JPH0434227A - Vibrationproof material - Google Patents

Vibrationproof material

Info

Publication number
JPH0434227A
JPH0434227A JP2140643A JP14064390A JPH0434227A JP H0434227 A JPH0434227 A JP H0434227A JP 2140643 A JP2140643 A JP 2140643A JP 14064390 A JP14064390 A JP 14064390A JP H0434227 A JPH0434227 A JP H0434227A
Authority
JP
Japan
Prior art keywords
orientation
short fiber
fiber composite
directions
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2140643A
Other languages
Japanese (ja)
Inventor
Tsutomu Shioyama
務 塩山
Arao Umeda
梅田 荒夫
Keiji Iwai
岩井 啓次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2140643A priority Critical patent/JPH0434227A/en
Priority to EP91108700A priority patent/EP0461464A1/en
Priority to CA 2043435 priority patent/CA2043435A1/en
Publication of JPH0434227A publication Critical patent/JPH0434227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain vibrationproof material which has anisotropy of high elastic modulus by determining orientation rate of staple according to the predetermined equation and constituting orientation rate in the S1 direction, the S2 direction which is at right angle to the S1 direction, and the S3 direction which is at right angle to the S1 and S2 directions to the predetermined %. CONSTITUTION:Orientation of staple 11 of staple composite elastomer which constitutes vibrationproof material is done by well-known calender, extrusion molding, and injection molding. As constituent member or a part of constituent member of vibrationproof material which has spring constant having anisotropy, when orientation rate Hi is defined by Hi={(1/Vi)/(1/V1+1/V2+1/V3)}X100i =1,2,3(V1, V2, V3: coefficient of solvent linear expansion in S1, S2, S3 directions), orientaion rate H1 in S1 direction is 45 to 100%, orientation rate H2 in S2 direc tion which is at right angle to S1 direction is (100-H1)X(50-100)%, and orienta tion rate H3 in S3 direction which is at right angle to S1, S2, directions is {100-(H1+H2)}%. Thus, orientation condition of staple 11 is set with consider ably high degree of freedom in vibrationproof material, and it has different elastic modulus in three and two dimensional directions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、短繊維複合エラストマーを用いて構成される
防振材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vibration damping material constructed using a short fiber composite elastomer.

(従来の技術) 従来より、異方性のバネ定数を発現させるためには、■
防振ゴムの形状により異方性を持たせる方法、■金属板
との複合による方法が広く採用されている。■の方法と
しては、金属板とゴム層とを複数積層し、積層面に対し
垂直方向のバネ定数が高く、剪断方向のバネ定数を低く
する方法が知られている。
(Conventional technology) Conventionally, in order to develop an anisotropic spring constant, ■
A method of imparting anisotropy to the shape of vibration-proof rubber, and a method of combining it with a metal plate are widely adopted. As method (2), a method is known in which a plurality of metal plates and rubber layers are laminated to have a high spring constant in the direction perpendicular to the laminated surface and a low spring constant in the shear direction.

(発明が解決しようとする課題) ところが、■の方法によれば、形状により異方性を持た
せるため、取付スペースの制約、形状の制約も含め、本
質的部分に限界があり、要求に合致できない場合がある
。また、形状により応力集中部が発生し、寿命低下をも
たらす場合がある。
(Problem to be solved by the invention) However, according to the method (■), since anisotropy is imparted depending on the shape, there are limitations in essential parts, including restrictions on mounting space and shape, and it is difficult to meet the requirements. It may not be possible. Furthermore, stress concentration may occur depending on the shape, resulting in a shortened lifespan.

一方、■の方法によれば、金属部材との複合であるため
、製造工程が複雑となると共に、接着界面の品質の安定
性、界面疲労といった信頼性の点で問題がある。また、
3次元の異方性を発現させることが実際上困難である。
On the other hand, according to method (2), since it is a composite with a metal member, the manufacturing process is complicated, and there are problems in terms of reliability such as stability of the quality of the adhesive interface and interface fatigue. Also,
It is actually difficult to develop three-dimensional anisotropy.

本発明はかかる点に鑑みてなされたもので、上記問題を
解決すると共に、さらに高度な弾性率(バネ定数)の異
方性を有する防振材を提供するものである。
The present invention has been made in view of these points, and it is an object to solve the above-mentioned problems and to provide a vibration isolating material having a higher degree of anisotropy in elastic modulus (spring constant).

(課題を解決するための手段) 請求項(1)の発明は、短繊維を0.5〜65容量%含
有する短繊維複合エラストマーを構成部材又はその構成
部材の一部とするものであって、上記短繊維複合エラス
トマーは下記の式で短繊維の配向率H1が定められ、S
1方向の配向率H,が45〜100%、S1方向に直交
するS2方向の配向率H2が((100−Hl )X 
(50〜100))%、S、、S2方向に直交するS、
方向の配向率H3が(100(H1+H2)1%である
構成とする。
(Means for Solving the Problem) The invention as claimed in claim (1) uses a short fiber composite elastomer containing 0.5 to 65% by volume of short fibers as a constituent member or a part of the constituent member. In the short fiber composite elastomer, the orientation ratio H1 of the short fibers is determined by the following formula, and S
The orientation ratio H in one direction is 45 to 100%, and the orientation ratio H2 in the S2 direction perpendicular to the S1 direction is ((100-Hl)X
(50-100))%, S, , S perpendicular to the S2 direction,
The configuration is such that the orientation ratio H3 in the direction is (100(H1+H2)) 1%.

H、−((1/V、 )/(1/Vl 41/V2 +
l/V3 )IX1001−1.2.8 ここで、 V+ 、V2 、V3 ; S+ 、  82 、  
S3方向の溶剤線膨張率 請求項(2)の発明は、短繊維を0.5〜65容量%含
有する短繊維複合エラストマーを構成部材又はその構成
部材の一部とするものであって、上記短繊維が、主とし
て1つの軸に対して同心円方向に配向されている構成と
する。
H, -((1/V, )/(1/Vl 41/V2 +
l/V3) IX1001-1.2.8 Here, V+, V2, V3; S+, 82,
S3 direction solvent linear expansion coefficient The invention of claim (2) is one in which a short fiber composite elastomer containing 0.5 to 65% by volume of short fibers is used as a constituent member or a part of the constituent member, and the above-mentioned The short fibers are mainly oriented in a concentric direction with respect to one axis.

請求項(3)の発明は、短繊維を0.5〜65容量%含
有する短繊維複合エラストマーを構成部材又はその構成
部材の一部とするものであって、上記構成部材が配向方
向及び配向率の異なる同種又は異種の短繊維複合エラス
トマーを積層して構成される。また、請求項(4)の発
明は、請求項(3)の発明において、短繊維の含有量が
異なる短繊維複合エラストマーを積層して構成される。
The invention of claim (3) uses a short fiber composite elastomer containing 0.5 to 65% by volume of short fibers as a constituent member or a part of the constituent member, wherein the constituent member has an orientation direction and an orientation direction. It is constructed by laminating the same or different types of short fiber composite elastomers with different ratios. Further, the invention of claim (4) is the invention of claim (3), and is constructed by laminating short fiber composite elastomers having different short fiber contents.

請求項(5)の発明は、請求項(1)、請求項(2、請
求項(3)又は請求項(4)において、構成部材の一部
として、金属部材が用いられる。
In the invention of claim (5), in claim (1), claim (2), claim (3), or claim (4), a metal member is used as a part of the constituent member.

(作用) 請求項(1)の発明によれば、構成部材としての短繊維
複合エラストマーの短繊維が3次元的に配向され、弾性
率の異方性が得られる。しかして、各方向の配向率の差
が大きいほど弾性率の異方性が大きくなる。
(Function) According to the invention of claim (1), the short fibers of the short fiber composite elastomer as a constituent member are three-dimensionally oriented, and anisotropy in elastic modulus can be obtained. Therefore, the greater the difference in the orientation rate in each direction, the greater the anisotropy of the elastic modulus.

請求項(2)の発明によれば、弾性率が2方向に高く、
1方向に低くなり、異方性が示される。
According to the invention of claim (2), the elastic modulus is high in two directions,
It becomes lower in one direction, indicating anisotropy.

請求項(3)及び請求項(4)の発明によれば、配向方
向、配向率、含有量等の異なる同種又は異種の短繊維複
合エラストマーを組合わせて、各種の異方性を有するも
のが得られる。
According to the inventions of claims (3) and (4), products having various anisotropies are produced by combining the same or different types of short fiber composite elastomers with different orientation directions, orientation ratios, contents, etc. can get.

請求項(5)の発明によれば、金属部材との組合せによ
り弾性率の異方性を高めることができる。
According to the invention of claim (5), the anisotropy of the elastic modulus can be increased by the combination with the metal member.

(実施例) 以下、本発明の実施例を図面に沿って詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明に係る防振材は任意の形状に形成されるもので、
エラストマーからなる弾性基材内に短繊維が0.5〜6
5容量%混入分散されれてなる短繊維複合エラストマー
を構成部材又はその構成部材の一部として用い、異方性
あるバネ定数(弾性率)を有するように形成されてなる
。ここで、短繊維の混入量を0.5〜65容量%とする
のは、0.5容量%未満では十分な弾性率の異方性が得
られないし、65容量%を越えると、成形加工が困難と
なるからである。
The vibration isolating material according to the present invention can be formed into any shape,
There are 0.5 to 6 short fibers in the elastic base material made of elastomer.
A short fiber composite elastomer mixed and dispersed at 5% by volume is used as a component or a part of the component, and is formed to have an anisotropic spring constant (elastic modulus). Here, the mixing amount of short fibers is set to 0.5 to 65% by volume because if it is less than 0.5% by volume, sufficient anisotropy of elastic modulus cannot be obtained, and if it exceeds 65% by volume, molding process This is because it becomes difficult.

上記防振材を構成する短繊維複合エラストマーの短繊維
の配向は、周知のカレンダ、押出し成形、射出成形等に
より行うことができるが、異方性あるバネ定数を有する
防振材の構成部材又は構成部材の一部としては、配向率
H1を、 H−=1(1/V−)/(1/Vl +l/V2 +l
/V3 )IXlool         1 i=1.2.3 ここで、V+ 、V2 、V3 : St 、  S2
 、83方向の溶剤線膨張率(材料 を溶剤中に浸漬し、平 衡膨潤に達したときの Sll  82.Ss力方 向線膨張率) によって定義する場合、S1方向の配向率H0が45〜
100%、S1方向に直交するS2方向の配向率H2が
((100−Ht )X (50〜100))%、Sl
、S2方向に直交するS、方向の配向率H1が(100
−(Hl +H2)1%であることが有効である。
The short fibers of the short fiber composite elastomer constituting the above-mentioned vibration damping material can be oriented by a well-known calender, extrusion molding, injection molding, etc. For some of the constituent members, the orientation rate H1 is expressed as H-=1(1/V-)/(1/Vl +l/V2 +l
/V3) IXlool 1 i=1.2.3 Here, V+, V2, V3: St, S2
, 83 direction solvent linear expansion coefficient (Sll 82.Ss force direction linear expansion coefficient when the material is immersed in a solvent and reaches equilibrium swelling), the orientation ratio H0 in the S1 direction is 45~
100%, the orientation ratio H2 in the S2 direction perpendicular to the S1 direction is ((100-Ht)X (50-100))%, Sl
, the orientation rate H1 in the S, direction perpendicular to the S2 direction is (100
-(Hl +H2) 1% is effective.

これによって、防振材において、短繊維の配向状態がか
なり高い自由度でもって設定され、3次元又は2次元方
向に異なった弾性率を有する。
As a result, in the vibration damping material, the orientation state of the short fibers can be set with a considerably high degree of freedom, and the vibration damping material has different elastic moduli in three or two dimensions.

上記弾性基材を構成するエラストマーとしては、天然ゴ
ム、スチレンブタジェンゴム、クロロプレンゴム、アク
リロニトリルブタジェンゴム、エチレンプロピレンゴム
、ウレタンゴム等の架橋タイプのエラストマー及びポリ
オレフィン系、ポリエステル系、ポリエーテル系、ポリ
アミド系、ポリウレタン系等の熱可塑性エラストマー等
から適宜選択される。また、補強剤、充填剤、軟化剤、
架橋剤、架橋促進剤、架橋促進助剤、老化防止剤、粘着
付与剤、帯電防止剤、練り込み接着剤等の一般的なエラ
ストマー配合・添加剤は任意に選択し得る。
Examples of the elastomer constituting the elastic base material include crosslinked elastomers such as natural rubber, styrene-butadiene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, ethylene-propylene rubber, and urethane rubber, as well as polyolefin-based, polyester-based, and polyether-based elastomers. It is appropriately selected from thermoplastic elastomers such as polyamide and polyurethane. In addition, reinforcing agents, fillers, softening agents,
Common elastomer formulations and additives such as crosslinking agents, crosslinking accelerators, crosslinking accelerators, antiaging agents, tackifiers, antistatic agents, and kneaded adhesives can be selected as desired.

短繊維としては、脂肪族ポリアミド、芳香族ポリアミド
、ポリエステル、アクリル、アセチル化ポリビニルアル
コール、綿、絹、羊毛、バルブ、レーヨン等の合成繊維
、天然繊維、及び半合成繊維、並びに鋼、ステンレス、
銅等の金属繊維等の中から適宜選択される。また、必要
に応じて、繊維表面をエポキシ、イソシアネート、レゾ
シン・ホルマリン・ラテックス、塩化ゴム系接着剤等で
接着処理される。
Short fibers include aliphatic polyamide, aromatic polyamide, polyester, acrylic, acetylated polyvinyl alcohol, synthetic fibers such as cotton, silk, wool, bulb, rayon, natural fibers, and semi-synthetic fibers, as well as steel, stainless steel,
It is appropriately selected from metal fibers such as copper. Further, if necessary, the fiber surface is adhesively treated with epoxy, isocyanate, resorcin formalin latex, chlorinated rubber adhesive, or the like.

また、短繊維の形状は任意であるが、繊維長/繊維径比
(L/D)が大きすぎる場合、エラストマー中への繊維
分散が難しく、また、小さすぎると、弾性率の異方性付
与に対する効果が小さくなる。この点よりL/Dが10
〜1000の間であることが好ましく、また繊維長さは
50+n以下のものを用いている。
Although the shape of the short fibers is arbitrary, if the fiber length/fiber diameter ratio (L/D) is too large, it is difficult to disperse the fibers into the elastomer, and if it is too small, the elastic modulus becomes anisotropic. The effect on From this point, L/D is 10
The fiber length is preferably between 1,000 and 1,000, and the fiber length is 50+n or less.

上記異方性あるバネ定数を有する短繊維複合エラストマ
ーを防振材の構成部材の一部として、短繊維を複合しな
いエラストマーと組合せることによって、機能と寿命を
向上させることができる。
Function and life can be improved by combining the short fiber composite elastomer having an anisotropic spring constant with an elastomer that does not composite short fibers as part of a component of a vibration isolating material.

例えば短繊維複合エラストマーと、短繊維を複合しない
エラストマーのシートとを交互に積層した柱状の防振材
では、短繊維複合エラストマー単体からなる同一形状の
防振材と比較して、圧縮バネ定数と剪断バネ定数との比
を高く設定することが可能である。また、形状の点から
亀裂が発生しやすい箇所等に、短繊維を複合しないエラ
ストマーを使用することにより、短繊維複合エラストマ
ー単体からなる防振材に比べ寿命を向上させることが可
能である。
For example, in a columnar vibration damping material made by alternately laminating sheets of short fiber composite elastomer and sheets of elastomer without short fiber composite, the compression spring constant is It is possible to set a high ratio to the shear spring constant. Furthermore, by using an elastomer that does not combine short fibers in areas where cracks are likely to occur due to its shape, it is possible to improve the lifespan of the vibration damping material compared to a vibration isolating material made of a single short fiber composite elastomer.

また、短繊維が、主として1つの軸に対して同心円方向
に配向された短繊維複合形態とすることにより、その軸
方向と該軸方向に直交する方向とで異なるバネ定数を有
する防振材を形成することができる。
In addition, by using a short fiber composite form in which the short fibers are mainly oriented concentrically with respect to one axis, a vibration isolating material having different spring constants in the axial direction and in the direction orthogonal to the axial direction can be created. can be formed.

このように、短繊維の種類、含有量、配向方向、配向率
等が異なる種々の部材を組合わせることにより、制約さ
れたスペースあるいは全体形状を満足して、要求される
バネ定数の異方性を有する防振材を製造することができ
る。
In this way, by combining various members with different short fiber types, contents, orientation directions, orientation ratios, etc., it is possible to satisfy the restricted space or overall shape and achieve the required anisotropy of the spring constant. It is possible to manufacture a vibration isolating material having the following properties.

さらに、短繊維複合エラストマーと金属部材(金属拘束
体)あるいはプラスチック部材との組合わせにより異方
性を高めることも可能である。
Furthermore, it is also possible to enhance the anisotropy by combining the short fiber composite elastomer with a metal member (metal restraint) or a plastic member.

続いて、上記防振材について行った性能試験について説
明する。
Next, performance tests conducted on the above-mentioned vibration isolating material will be explained.

表1 上記表1の配合を密閉式混線機で混合し、さらに31■
長さにカットしたメタ系ポリアミド繊維を所定量混合し
た混合物を、ロールにて圧延した後、列理方向を揃えて
積層した後、プレスにて加硫した。加硫後、加硫ブロッ
クから1辺15■■の立方体を列理方向に沿って切り出
し、第1図に示す短繊維11が3次元的に配向されたブ
ロック形状の試料12を得た。第1図に示す試料12の
x、 y。
Table 1 The formulations in Table 1 above were mixed in a closed mixer, and then 31
A mixture prepared by mixing a predetermined amount of meta-based polyamide fibers cut into lengths was rolled with a roll, laminated with the grain direction aligned, and then vulcanized with a press. After vulcanization, a cube of 15 mm on a side was cut out from the vulcanized block along the grain direction to obtain a block-shaped sample 12 in which short fibers 11 were three-dimensionally oriented as shown in FIG. x, y of sample 12 shown in FIG.

Z方向の5%圧縮応力と、短繊維含有量との関係を第2
図に示す。
The relationship between the 5% compressive stress in the Z direction and the short fiber content is
As shown in the figure.

第2図より、X方向の弾性率と、Y、  Z方向の弾性
率との比は最大5:1となり、異方性を示すことがわか
る。
From FIG. 2, it can be seen that the ratio of the elastic modulus in the X direction to the elastic modulus in the Y and Z directions is at most 5:1, indicating anisotropy.

続いて、上記表1の配合に対し、3−1長さにカットし
たナイロン6.6繊維を15容量%混合し、例えば特開
昭58−29231号公報に記載される製造方法にした
がって、ダイ流路径と拡張率とを変量し、3次元方向の
配向率の異なる3種類の押出しシートを製造した。しか
して、上述した場合と同様に、押出し方向を揃えて積層
加硫した加硫ブロックから1辺15m5+の立方体を切
り出し、ブロック状の試料を作成した。
Next, 15% by volume of nylon 6.6 fibers cut into 3-1 lengths were mixed with the formulation shown in Table 1 above, and the mixture was dyed according to the manufacturing method described in, for example, JP-A No. 58-29231. By varying the channel diameter and expansion ratio, three types of extruded sheets with different three-dimensional orientation ratios were manufactured. Similarly to the case described above, a cube having a side of 15 m5+ was cut out from a vulcanized block laminated and vulcanized with the extrusion direction aligned to create a block-shaped sample.

この試料について、押出し方向をX方向、幅方向をX方
向、厚さ方向をZ方向とした場合の各方向のトルエン膨
潤率から求めた短繊維配向率と5%圧縮応力及びZ方向
の力学損失(tanδ)を測定した。
For this sample, the short fiber orientation rate, 5% compressive stress, and mechanical loss in the Z direction were determined from the toluene swelling rate in each direction when the extrusion direction is the X direction, the width direction is the X direction, and the thickness direction is the Z direction. (tan δ) was measured.

その結果は次の表2に示す通りである。The results are shown in Table 2 below.

上記表2より、Z方向の繊維配向率が38%の比較例2
では、x、 y、 z方向の圧縮弾性率に大きな差は表
れないが、51%以上の本発明例では3方向の配向率の
差が大きいほど、弾性率の異方性が大きくなっている。
From Table 2 above, Comparative Example 2 with a fiber orientation rate of 38% in the Z direction
In this case, there is no large difference in the compressive modulus in the x, y, and z directions, but in the present invention examples of 51% or more, the greater the difference in the orientation ratio in the three directions, the greater the anisotropy of the elastic modulus. .

また、Z方向の配向率が高くなればなるほど、Z方向の
圧縮変形時のtanδが大きくなり、繊維のエネルギー
弾性の寄与が大きくなっていることが推察される。
Furthermore, it is inferred that the higher the orientation ratio in the Z direction, the greater the tan δ during compressive deformation in the Z direction, and the greater the contribution of the energy elasticity of the fibers.

また、上述した表1に示す配合に平均長さ3mmにカッ
トしたナイロン6.6繊維を15容量%混合し、カレン
ダロールにて分出しを行い、それから第3図(a)に示
すように長さ方向に短繊維21が配向した1麿■厚さの
シート22を作成した。シート22を第3図(b)に示
すように長さ方向に円柱状に巻き上げ、その状態で加硫
加圧を行った後、第3図(e)に示すように1辺が15
1−の立方体を切り出し、ブロック状の試料23を作成
し、上述した場合と同じ測定を行った。
In addition, 15% by volume of nylon 6.6 fibers cut to an average length of 3 mm were mixed in the formulation shown in Table 1 above, separated using a calender roll, and then cut into lengths as shown in Figure 3 (a). A sheet 22 having a thickness of 1 mm and having short fibers 21 oriented in the transverse direction was prepared. The sheet 22 is rolled up into a cylindrical shape in the length direction as shown in FIG. 3(b), and after vulcanization and pressure is applied in that state, one side is 15 mm as shown in FIG. 3(e).
A block-shaped sample 23 was prepared by cutting out a cube of 1-, and the same measurements as described above were performed.

その結果は次の表3に示す通りである。The results are shown in Table 3 below.

表3 上記表3より、弾性率は、2方向に高く、1方向に低く
、異方性を示すことがわかる。
Table 3 From Table 3 above, it can be seen that the elastic modulus is high in two directions and low in one direction, indicating anisotropy.

表2に示す本発明例1.2の未加硫シートと、比較例1
の未加硫シートとを交互に積層し、加圧加硫し、第4図
に示す積層体である試料31を作成した。すなわち、試
料31は、上側から、短繊維が2方向に配向された層3
1a1短繊維が全く混合されていない層31b、短繊維
がX方向に配向された層31C1短繊維が全く混合され
ていない層31dが順に繰返し積層されてなる。この試
料31は、短繊維が全く混合されていない同一形状の試
料に対して、Z方向の圧縮弾性率が略3゜1倍、X方向
の剪断弾性率が略1.8倍、X方向の剪断弾性率が略1
.4倍となった。すなわち、圧縮方向であるZ方向は剛
直であるが、剪断方向であるX、 X方向は柔軟である
という異方性を有する防振材となる。
Unvulcanized sheet of Invention Example 1.2 shown in Table 2 and Comparative Example 1
unvulcanized sheets were alternately laminated and vulcanized under pressure to create sample 31, which is a laminate shown in FIG. That is, the sample 31 has a layer 3 in which short fibers are oriented in two directions from the top.
A layer 31b in which short fibers 1a1 are not mixed at all, a layer 31c in which short fibers are oriented in the X direction, and a layer 31d in which short fibers are not mixed at all are repeatedly laminated in this order. This sample 31 has a compressive modulus of elasticity in the Z direction of about 3.1 times, a shear modulus of elasticity in the X direction of about 1.8 times, and a shear modulus of elasticity in the Shear modulus is approximately 1
.. It has increased four times. That is, the vibration isolating material has anisotropy in that it is rigid in the Z direction, which is the compression direction, but flexible in the X and X directions, which are the shear directions.

同様の方法で、第5図に示すように、短繊維を2方向に
配向した短繊維複合ゴム41aの回りを、短繊維が全く
混合されていないゴム41bでカバーされた試料41は
、同一形状の短繊維複合ゴム単体に比べ、6±3%のZ
方向の圧縮疲労試験において約3倍の寿命(14万回に
対し43万回)を示した。
In a similar manner, as shown in FIG. 5, a sample 41 in which a short fiber composite rubber 41a in which short fibers are oriented in two directions is covered with a rubber 41b in which no short fibers are mixed is produced with the same shape. Z of 6±3% compared to short fiber composite rubber alone.
It showed approximately three times the lifespan (430,000 cycles compared to 140,000 cycles) in the directional compression fatigue test.

さらに、第6図(a)に示すように、短繊維がZ方向に
配向された層51aと短繊維がX方向に配向された層5
1bとが交互に積層されてなる試料51、第6図(b)
に示すように、短繊維が2方向に配向されたゴム層52
aと金属板52bとが交互に積層されてなる試料52、
及び第6図(C)に示すように、短繊維が周方向に配向
された円筒状の中心層53aと、その外側に配設され短
繊維が半径方向に配向された中間JW53bと、さらに
その外側に配設され短繊維が周方向に配向された外側層
53cとからなる試料53も、短繊維が全く混合されて
いないゴム単体あるいは1種の、短繊維複合ゴム単体か
らなる同一形状物に比べ異なった弾性率の異方性を示し
た。
Furthermore, as shown in FIG. 6(a), a layer 51a in which short fibers are oriented in the Z direction and a layer 5 in which short fibers are oriented in the X direction.
Sample 51 in which 1b and 1b are alternately stacked, FIG. 6(b)
As shown, a rubber layer 52 in which short fibers are oriented in two directions
A sample 52 formed by alternately stacking metal plates 52a and 52b,
As shown in FIG. 6(C), a cylindrical center layer 53a in which short fibers are oriented in the circumferential direction, an intermediate JW 53b disposed outside the cylindrical center layer 53a in which short fibers are oriented in the radial direction, and further therein. The sample 53, which consists of an outer layer 53c disposed on the outside and in which short fibers are oriented in the circumferential direction, is also a product of the same shape consisting of a single rubber with no short fibers mixed therein or a single type of short fiber composite rubber. The comparison showed different anisotropy of elastic modulus.

このように、上記実施例は、いずれも高い弾性率の異方
性を示すとともに、繊維に撓み(ベンディング)が生じ
る変形モードにおいて高いtanδを有し、バネ定数に
異方性を付与した防振材として極めて有効に機能するこ
とがわかる。
As described above, all of the above examples exhibit high anisotropy of elastic modulus, have a high tan δ in the deformation mode in which the fiber bends, and have anisotropy in the spring constant. It can be seen that it functions extremely effectively as a material.

なお、本発明は上記実施例に限定されるものではなく、
無数のバリエーションが可能であることは言うまでもな
い。
Note that the present invention is not limited to the above embodiments,
Needless to say, countless variations are possible.

(発明の効果) 請求項(1)の発明によれば、短繊維が3次元的に配向
されることとなり、広範囲に亘る弾性率の異方性が得ら
れる。特に各方向の配向率の差が大きいほど弾性率の異
方性が大きくなる。
(Effects of the Invention) According to the invention of claim (1), the short fibers are oriented three-dimensionally, and anisotropy of elastic modulus over a wide range can be obtained. In particular, the greater the difference in the orientation rate in each direction, the greater the anisotropy of the elastic modulus.

請求項(2)の発明によれば、弾性率が2方向に高く、
1方向に低くなるように短繊維を3次元的に配向するこ
とができ、それによって弾性率の異方性が示される。
According to the invention of claim (2), the elastic modulus is high in two directions,
Short fibers can be oriented three-dimensionally such that they are lower in one direction, thereby exhibiting anisotropy in the elastic modulus.

請求項(3)及び請求項(4)の発明によれば、短繊維
の配向方向、配向率、含有量等の異なる同種又は異種の
短繊維複合エラストマーを任意に組合わせて、その組合
わせに応じて各種の弾性率の異方性を有するものが得ら
れる。
According to the inventions of claims (3) and (4), short fiber composite elastomers of the same type or different types with different short fiber orientation directions, orientation ratios, contents, etc. are arbitrarily combined, and Accordingly, materials having various anisotropy of elastic modulus can be obtained.

請求項(5)の発明によれば、金属部材との組合せによ
りさらに高度な弾性率の異方性を得ることが可能となる
According to the invention of claim (5), it becomes possible to obtain even higher anisotropy of elastic modulus by combining with a metal member.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明は図面の実施例を示し、第1図はブロック形状の
試料の斜視図、第2図は短繊維含有量と5%圧縮応力と
の関係を示す図、第3図(a)〜(C)は試料の製造方
法の説明図、第4図及び第5図は他の試料の斜視図、第
6図(a) 他の試料の斜視図である。 11.21・・・・・・短繊維 52b・・・・・・金属板(金属部材)〜(e) はさらに 11.21・・・・・・短繊維 52b・・・・・・金属板(金属部材)第1図 γmm金含有 量pHR) 第2図
The present invention shows examples of the drawings, in which FIG. 1 is a perspective view of a block-shaped sample, FIG. 2 is a diagram showing the relationship between short fiber content and 5% compressive stress, and FIGS. C) is an explanatory diagram of the method for manufacturing the sample, FIGS. 4 and 5 are perspective views of other samples, and FIG. 6(a) is a perspective view of another sample. 11.21...Short fiber 52b...Metal plate (metal member) to (e) are further 11.21...Short fiber 52b...Metal plate (Metal member) Fig. 1 γmm gold content pHR) Fig. 2

Claims (5)

【特許請求の範囲】[Claims] (1)短繊維を0.5〜65容量%含有する短繊維複合
エラストマーを構成部材又はその構成部材の一部とする
ものであって、 上記短繊維複合エラストマーは下記の式で短繊維の配向
率H_iが定められ、S_1方向の配向率H_1が45
〜100%、S_1方向に直交するS_2方向の配向率
H_2が{(100−H_1)×(50〜100)}%
、S_1、S_2方向に直交するS_3方向の配向率H
_3が{100−(H_1+H_2)}%であることを
特徴とする防振材。 H_i={(1/V_i)/(1/V_1+1/V_2
+1/V_3)}×1001=1、2、3 ここで、 V_1、V_2、V_3;S_1、S_2、S_3方向
の溶剤線膨張率
(1) A short fiber composite elastomer containing 0.5 to 65% by volume of short fibers is used as a component or a part of the component, and the short fiber composite elastomer has short fibers oriented according to the following formula. The orientation ratio H_i is determined, and the orientation ratio H_1 in the S_1 direction is 45.
~100%, the orientation rate H_2 in the S_2 direction perpendicular to the S_1 direction is {(100-H_1)×(50-100)}%
, the orientation rate H in the S_3 direction perpendicular to the S_1 and S_2 directions
A vibration isolating material characterized in that _3 is {100-(H_1+H_2)}%. H_i={(1/V_i)/(1/V_1+1/V_2
+1/V_3)}×1001=1, 2, 3 Here, V_1, V_2, V_3; Solvent linear expansion coefficient in S_1, S_2, S_3 directions
(2)短繊維を0.5〜65容量%含有する短繊維複合
エラストマーを構成部材又はその構成部材の一部とする
ものであって、 上記短繊維複合エラストマーの短繊維が、主として1つ
の軸に対して同心円方向に配向されていることを特徴と
する防振材。
(2) A component in which a short fiber composite elastomer containing 0.5 to 65% by volume of short fibers is used as a component or a part of the component, wherein the short fibers of the short fiber composite elastomer are mainly oriented along one axis. A vibration isolating material characterized in that it is oriented in a concentric direction with respect to.
(3)短繊維を0.5〜65容量%含有する短繊維複合
エラストマーを構成部材又はその構成部材の一部とする
ものであって、 上記構成部材が配向方向及び配向率の異なる同種又は異
種の短繊維複合エラストマーを積層して構成されること
を特徴とする防振材。
(3) A short fiber composite elastomer containing 0.5 to 65% by volume of short fibers is used as a component or a part of the component, and the component is of the same or different type with different orientation directions and orientation ratios. A vibration isolating material characterized by being constructed by laminating short fiber composite elastomers.
(4)短繊維の含有量が異なる短繊維複合エラストマー
を積層して構成されるところの請求項(3)記載の防振
材。
(4) The vibration damping material according to claim (3), which is constructed by laminating short fiber composite elastomers having different short fiber contents.
(5)構成部材の一部として、金属部材が用いられると
ころの請求項(1)、請求項(2)、請求項(3)又は
請求項(4)記載の防振材。
(5) The vibration isolating material according to claim (1), claim (2), claim (3), or claim (4), wherein a metal member is used as a part of the component.
JP2140643A 1990-05-29 1990-05-29 Vibrationproof material Pending JPH0434227A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2140643A JPH0434227A (en) 1990-05-29 1990-05-29 Vibrationproof material
EP91108700A EP0461464A1 (en) 1990-05-29 1991-05-28 Vibration-isolating material
CA 2043435 CA2043435A1 (en) 1990-05-29 1991-05-29 Vibration-isolating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140643A JPH0434227A (en) 1990-05-29 1990-05-29 Vibrationproof material

Publications (1)

Publication Number Publication Date
JPH0434227A true JPH0434227A (en) 1992-02-05

Family

ID=15273441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140643A Pending JPH0434227A (en) 1990-05-29 1990-05-29 Vibrationproof material

Country Status (1)

Country Link
JP (1) JPH0434227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724960A (en) * 1993-07-13 1995-01-27 Toyo Tire & Rubber Co Ltd Manufacture of fiber orientated product of short-fiber mixed rubber
JP2007016060A (en) * 2005-07-05 2007-01-25 Kajima Corp Seismic isolation material
WO2008123058A1 (en) * 2007-03-19 2008-10-16 Yamaha Hatsudoki Kabushiki Kaisha Two-wheeled motor vehicle
JP2010230169A (en) * 2005-11-30 2010-10-14 Messier Bugatti Electromechanical brake for aircraft equipped with tiltable actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724960A (en) * 1993-07-13 1995-01-27 Toyo Tire & Rubber Co Ltd Manufacture of fiber orientated product of short-fiber mixed rubber
JP2007016060A (en) * 2005-07-05 2007-01-25 Kajima Corp Seismic isolation material
JP2010230169A (en) * 2005-11-30 2010-10-14 Messier Bugatti Electromechanical brake for aircraft equipped with tiltable actuator
WO2008123058A1 (en) * 2007-03-19 2008-10-16 Yamaha Hatsudoki Kabushiki Kaisha Two-wheeled motor vehicle

Similar Documents

Publication Publication Date Title
US5213879A (en) Vibration damping material
JP2965743B2 (en) Polymer blend, method for preparing the same, and pneumatic tire using the polymer blend
SU584751A3 (en) Elastomer pneumatic tyre
EP0468306A2 (en) Method for manufacturing fiber reinforced elastic sheet, apparatus for manufacturing the same and mold to be used
EP0322587A2 (en) Speaker diaphragm
JP2014237320A (en) Foam laminate product and production method thereof
WO1991019032A1 (en) Novel cushioning structure and production thereof
JP2011178169A (en) Foam laminate product and method for production thereof
KR20190109557A (en) Thermoplastic Sheets, Laminated Sheets, and Molded Articles
JPH0434227A (en) Vibrationproof material
JPS63170427A (en) Production of fiber-reinforced prepreg
CN111935603A (en) Composite diaphragm of sound production device, preparation method of composite diaphragm and sound production device
KR20190104059A (en) Process for producing foamed thermoplastic polyurethane elastomer product
CN113840869A (en) Having a high D33Flexible low-cost lead-free piezoelectric composite material
CN108778709A (en) Discontinuous web frame
Bert Design of clamped composite-material plates to maximize fundamental frequency
JPH05178999A (en) Morphological composite material formed from different precursors
US6280676B1 (en) Stretch modified elastomeric netting
JPH01135628A (en) Composition having high sonar transmittance
KR102140285B1 (en) Polyurethane foam and manufacturing method of the same
JPH078541B2 (en) Pipe-like structure
JP2001193775A (en) Vibration-proof rubber and its manufacturing method
JPH02261846A (en) Resin composition for moisture-permeable film or sheet, moisture-permeable film or sheet, and preparation thereof
US5256478A (en) Cork chip moulding
JP2892179B2 (en) Method of manufacturing elastic mat