JPH04342401A - Method for reforming gas - Google Patents

Method for reforming gas

Info

Publication number
JPH04342401A
JPH04342401A JP14132591A JP14132591A JPH04342401A JP H04342401 A JPH04342401 A JP H04342401A JP 14132591 A JP14132591 A JP 14132591A JP 14132591 A JP14132591 A JP 14132591A JP H04342401 A JPH04342401 A JP H04342401A
Authority
JP
Japan
Prior art keywords
gas
reducing
furnace
reformer
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14132591A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tanaka
田中 嘉朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14132591A priority Critical patent/JPH04342401A/en
Publication of JPH04342401A publication Critical patent/JPH04342401A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To economically maintain a stationary driving condition without stopping a gas reforming device in direct reducing iron production by using part of reducing gas formed by the gas reforming device as a fuel gas of the gas reforming device during the operation of a reducing furnace in suspension. CONSTITUTION:In a gas reforming method wherein a reducing gas obtained from a gas reforming device 1 is fed to a reducing furnace 2 for direct iron production, an iron ore is reduced and a furnace top gas 7 discharged from the reducing furnace 2 for direct iron production is used (7 3 4 26 8) as a fuel gas for the gas reforming device 1, during the operaiton of the reducing furnace 2 in the suspension, the reducing gas obtained from the gas reforming device 1 is partially used (6 23 21 25 34 8) as the fuel gas of the gas reforming device 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、直接還元製鉄法を実施
する際における還元性ガスを得るためのガス改質方法に
関し、特に還元炉の操業中断時においても、ガス改質装
置に熱衝撃等を与えることなく安定した状態でガス改質
を継続し、操業再開時の還元ガス安定供給に備えること
のできるガス改質方法に関するものである。
[Industrial Application Field] The present invention relates to a gas reforming method for obtaining reducing gas when implementing a direct reduction iron manufacturing method, and in particular, the present invention relates to a gas reforming method for obtaining reducing gas when carrying out a direct reduction iron manufacturing method. The present invention relates to a gas reforming method that allows gas reforming to continue in a stable state without causing any damage, etc., and to prepare for a stable supply of reducing gas when restarting operations.

【0002】0002

【従来の技術】図3は公知の直接還元製鉄法を例示する
フロー図であり、炭化水素ガスと水蒸気の混合物をライ
ン5からガス改質装置1へ供給し、触媒の充填された改
質管1aに通すことによって製造される高温の還元性ガ
スをライン6から還元炉2へ供給して鉄鉱石の直接還元
を行なう。
[Prior Art] FIG. 3 is a flowchart illustrating a known direct reduction iron manufacturing method, in which a mixture of hydrocarbon gas and steam is supplied from a line 5 to a gas reformer 1, and a reforming tube filled with a catalyst is A high temperature reducing gas produced by passing through 1a is supplied from line 6 to reduction furnace 2 for direct reduction of iron ore.

【0003】そして還元炉2の頂部から排出される炉頂
ガスは、ライン7からスクラバー3へ送って洗浄、冷却
及び水分除去を行なった後、その一部はライン9からラ
イン8を通してガス改質装置1へ送って燃料ガスとして
利用し、残部は圧力調整弁13を通して系外へ排出され
る。また図示する如く炉頂ガスの一部は、圧縮器4によ
り昇圧した後、ライン10から前記還元性ガス供給ライ
ン6へ送り、還元性ガスと混合して再利用することもで
きる。
The top gas discharged from the top of the reduction furnace 2 is sent from the line 7 to the scrubber 3 for cleaning, cooling, and water removal, and then a part of it is passed from the line 9 to the line 8 for gas reforming. The gas is sent to the device 1 and used as fuel gas, and the remainder is discharged outside the system through the pressure regulating valve 13. Further, as shown in the figure, a part of the furnace top gas can be pressurized by the compressor 4 and then sent from the line 10 to the reducing gas supply line 6, where it can be mixed with the reducing gas and reused.

【0004】また図4の例では、還元炉2の操業中断時
にもガス改質装置1の定常運転を止めず、還元性ガスを
系外へ排出しておき、操業再開時に安定した組成の還元
性ガスが即座に供給できる様に、ライン6に設けたバル
ブ20の上流側にライン23を分岐させ、ガス冷却器2
1、ライン24及びバルブ22を通して還元性ガスを排
出するラインを設けている。
Furthermore, in the example shown in FIG. 4, even when the operation of the reduction furnace 2 is interrupted, the steady operation of the gas reformer 1 is not stopped, and the reducing gas is discharged outside the system, so that when the operation is restarted, the reduction has a stable composition. A line 23 is branched on the upstream side of the valve 20 provided in the line 6 so that the gas can be supplied immediately, and the gas cooler 2 is connected to the line 23.
1. A line is provided to discharge reducing gas through line 24 and valve 22.

【0005】即ち還元炉2の操業中断時(たとえば鉄鉱
石原料の投入時や異常事態発生時等)に、その都度ガス
改質装置1の作動を中断することは、該改質装置1の安
定操業を保つうえで好ましいことではなく、また改質ガ
ス組成の変動も軽視できなくなるので、還元炉2の操業
中断時においても、ガス改質装置1は定常運転を継続し
ておき、バルブ20を閉じると共にバルブ22を開くこ
とによって還元性ガスを系外へ抜き出す。そして還元炉
2の操業再開時には、バルブ20を開、バルブ22を閉
とすることによって、安定した組成の還元性ガスを直ち
に還元炉2へ供給できる様にしている。
[0005] That is, interrupting the operation of the gas reformer 1 each time the operation of the reduction furnace 2 is interrupted (for example, when iron ore raw material is introduced or when an abnormal situation occurs) is important for the stability of the reformer 1. This is not desirable for maintaining operation, and fluctuations in the composition of the reformed gas cannot be ignored, so even when the operation of the reduction furnace 2 is interrupted, the gas reformer 1 continues to operate steadily and the valve 20 is closed. By closing the valve 22 and opening the valve 22, the reducing gas is extracted from the system. When the operation of the reduction furnace 2 is resumed, the valve 20 is opened and the valve 22 is closed, so that reducing gas having a stable composition can be immediately supplied to the reduction furnace 2.

【0006】[0006]

【発明が解決しようとする課題】ところが図3,4に示
した様な設備では次の様な問題が生じてくる。即ち操業
中断時にバルブ20を閉じて還元炉2への還元性ガス供
給を停止すると、還元炉2からライン7を通って排出さ
れる炉頂ガスが止まり、従ってライン8を通してガス改
質装置1へ燃料ガスとして返送される炉頂ガスも止まっ
てしまう。またその後の操業再開時においては、ガス改
質装置1への送給が再開された炉頂ガス(燃料ガス)に
点火して定常状態に立ち上げることが必要になるが、そ
の間の不安定操業時に改質反応管内にカーボンの付着が
起こったり、あるいは操業の中断・再開毎にくり返され
る管内温度の急変によって改質管の寿命が短縮されると
いった問題が生じてくる。
[Problems to be Solved by the Invention] However, the following problems arise in the equipment shown in FIGS. 3 and 4. That is, when the valve 20 is closed to stop the supply of reducing gas to the reduction furnace 2 during an interruption of operation, the top gas discharged from the reduction furnace 2 through the line 7 is stopped, and therefore the top gas is discharged through the line 8 to the gas reformer 1. The top gas that is returned as fuel gas also stops. In addition, when restarting operation thereafter, it is necessary to ignite the top gas (fuel gas) that has been resumed being supplied to the gas reformer 1 to bring it to a steady state, but during this period the unstable operation Problems sometimes arise in that carbon adheres to the inside of the reforming reaction tube, or that the life of the reforming tube is shortened due to repeated sudden changes in the temperature inside the tube each time the operation is interrupted and restarted.

【0007】そこでこうした問題を回避する手段として
は、操業中断時には外部から天然ガスをガス改質装置1
の燃料として切換え供給する方法も考えられる。ところ
が炉頂ガスと天然ガスの発熱量は著しく異なっており(
天然ガスの発熱量は炉頂ガスの約3倍)、空燃比も著し
く異なってくるため、炉頂ガス燃料から天然ガス燃料に
切換える時点で燃焼用空気の不足もしくは過剰を招いた
り、バーナノズル付近でバックファイヤーを起こす等の
問題が生じてくる。しかもこの間ガス改質装置1で製造
される還元性ガスは、大抵の場合大気中に放散されるの
で、炉頂ガスに切換えて供給される天然ガスの消費量分
だけ燃料費が嵩むことになり、不経済である。
Therefore, as a means to avoid such problems, natural gas is supplied from the outside to the gas reformer 1 when the operation is interrupted.
A method of switching and supplying the fuel as fuel is also considered. However, the calorific value of furnace top gas and natural gas is significantly different (
The calorific value of natural gas is approximately three times that of furnace top gas), and the air-fuel ratio is also significantly different. Therefore, when switching from furnace top gas fuel to natural gas fuel, there may be a shortage or excess of combustion air, or there may be problems near the burner nozzle. Problems such as backfire may occur. Moreover, during this time, the reducing gas produced in the gas reformer 1 is generally dissipated into the atmosphere, so fuel costs increase by the amount of natural gas consumed that is switched to the top gas. , it is uneconomical.

【0008】本発明は上記の様な従来技術の問題点に着
目してなされたものであって、その目的は、還元炉の操
業中断時においても、ガス改質装置を停止することなく
安定した定常運転状態を維持することのできる経済的な
方法を確立し、ガス改質装置に好ましくない熱衝撃やカ
ーボン付着等の問題を生ずることなく、還元炉の操業再
開時には安定した組成の還元性ガスを直ちに供給するこ
とのできる直接還元製鉄用のガス改質方法を提供しよう
とするものである。
The present invention has been made by focusing on the problems of the prior art as described above, and its purpose is to maintain stable gas reforming equipment without stopping the gas reformer even when the operation of the reduction furnace is interrupted. We have established an economical method that can maintain a steady state of operation, without causing problems such as unfavorable thermal shock or carbon adhesion in the gas reformer, and producing a reducing gas with a stable composition when the reduction furnace resumes operation. The purpose of the present invention is to provide a gas reforming method for direct reduction iron making that can immediately supply .

【0009】[0009]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るガス改質方法の構成は、ガス改質
装置で得た還元性ガスを直接製鉄用還元炉へ供給して鉄
鉱石の還元を行なうと共に、該還元炉から排出される炉
頂ガスを前記ガス改質装置の燃料ガスとして利用するガ
ス改質方法において、上記還元炉の操業中断時には、上
記ガス改質装置で得た還元性ガスの一部を、当該ガス改
質装置の燃料ガスとして利用するところに要旨を有する
ものである。
[Means for Solving the Problems] The structure of the gas reforming method according to the present invention that can solve the above problems is to directly supply reducing gas obtained in a gas reformer to a reduction furnace for iron ore production. In a gas reforming method in which stone is reduced and the furnace top gas discharged from the reduction furnace is used as fuel gas for the gas reformer, when the operation of the reduction furnace is interrupted, the gas obtained by the gas reformer is The gist is that a part of the reduced reducing gas is used as fuel gas for the gas reformer.

【0010】0010

【作用】上記の様に本発明では、還元炉の操業中断に伴
ってガス改質装置への送給が止まる炉頂ガス燃料の代替
燃料として、従来は系外へ排出されていた当該ガス改質
装置からの還元性ガスを利用するものであり、ガス改質
用の燃料ガスとして、還元炉操業時は還元炉からの炉頂
ガスを、また操業中断時には当該ガス改質装置で製造さ
れる還元ガスを夫々使用するものであり、全期間を通し
て還元製鉄設備内でガス改質用燃料ガスの自給システム
を確立し得ることなった。
[Operation] As described above, in the present invention, the gas reformer, which was conventionally discharged outside the system, can be used as an alternative fuel for the top gas fuel, which stops being fed to the gas reformer due to the interruption of operation of the reduction furnace. It uses the reducing gas from the reduction furnace, and the fuel gas for gas reforming is produced by the top gas from the reduction furnace when the reduction furnace is in operation, and by the gas reformer when the operation is interrupted. Reducing gases are used in each case, and a self-sufficiency system for fuel gas for gas reforming can be established within the reduction ironmaking facility throughout the entire period.

【0011】尚炉頂ガスは、還元炉内で鉄鉱石の還元に
利用された後の排ガスであるから、その発熱量はガス改
質装置で製造された還元性ガスの発熱量よりも当然に低
い。しかし両者の平均組成および発熱量は表1に示す通
り(参考のため天然ガスの平均的組成及び発熱量も表1
に併記した)であり、両者の違いは天然ガスと炉頂ガス
の差異に比べて極く僅かであるので、還元炉操業の中断
・再開時に両者をガス改質用燃料として切換え使用した
場合でも、ガス改質装置の運転状態に大きな変動を来た
すほどの影響はなく、天然ガスを切換え使用する場合に
指摘した様な問題は起こさない。
[0011] Since the furnace top gas is the exhaust gas that has been used to reduce iron ore in the reduction furnace, its calorific value is naturally higher than that of the reducing gas produced in the gas reformer. low. However, the average composition and calorific value of both are shown in Table 1 (for reference, the average composition and calorific value of natural gas are also shown in Table 1).
), and the difference between the two is extremely small compared to the difference between natural gas and furnace top gas, so even if both are switched and used as gas reforming fuel when the reduction furnace operation is interrupted or restarted. , it does not have a significant effect on the operating status of the gas reformer, and does not cause the problems pointed out when switching to natural gas.

【0012】0012

【表1】[Table 1]

【0013】後記実施例で詳述するが、ガス改質装置で
製造された還元性ガスは、そのままで還元炉へ供給して
もよいが、該還元性ガスが多量の水分(水蒸気)を含む
場合は、還元炉内における還元効率に悪影響が現れるこ
とがあるので、還元性ガスを一旦冷却乾燥して水分を除
去した後、再加熱するか、又は還元炉から排出される炉
頂ガスの一部を脱炭処理し再加熱し還元力を高めてから
該還元ガスと混合してから還元炉へ供給することが望ま
れる。以下、実施例図面を参照しつつ本発明の構成及び
作用効果を詳細に説明する。
[0013] As will be described in detail in Examples below, the reducing gas produced in the gas reformer may be supplied as is to the reduction furnace, but if the reducing gas contains a large amount of water (steam). If this occurs, the reduction efficiency in the reduction furnace may be adversely affected, so either the reducing gas is cooled and dried to remove moisture and then reheated, or some of the top gas discharged from the reduction furnace is It is desirable to decarburize the part and reheat it to increase its reducing power, mix it with the reducing gas, and then supply it to the reduction furnace. Hereinafter, the configuration and effects of the present invention will be explained in detail with reference to the drawings.

【0014】[0014]

【実施例】図1は本発明が実施される還元製鉄設備を例
示する全体フロー図であり、基本的な構成は前記図4と
して示した従来例と同じであるので、同一部分には同一
の符号を付している。
[Example] Fig. 1 is an overall flow diagram illustrating reduction iron manufacturing equipment in which the present invention is implemented.The basic configuration is the same as the conventional example shown in Fig. 4, so the same parts have the same structure. A symbol is attached.

【0015】図1において、還元炉2の定常操業時にお
いては、ライン5から送り込まれる炭化水素と水蒸気は
ガス改質装置1における改質触媒の充填された改質管1
aに供給され、外部からの熱を受けて改質されて還元性
ガスとなりライン6からバルブ20を経て還元炉2へ送
給される。そして還元炉2の頂部から排出される炉頂ガ
スは、ライン7からスクラバ3へ送って粉塵及び水分を
除去した後、その一部は圧縮器4で適度に加圧した後、
逆止弁26を経てライン8からガス改質装置1へ燃料ガ
スとして送られる。また炉頂ガスの残部は、流量調節弁
13を通して系外へ排出され、場合によっては近隣の還
元性ガス需要設備へ送られる。
In FIG. 1, during steady operation of the reduction furnace 2, hydrocarbons and steam fed from the line 5 are passed through the reforming tube 1 filled with a reforming catalyst in the gas reformer 1.
a, is reformed by receiving heat from the outside, becomes a reducing gas, and is sent to the reducing furnace 2 from the line 6 via the valve 20. The top gas discharged from the top of the reduction furnace 2 is sent from the line 7 to the scrubber 3 to remove dust and moisture, and then a portion of it is moderately pressurized by the compressor 4.
The fuel gas is sent from the line 8 to the gas reformer 1 via the check valve 26. Further, the remainder of the furnace top gas is discharged outside the system through the flow control valve 13, and is sent to nearby reducing gas demand equipment as the case may be.

【0016】一方、還元炉2の操業上何らかのトラブル
が発生したとき、直ちにバルブ20を閉じて還元炉2へ
の還元ガスの供給を中断するとライン8からガス改質装
置1へ燃料ガスとして送られる炉頂ガスが止まるので、
バルブ34を開き、ガス改質装置1で製造された還元ガ
スをライン6からライン23方向へ流し、ガス冷却器2
1で適度の温度まで降温させた後、ライン25およびバ
ルブ34、ライン25を経てライン8へ送り、該ライン
8からガス改質装置1へ燃料ガスとして返送する。尚燃
料ガスとして返送される還元性ガス量の調整は、圧力調
節弁22の開度を調節することによって行なわれ、残部
の還元性ガスは系外へ排出される。
On the other hand, when some kind of trouble occurs in the operation of the reduction furnace 2, the valve 20 is immediately closed to interrupt the supply of reducing gas to the reduction furnace 2, and the gas is sent from the line 8 to the gas reformer 1 as fuel gas. As the furnace top gas stops,
The valve 34 is opened and the reducing gas produced in the gas reformer 1 is allowed to flow from the line 6 to the line 23, and the gas cooler 2
After cooling the gas to an appropriate temperature in step 1, it is sent to line 8 through line 25, valve 34, and line 25, and is returned from line 8 to gas reformer 1 as fuel gas. The amount of reducing gas returned as fuel gas is adjusted by adjusting the opening degree of the pressure regulating valve 22, and the remaining reducing gas is discharged to the outside of the system.

【0017】尚バルブ34に代えて電磁弁等を使用し、
ライン8内の背圧の変動によって自動的に開閉作動させ
たり、あるいはバルブ20の開閉と同期して閉・開作動
する自動制御機構を組込むことも勿論有効である。また
還元炉2の操業の再開準備が整うと、バルブ20を開い
て還元炉2へ還元ガスの送給が再開されるが、再開直後
は炉頂ガスがまだ逆止弁26にまで至っていないので、
該逆止弁26の上流側ラインの炉頂ガス圧が所定圧力に
まで上がるのを待ってバルブ34を閉じ、ガス改質装置
1への燃料ガスの送給がとだえることのない様にする。
[0017] In place of the valve 34, a solenoid valve or the like is used,
Of course, it is also effective to incorporate an automatic control mechanism that automatically opens and closes depending on fluctuations in the back pressure in the line 8, or that closes and opens in synchronization with the opening and closing of the valve 20. Furthermore, when preparations for restarting the operation of the reduction furnace 2 are completed, the valve 20 is opened and the supply of reducing gas to the reduction furnace 2 is resumed. However, immediately after restarting, the furnace top gas has not yet reached the check valve 26. ,
Wait until the furnace top gas pressure in the upstream line of the check valve 26 rises to a predetermined pressure, and then close the valve 34 so that the supply of fuel gas to the gas reformer 1 will not be interrupted. do.

【0018】炉頂ガスと還元性ガスの発熱量にそれほど
差がないことは先に述べた通りであるから、燃料ガスと
して上記両ガスを切換え供給したときでもガス改質装置
1で熱衝撃が起こる様な恐れはなく、ガス改質管の熱劣
化が抑えられると共に、カーボン付着等の問題も起こら
ない。しかも還元炉の操業中断時においても外部から燃
料ガスを供給することなく燃料ガスを自給できるので、
経済的にも極めて有利である。
As mentioned above, there is not much difference in calorific value between the furnace top gas and the reducing gas, so even when the above two gases are switched and supplied as fuel gas, there is no thermal shock in the gas reformer 1. There is no risk of such occurrence, thermal deterioration of the gas reforming tube is suppressed, and problems such as carbon adhesion do not occur. Moreover, even when the operation of the reduction furnace is interrupted, fuel gas can be self-sufficient without supplying fuel gas from outside.
It is also extremely advantageous economically.

【0019】図2は本発明の他の実施例を示したもので
あり、ガス改質装置1で製造された還元性ガスの送給ラ
イン6に、冷却乾燥器28及び再加熱器29を設け、冷
却乾燥器28で水分を除去して還元力を高めた後再加熱
器29で所定温度に昇温してから還元炉2へ送給し得る
様にし、また還元炉2の操業中断時に開閉されるバルブ
34の代わりに圧力調節弁27を用いた以外は、前記図
1の例と実質的に変わらない。
FIG. 2 shows another embodiment of the present invention, in which a cooling dryer 28 and a reheater 29 are provided in the supply line 6 of the reducing gas produced by the gas reformer 1. After water is removed in the cooling dryer 28 to increase the reducing power, the temperature is raised to a predetermined temperature in the reheater 29 so that it can be fed to the reduction furnace 2, and it can be opened and closed when the operation of the reduction furnace 2 is interrupted. This embodiment is substantially the same as the example shown in FIG. 1, except that a pressure regulating valve 27 is used instead of the valve 34 shown in FIG.

【0020】即ちガス改質装置1で製造される還元ガス
中の水分含有量が多い場合は、還元炉2における還元効
率に悪影響が表れてくるので、この様な恐れのある場合
は、上記の様な冷却乾燥器28及び再加熱器29を併設
することが望まれる。
In other words, if the reducing gas produced by the gas reformer 1 has a high water content, the reduction efficiency in the reduction furnace 2 will be adversely affected, so if there is such a possibility, the above It is desirable to provide a cooling dryer 28 and a reheater 29 of various types.

【0021】図3は本発明の更に他の実施例を示したも
のであり、還元炉2の定常運転時に排出される炉頂ガス
を、還元性ガスとして還元炉2へ再送給できる様にして
いる。即ち排ガスライン8を逆止弁26の上流側でライ
ン30に分岐させ、該ライン30から抜き出される炉頂
ガスを脱炭酸ガス塔31に通して還元力を高めた後、加
熱器32で所定温度まで昇温した後ライン33からライ
ン6内を流れる還元性ガスに合流させて還元炉2へ送給
するものである。
FIG. 3 shows still another embodiment of the present invention, in which top gas discharged during steady operation of the reducing furnace 2 can be re-supplied to the reducing furnace 2 as reducing gas. There is. That is, the exhaust gas line 8 is branched into a line 30 on the upstream side of the check valve 26, and the furnace top gas extracted from the line 30 is passed through a decarbonation gas tower 31 to increase its reducing power, and then heated to a predetermined level by a heater 32. After the temperature has been raised to a certain temperature, it is made to join the reducing gas flowing in the line 6 from the line 33 and is sent to the reduction furnace 2.

【0022】こうした構成は、ガス改質装置1へ燃料ガ
スとして送られる炉頂ガスの量が相対的に少なく、圧力
調節弁13から系外へ排出される炉頂ガス量が多い場合
に、炉頂ガスを当該設備内で有効に活用でき、還元ガス
発生装置が小型化できるという利点が得られる。尚この
図においても、還元炉2の操業中断時には、ライン6か
ら分岐したライン23よりガス冷却器21、ライン25
流量調節弁27を経てライン8へ還元性ガスを送り、ガ
ス改質装置1の燃料ガスとして返送する点は、前記図1
,2の例と同じである。
[0022] With this configuration, when the amount of furnace top gas sent as fuel gas to the gas reformer 1 is relatively small and the amount of furnace top gas discharged from the pressure control valve 13 to the outside of the system is large, the furnace The advantage is that the top gas can be effectively utilized within the equipment, and the reducing gas generator can be downsized. Also in this figure, when the operation of the reduction furnace 2 is interrupted, the gas cooler 21 and the line 25 are connected to the line 23 branched from the line 6.
The point that the reducing gas is sent to the line 8 via the flow rate control valve 27 and returned as fuel gas to the gas reformer 1 is as shown in FIG.
, 2 is the same as the example.

【0023】[0023]

【発明の効果】本発明は以上の様に構成されており、還
元炉の操業中断時においては、ガス改質用燃料として当
該ガス改質装置で製造された還元ガスを利用することに
よって、ガス改質装置における熱衝撃やカーボン付着等
の問題を解消して常時安定したガス改質操業を継続する
ことができる。しかも還元炉の定常運転時及び中断時を
通してガス改質用燃料ガスは当該設備内で自給でき、外
部から燃料を補給する必要がないので経済的にも極めて
有利である。
Effects of the Invention The present invention is constructed as described above, and when the operation of the reduction furnace is interrupted, the reducing gas produced by the gas reforming apparatus is used as the fuel for gas reforming. Problems such as thermal shock and carbon adhesion in the reformer can be resolved and stable gas reforming operations can be continued at all times. Moreover, the fuel gas for gas reforming can be self-sufficient within the facility during steady operation and during interruptions of the reduction furnace, and there is no need to replenish fuel from outside, which is extremely advantageous economically.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を採用した直接還元製鉄法を例示するフ
ロー図である。
FIG. 1 is a flow diagram illustrating a direct reduction iron manufacturing method employing the present invention.

【図2】本発明を採用した他の直接還元製鉄法を例示す
るフロー図である。
FIG. 2 is a flow diagram illustrating another direct reduction iron manufacturing method employing the present invention.

【図3】本発明を採用した更に他の直接還元製鉄法を例
示するフロー図である。
FIG. 3 is a flow diagram illustrating still another direct reduction iron manufacturing method employing the present invention.

【図4】従来の直接還元製鉄法を例示するフロー図であ
る。
FIG. 4 is a flow diagram illustrating a conventional direct reduction iron manufacturing method.

【符号の説明】[Explanation of symbols]

1  ガス改質装置 2  還元炉 3  スクラバー 4  加圧器 5  原料供給ライン 1 Gas reformer 2 Reduction furnace 3 Scrubber 4 Pressurizer 5 Raw material supply line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ガス改質装置で得た還元性ガスを直接
製鉄用還元炉へ供給して鉄鉱石の還元を行なうと共に、
該直接製鉄用還元炉から排出される前記炉頂ガスをガス
改質装置の燃料ガスとして利用するガス改質方法におい
て、上記還元炉の操業中断時には、上記ガス改質装置で
得た還元性ガスの一部を、当該ガス改質装置の燃料ガス
として利用することを特徴とする直接製鉄用のガス改質
方法。
[Claim 1] Reducing iron ore is carried out by directly supplying reducing gas obtained from a gas reforming device to a reduction furnace for iron-making, and
In a gas reforming method in which the furnace top gas discharged from the direct steelmaking reduction furnace is used as fuel gas for a gas reformer, when the operation of the reduction furnace is interrupted, the reducing gas obtained in the gas reformer is A gas reforming method for direct steelmaking, characterized in that a part of the gas is used as fuel gas for the gas reformer.
JP14132591A 1991-05-16 1991-05-16 Method for reforming gas Withdrawn JPH04342401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14132591A JPH04342401A (en) 1991-05-16 1991-05-16 Method for reforming gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14132591A JPH04342401A (en) 1991-05-16 1991-05-16 Method for reforming gas

Publications (1)

Publication Number Publication Date
JPH04342401A true JPH04342401A (en) 1992-11-27

Family

ID=15289308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14132591A Withdrawn JPH04342401A (en) 1991-05-16 1991-05-16 Method for reforming gas

Country Status (1)

Country Link
JP (1) JPH04342401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501138A (en) * 2009-07-31 2013-01-10 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Reduction method based on reformer gas with reduced nitrogen oxide emissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501138A (en) * 2009-07-31 2013-01-10 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Reduction method based on reformer gas with reduced nitrogen oxide emissions

Similar Documents

Publication Publication Date Title
JPH04342401A (en) Method for reforming gas
EA013661B1 (en) Method of integrating a blast furnace with an air gas separation unit
CN110699507B (en) European smelting furnace gas circulation back-matching device
JPH11303611A (en) Steam turbine operation method for coke dry quenching plant
JP2003128401A (en) Apparatus for generating hydrogen and it's operating method
JP2004022430A (en) Fuel cell/gas turbine complex power generation plant
JPS63171807A (en) Operation method for oxygen blast furnace
JPH0878030A (en) Fuel cell power generating device
JP3010086B2 (en) Cogeneration power plant
CN116625132B (en) Ternary lithium battery kiln tail gas recycling system and method
JP2003040603A (en) Hydrogen generator
JPH04366560A (en) Method and device for controlling combustor temperature of fuel cell generator
JPS6179820A (en) Starting method of turbo-compressor system
JPS61207504A (en) Method for controlling combustion in hot stove
US20210246378A1 (en) Device and method for desulfurizing crude oil
JP2001107742A (en) Control device for gasification power plant
JPH0583742B2 (en)
JPS63169310A (en) Blast furnace operation method
JP3691017B2 (en) Burner control device
JPS5922763B2 (en) Soot addition method for vertical reduction furnace
JPS62135619A (en) Heat supply power generating device using gas turbine
JPS6058287B2 (en) Atmospheric gas production equipment
JP2000303077A (en) Combined gasifier/power plant
JPS63809B2 (en)
JPS6180763A (en) Control system for fuel cell power generation system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806