバーとの間に間隙を設けると
ともに、前記保護カバーの上端を覆ってホルダーを嵌着
し、このホルダーの注入口から間隙に不活性ガスを流入
させることが好ましい。前記不活性ガスとしては、N2
、Arなどのガスを用いることができる。
In the present invention, a gap is provided between the electrode and a protective cover made of refractory material that covers the electrode surface in a cylindrical shape, and a holder is fitted to cover the upper end of the protective cover. Preferably, an inert gas is introduced into the gap through the injection port. As the inert gas, N2
, Ar, or other gases can be used.

【0010】また本発明においては、保護カバーの下端
縁を電極に突設された係止用つば上に位置させることが
好ましい。さらに本発明において、電極表面を覆う耐火
物製の保護カバーの材料は特に限定されないが、少なく
とも電気絶縁性のあること、また電極が加熱される高温
条件下において変化を生じないこと、すなわち耐熱性お
よび耐歪性を有する材料であることが必要であり、この
点、例えば低膨張ガラスやアルミナなどは好適な材料で
ある。
Further, in the present invention, it is preferable that the lower edge of the protective cover be located on a locking collar protruding from the electrode. Further, in the present invention, the material of the refractory protective cover that covers the electrode surface is not particularly limited, but it must have at least electrical insulation properties and do not change under high temperature conditions where the electrode is heated, that is, it must have heat resistance. The material must also have strain resistance, and in this respect, for example, low expansion glass and alumina are suitable materials.

【0011】[0011]

【作用】本発明によれば、炉内の加熱電極のうち溶融ガ
ラスに浸漬していない部分の表面を耐火物製の保護カバ
ーで筒状に覆ったので、溶融ガラス中の揮発成分による
電極材料の酸化や浸食を抑えることができる。
[Operation] According to the present invention, the surface of the part of the heating electrode in the furnace that is not immersed in the molten glass is covered with a cylindrical protective cover made of refractory material, so that the electrode material is generated by the volatile components in the molten glass. oxidation and erosion can be suppressed.

【0012】0012

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。図1は、本発明を説明するための図であり、
ガラス溶融炉の作業槽の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram for explaining the present invention,
FIG. 3 is a longitudinal cross-sectional view of a working tank of a glass melting furnace.

【0013】図1において、作業槽3の天井壁4の一部
には、炉内溶融ガラス5中に棒状の電極1を上方から垂
直に挿入するための透孔6が設けられている。電極1の
材料としては、モリブデン、白金、白金−ロジウム合金
あるいは酸化錫など従来公知のものを選定し得る。
In FIG. 1, a through hole 6 is provided in a part of the ceiling wall 4 of the working tank 3 for vertically inserting a rod-shaped electrode 1 into the molten glass 5 in the furnace from above. As the material for the electrode 1, conventionally known materials such as molybdenum, platinum, platinum-rhodium alloy, or tin oxide can be selected.

【0014】また電極1の外側には、耐火物製の保護カ
バー2が電極1と同軸的に筒状に配置されている。そし
て前記保護カバー2で覆われた電極1が、前記天井壁4
の透孔6を貫通して作業槽3内に挿入されており、電極
1の下方部分は溶融ガラス5中に浸漬されている。
Further, on the outside of the electrode 1, a protective cover 2 made of refractory material is disposed coaxially with the electrode 1 in a cylindrical shape. The electrode 1 covered with the protective cover 2 is connected to the ceiling wall 4.
The electrode 1 is inserted into the working tank 3 through a through hole 6, and the lower part of the electrode 1 is immersed in the molten glass 5.

【0015】図2は、図1の要部拡大図であり、また図
3は図2のA−A線断面図である。図2において、電極
1と保護カバー2との間には間隙7が設けられ、前記保
護カバー2の上端を覆ってホルダー8が嵌着されている
。また該ホルダー8には、注入口9が形成されており、
注入口9には図示されないノズルが装着されて間隙7に
不活性ガスを連続的に供給することができる。
FIG. 2 is an enlarged view of the main part of FIG. 1, and FIG. 3 is a sectional view taken along the line A--A in FIG. In FIG. 2, a gap 7 is provided between the electrode 1 and the protective cover 2, and a holder 8 is fitted to cover the upper end of the protective cover 2. The holder 8 also has an injection port 9 formed therein.
A nozzle (not shown) is attached to the injection port 9 so that inert gas can be continuously supplied to the gap 7.

【0016】図4は、図2の電極1先端方向(図2の下
方向)からみた概略平面図であり、電極1および係止用
つば10以外の構成要素は省略してある。電極1に配設
される係止用つば10は、例えば図4(a)あるいは(
b)に示した形状のものを適用することができる。また
前記係止用つば10は、電極1と一体的に突出形成させ
ることもよく、あるいは別部材を電極1に溶着して形成
させてもよい。
FIG. 4 is a schematic plan view of the electrode 1 in FIG. 2 as viewed from the tip direction (downward in FIG. 2), and components other than the electrode 1 and the locking collar 10 are omitted. The locking collar 10 disposed on the electrode 1 is, for example, shown in FIG. 4(a) or (
The shape shown in b) can be applied. Further, the locking collar 10 may be integrally formed with the electrode 1 so as to project therefrom, or may be formed by welding a separate member to the electrode 1.

【0017】ホルダー8の注入口9から間隙7に不活性
ガスを供給する場合には、係止用つば10を同図(a)
のような形状とすることが好ましい。上記形状とするこ
とにより、間隙7に流入される不活性ガスを保護カバー
2の下端縁から作業槽内に排出することができ、ガラス
揮発成分の間隙7への侵入を防止して電極保護を有効に
行なうことが可能である。
When inert gas is supplied to the gap 7 from the injection port 9 of the holder 8, the locking collar 10 is moved as shown in FIG.
It is preferable to have a shape like this. With the above shape, the inert gas flowing into the gap 7 can be discharged from the lower edge of the protective cover 2 into the working tank, preventing glass volatile components from entering the gap 7 and protecting the electrode. It is possible to do this effectively.

【0018】また、ホルダー8の注入口9から間隙7へ
供給される不活性ガスは、電極1を酸化雰囲気から保護
する役割を果たす。このため、前記不活性ガスの供給流
量は作業槽内の電極の周辺部分の温度を低下させない範
囲で適切に調整され、20℃換算でおよそ0.5〜3l
/minの範囲にするのが好ましい。上記した範囲以下
の流量では、係止用つば10の間から間隙7にガラス揮
発成分が侵入して電極1を浸食する虞がある。逆に上記
範囲以上の流量で供給した場合には、電極保護の効果は
上がるが不活性ガスが保護カバー2の下端縁から作業槽
内に大量に排出され、この結果作業槽内の温度を10℃
以上低下させてしまう。流入量を適正に調整することに
より、間隙7全体が適度に不活性ガスで覆われた状態と
なってガラス揮発成分の侵入を遮断でき、電極保護の効
果が向上する。
Furthermore, the inert gas supplied from the injection port 9 of the holder 8 to the gap 7 serves to protect the electrode 1 from the oxidizing atmosphere. For this reason, the supply flow rate of the inert gas is appropriately adjusted within a range that does not reduce the temperature of the area around the electrode in the working tank, and is approximately 0.5 to 3 liters at 20°C.
It is preferable to set it within the range of /min. If the flow rate is below the above range, there is a risk that glass volatile components will enter the gap 7 from between the locking collars 10 and corrode the electrode 1. On the other hand, if the flow rate exceeds the above range, the electrode protection effect will increase, but a large amount of inert gas will be discharged from the lower edge of the protective cover 2 into the working tank, and as a result, the temperature in the working tank will decrease by 10%. ℃
or more. By appropriately adjusting the inflow amount, the entire gap 7 is appropriately covered with inert gas, thereby blocking the intrusion of glass volatile components and improving the electrode protection effect.

【0019】また、間隙7に不活性ガスを流入させない
場合には、係止用つば10を同図(b)に示す形状とす
ることが好ましい。上記形状とすることにより、ガラス
揮発成分の間隙7への侵入が防止されるとともに、間隙
7に存在する気体がほとんど移動しないため、間隙7に
おける電極材料の蒸気圧が飽和蒸気圧近くに保たれて揮
発が起こりにくくなる。
Further, when inert gas is not allowed to flow into the gap 7, it is preferable that the locking collar 10 has the shape shown in FIG. 2(b). By adopting the above shape, intrusion of glass volatile components into the gap 7 is prevented, and since the gas present in the gap 7 hardly moves, the vapor pressure of the electrode material in the gap 7 is maintained close to the saturated vapor pressure. volatilization is less likely to occur.

【0020】実施例1 係止用つばを突設させた白金製の棒状電極の外側面を、
その下端縁が前記係止用つば上に位置するようにアルミ
ナ製の保護カバーで筒状に覆った。そして、前記保護カ
バーで覆われた白金電極を作業槽の天井壁の透孔を貫通
して作業槽内に挿入した。
Example 1 The outer surface of a platinum rod-shaped electrode with a protruding locking collar was
It was covered in a cylindrical shape with an alumina protective cover so that its lower edge was positioned above the locking collar. Then, the platinum electrode covered with the protective cover was inserted into the working tank through the through hole in the ceiling wall of the working tank.

【0021】白金電極の下方部分が溶融ガラスに浸漬さ
れる際に、保護カバーが溶融ガラス表面に触れないよう
に、係止用つばを溶融ガラス表面から20mm程度上方
位置となるように調整した。
To prevent the protective cover from touching the molten glass surface when the lower portion of the platinum electrode is immersed in the molten glass, the locking collar was adjusted to be approximately 20 mm above the molten glass surface.

【0022】ガラス溶解槽内で粗溶解されたガラス素地
を作業槽へ導き、作業槽において白金電極とこれに電気
的に対向する白金電極間に通電し、ガラス温度を130
0℃に保って加熱溶融した。溶融ガラス中には、清澄剤
として酸化ヒ素を添加した。
The glass substrate crudely melted in the glass melting tank is led to a working tank, and in the working tank, electricity is applied between a platinum electrode and a platinum electrode electrically opposite thereto to bring the glass temperature to 130°C.
The mixture was heated and melted while maintaining the temperature at 0°C. Arsenic oxide was added to the molten glass as a refining agent.

【0023】通電加熱に伴い、溶融ガラス表面からガラ
ス成分としてヒ素が揮発した。そして揮発した蒸気が作
業槽内の天井壁近傍で冷却されて結露し、ガラス揮発成
分が保護カバー外周面全体にわたって付着した。
As the molten glass was heated with electricity, arsenic was volatilized as a glass component from the surface of the molten glass. Then, the vaporized vapor was cooled and condensed near the ceiling wall in the work tank, and glass volatile components were deposited over the entire outer peripheral surface of the protective cover.

【0024】この白金電極を抜き出して表面状態を目視
で観察したところ、揮発成分による浸食はほとんど認め
られなかった。さらに白金の揮発量の測定を行なった。 その結果、電極表面からの白金の揮発量は単位面積当り
0.2μg/cm2・hであった。この揮発量は、保護
カバーを用いない場合の白金電極の単位面積当り揮発量
6.0μg/cm2・hに比較して1/30であり、本
実施例により白金電極材料の重量損失が低減したことが
確認された。
When this platinum electrode was extracted and the surface condition was visually observed, almost no corrosion by volatile components was observed. Furthermore, the amount of platinum volatilization was measured. As a result, the amount of platinum volatilized from the electrode surface was 0.2 μg/cm 2 ·h per unit area. This amount of volatilization is 1/30 of the amount of volatilization per unit area of the platinum electrode when no protective cover is used, which is 6.0 μg/cm2・h, and this example reduces the weight loss of the platinum electrode material. This was confirmed.

【0025】実施例2 実施例1と同様に、白金製の棒状電極の外側面をアルミ
ナ製の保護カバーで筒状に覆い、さらに前記保護カバー
の上端にホルダーを嵌着して、この白金電極を作業槽の
天井壁の透孔を貫通して作業槽内に挿入した。白金電極
間に通電し、ガラス温度を1300℃に保って加熱溶融
した。溶融ガラス中には、清澄剤として酸化ヒ素を添加
した。
Example 2 As in Example 1, the outer surface of a platinum rod-shaped electrode was covered in a cylindrical shape with an alumina protective cover, and a holder was fitted onto the upper end of the protective cover to cover the platinum electrode. was inserted into the working tank through a hole in the ceiling wall of the working tank. Electricity was applied between the platinum electrodes, and the glass temperature was maintained at 1300° C. to heat and melt the glass. Arsenic oxide was added to the molten glass as a refining agent.

【0026】そして白金電極間への通電加熱を行なうと
ともに、白金電極と電極表面を覆った保護カバーとの間
隙に、ホルダーの注入口から窒素ガスを20℃換算で1
l/minの流量で供給した。間隙へ供給された窒素ガ
スは、間隙を通過して保護カバーの下端縁と係止用つば
との隙間から作業槽内に排出された。
[0026] Then, electrical current is applied between the platinum electrodes to heat the space between them, and nitrogen gas is injected into the gap between the platinum electrode and the protective cover covering the electrode surface from the injection port of the holder at a rate of 1°C at 20°C.
It was supplied at a flow rate of 1/min. The nitrogen gas supplied to the gap passed through the gap and was discharged into the working tank from the gap between the lower edge of the protective cover and the locking collar.

【0027】通電加熱に伴い、溶融ガラス素地表面から
揮発したヒ素が、作業槽内の天井壁近傍で冷却されて結
露し、保護カバー外周面全体に付着した。
[0027] Arsenic volatilized from the surface of the molten glass base material due to electrical heating was cooled and condensed near the ceiling wall in the working tank, and adhered to the entire outer peripheral surface of the protective cover.

【0028】この白金電極を抜き出して、表面状態を目
視で観察したところ、揮発成分による浸食は全く認めら
れなかった。さらに白金の揮発量の測定を行なったとこ
ろ、電極表面からの白金の揮発量は単位面積当り0.0
3μg/cm2・hであった。この揮発量は、保護カバ
ーを用いない場合の白金電極の単位面積当り揮発量6.
0μg/cm2・hに比較して1/200であり、さら
に実施例1の不活性ガスを間隙に流入させない場合に比
較しても約1/7であり、本実施例のごとく電極と保護
カバーとの間隙に不活性ガスを流量を適正に調整して流
入させた結果、重量損失がさらに大幅に低減することが
確認された。
When this platinum electrode was taken out and the surface condition was visually observed, no corrosion due to volatile components was observed. Furthermore, when we measured the amount of platinum volatilization, we found that the amount of platinum volatilized from the electrode surface was 0.0 per unit area.
It was 3 μg/cm2·h. The amount of volatilization per unit area of the platinum electrode when a protective cover is not used is 6.
It is 1/200 compared to 0 μg/cm2・h, and it is also about 1/7 compared to the case of Example 1 in which inert gas is not allowed to flow into the gap. As a result of flowing an inert gas into the gap with the flow rate adjusted appropriately, it was confirmed that weight loss was further reduced significantly.

【0029】[0029]

【発明の効果】以上詳述したとおり、本発明の電極の保
護方法によれば、高温に曝される炉内の加熱電極のうち
溶融ガラスに浸漬されていない部分の表面に耐火物製の
保護カバーを同軸的に筒状に配置させるようにしたので
、酸化や浸食による電極材料の損耗を抑えることが可能
である。
Effects of the Invention As detailed above, according to the electrode protection method of the present invention, refractory protection is applied to the surface of the heating electrode in the furnace that is exposed to high temperatures and is not immersed in molten glass. Since the cover is arranged coaxially in a cylindrical shape, it is possible to suppress wear and tear on the electrode material due to oxidation and erosion.

【0030】また、前記保護カバーの下端縁を電極に突
設された係止用つば上に位置させるようにしたので、溶
融ガラス中の揮発成分が保護カバーの下端縁から電極と
の間隙に入り込んで電極材料を酸化や浸食することを防
止できる。さらに、保護カバーの上端を覆って嵌着され
たホルダーの注入口から電極と保護カバーとの間隙に不
活性ガスを流入させることにより、高温の酸化雰囲気の
侵入を遮断でき、電極材料の酸化や浸食をさらに効果的
に防止できる。
Furthermore, since the lower edge of the protective cover is positioned on the locking collar protruding from the electrode, volatile components in the molten glass enter the gap between the lower edge of the protective cover and the electrode. can prevent oxidation and erosion of the electrode material. Furthermore, by flowing inert gas into the gap between the electrode and the protective cover from the inlet of the holder fitted over the top of the protective cover, it is possible to block the intrusion of high-temperature oxidizing atmosphere, preventing oxidation of the electrode material. Erosion can be prevented more effectively.

【0031】[0031]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】    本発明の実施に好適なガラス溶融炉の
作業槽の縦断面図
[Fig. 1] A longitudinal cross-sectional view of a working tank of a glass melting furnace suitable for carrying out the present invention.

【図2】    図1の要部拡大図[Figure 2] Enlarged view of the main parts of Figure 1

【図3】    図2のA−A線に沿う断面図[Figure 3] Cross-sectional view along line A-A in Figure 2

【図4】
    (a),(b)は、図2の電極先端方向からみ
た概略平面図
[Figure 4]
(a) and (b) are schematic plan views seen from the direction of the electrode tip in Figure 2.

【符号の説明】[Explanation of symbols]

1    電極 2    保護カバー 3    作業槽 4    天井壁 5    溶融ガラス 6    透孔 7    間隙 8    ホルダー 9    注入口 10    係止用つば 1 Electrode 2 Protective cover 3 Work tank 4 Ceiling wall 5. Molten glass 6 Through hole 7 Gap 8 Holder 9 Inlet 10 Locking collar

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ガラス溶融炉の作業槽の天井壁を貫通
して炉内の溶融ガラス中に浸漬させた加熱電極の保護方
法であって、前記溶融ガラスに浸漬していない電極部分
の表面を筒状に覆って耐火物製の保護カバーを配置させ
たことを特徴とする電極の保護方法。
1. A method for protecting a heating electrode that penetrates the ceiling wall of a working tank of a glass melting furnace and is immersed in molten glass in the furnace, the method comprising: protecting the surface of the electrode portion that is not immersed in the molten glass; A method for protecting an electrode, characterized by arranging a protective cover made of refractory over the cylindrical shape.
【請求項2】  電極と、保護カバーとの間に間隙を設
けるとともに、前記保護カバーの上端を覆ってホルダー
を嵌着し、該ホルダーの注入口から前記間隙に不活性ガ
スを流入させる請求項1に記載の電極の保護方法。
2. A gap is provided between the electrode and the protective cover, a holder is fitted to cover the upper end of the protective cover, and an inert gas is flowed into the gap from an injection port of the holder. 1. The method for protecting an electrode according to 1.
JP14120591A 1991-05-17 1991-05-17 Protection of electrode Pending JPH04342425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14120591A JPH04342425A (en) 1991-05-17 1991-05-17 Protection of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14120591A JPH04342425A (en) 1991-05-17 1991-05-17 Protection of electrode

Publications (1)

Publication Number Publication Date
JPH04342425A true JPH04342425A (en) 1992-11-27

Family

ID=15286590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14120591A Pending JPH04342425A (en) 1991-05-17 1991-05-17 Protection of electrode

Country Status (1)

Country Link
JP (1) JPH04342425A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168279A (en) * 2003-10-10 2010-08-05 Nippon Electric Glass Co Ltd Method for producing alkali-free glass
CN102757166A (en) * 2011-04-26 2012-10-31 康宁股份有限公司 Electrode holder for electric glass melting
JP2016511739A (en) * 2013-02-15 2016-04-21 コーニング インコーポレイテッド Mass production of display quality glass plates with low zirconia content
CN109133578A (en) * 2018-08-08 2019-01-04 东旭科技集团有限公司 Heating device and its manufacturing method, glass manufacturing equipment for glass manufacture
KR20240035710A (en) 2022-09-09 2024-03-18 에이지씨 가부시키가이샤 Residual thickness measuring device, residual thickness measuring method, and glass manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168279A (en) * 2003-10-10 2010-08-05 Nippon Electric Glass Co Ltd Method for producing alkali-free glass
CN102757166A (en) * 2011-04-26 2012-10-31 康宁股份有限公司 Electrode holder for electric glass melting
JP2016511739A (en) * 2013-02-15 2016-04-21 コーニング インコーポレイテッド Mass production of display quality glass plates with low zirconia content
CN109133578A (en) * 2018-08-08 2019-01-04 东旭科技集团有限公司 Heating device and its manufacturing method, glass manufacturing equipment for glass manufacture
KR20240035710A (en) 2022-09-09 2024-03-18 에이지씨 가부시키가이샤 Residual thickness measuring device, residual thickness measuring method, and glass manufacturing method

Similar Documents

Publication Publication Date Title
US3868987A (en) Method of electric refining of metals by slag, known as the E. S. R. method, using liquefied gas to isolate the slag and electrode from the ambient air
US7530238B2 (en) Heating apparatus with electrode for the conductive heating of melts
US5103072A (en) Submersible plasma torch
US5606925A (en) Process for the incineration and vitrification of waste in a crucible
US4777343A (en) Plasma arc apparatus
SE452862B (en) LIGHT BAGS LEAD
CA1077997A (en) Primary electrode arrangement for high temperature melting furnace
RU2226553C1 (en) Method and device for production of melted iron
WO2010036762A2 (en) Method and apparatus for homogenizing a glass melt
JPH04342425A (en) Protection of electrode
US2908738A (en) Electrode for a glass melting furnace
CA1106429A (en) Liquid-cooled electrode for electric arc furnaces
JPS6258828B2 (en)
JPH049993B2 (en)
JPS60188789A (en) Method of dissolving material and direct current arc furnace
JP4456284B2 (en) Molten steel heating device using plasma torch
JPS63185831A (en) Electric melting apparatus
JP3970542B2 (en) Furnace wall structure of electric melting furnace and method for suppressing wear of furnace wall refractories
JP2631574B2 (en) Non-consumable electrode for arc machining
JP3655308B2 (en) Electric melting device
US4583229A (en) Metal melting system
JPH0578759A (en) Reduction of nonferrous metallic oxide in slag
JP2000033475A (en) Gas ejection type soldering iron
EP0952232A2 (en) Gas mixture and process for the thermal treatment of metallic workpieces, using the gas mixture
JP3265112B2 (en) Resistance melting furnace