JPH0434216A - Bearing device of water-cooled rotary shaft - Google Patents

Bearing device of water-cooled rotary shaft

Info

Publication number
JPH0434216A
JPH0434216A JP14334490A JP14334490A JPH0434216A JP H0434216 A JPH0434216 A JP H0434216A JP 14334490 A JP14334490 A JP 14334490A JP 14334490 A JP14334490 A JP 14334490A JP H0434216 A JPH0434216 A JP H0434216A
Authority
JP
Japan
Prior art keywords
cooling water
groove
atmosphere
vacuum
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14334490A
Other languages
Japanese (ja)
Inventor
Kazuhiko Irisawa
一彦 入澤
Shuichi Nogawa
修一 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP14334490A priority Critical patent/JPH0434216A/en
Publication of JPH0434216A publication Critical patent/JPH0434216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability of a bearing device for a water-cooled rotary shaft of a vacuum film forming apparatus by providing both paired atmosphere guide grooves and atmosphere introduction pipes at the positions for sandwiching cooling water leading-in and leading-out grooves of a bearing housing and a seal material on both sides of each groove. CONSTITUTION:Circular atmosphere guide grooves 26, 27 are provided at the positions for sandwiching a cooling water in groove 20 and a cooling water out groove 22 on the inner peripheral face of a bearing housing 16 which supports a rotary shaft 7. Atmosphere introduction pipes 28, 29 which are communicated with the atmosphere guide grooves 26, 27 are connected to the bearing housing 16. Not only both sides of the cooling water leading-in and leading-out grooves 20, 22 but also both sides of atmosphere guide grooves 26, 27 are sealed by an O-ring 25 between the inner peripheral face of the bearing housing 16 and the outer peripheral face of the rotary shaft 7. Cooling water is supplied in the condition where atmosphere is introduced in the atmosphere guide grooves 26, 27. Even if pressure of cooling water rises abruptly, and cooling water oozes out of the cooling water leading-in groove 20, it is prevented that water oozes out of the atmosphere guide groove 26 in vacuum owing to seal structure between atmosphere and vacuum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空中において、内部に冷却水を循環させて
冷却する構造の回転軸を支持する水冷式回転軸の軸受装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bearing device for a water-cooled rotating shaft that supports a rotating shaft having a structure in which cooling water is circulated inside to cool the bearing device in a vacuum.

〔従来の技術〕[Conventional technology]

一般に、真空成膜装置の一例であるイオンビームスパッ
タ装置(IBS)は、例えば第2図に示すような構造に
なっている。
Generally, an ion beam sputtering system (IBS), which is an example of a vacuum film forming system, has a structure as shown in FIG. 2, for example.

同図において、fi+は内部にスパッタ室(2)が形成
された円筒状の真空チャンバ、(3)はスパッタ室(2
内の右側に配設されたカウフマン型、パケット型等のイ
オン源、(4)はスパッタ室(2)内のほぼ中央部に回
転自在に設けられターゲット(5)全保持したターゲッ
トホルダ、(6)はターゲットホルダ(4)の上方に配
設され回転軸(7)に一体に取り付けられた基板ホルダ
であり、下面に成膜用基板+8)が支持されている。
In the figure, fi+ is a cylindrical vacuum chamber in which a sputtering chamber (2) is formed, and (3) is a sputtering chamber (2).
(4) is a target holder (4) which is rotatably installed approximately in the center of the sputtering chamber (2) and holds the entire target (5); ) is a substrate holder disposed above the target holder (4) and integrally attached to the rotating shaft (7), and a film-forming substrate +8) is supported on the lower surface.

そして、薄膜の作成時、イオン源(3)より導出さレタ
イオンビーム(9)がターゲットホルダ(4)のターゲ
ット(5)に案内され、イオンのターゲット(9)への
衝突によりターゲット(9)の表面の粒子がたたき出さ
れ、シャッタflo) ’i開くことによりこの粒子が
基板ホルダ(6)の基板(8)表面に付着し、ターゲッ
ト(9)とほぼ同じ材質の薄膜が基板(8)上に形成さ
れる。
When creating a thin film, the letai ion beam (9) derived from the ion source (3) is guided to the target (5) of the target holder (4), and the collision of the ions with the target (9) causes the target (9) to Particles on the surface of the target (9) are knocked out, and by opening the shutter, these particles adhere to the surface of the substrate (8) of the substrate holder (6), and a thin film of almost the same material as the target (9) is deposited on the substrate (8). formed on top.

ところで、前述した成膜装置においては、基板(8)の
温度が非常に高くなるため、従来より、基板ホルダ(6
)を回転軸(7)と共に冷却する構造が採られている。
By the way, in the above-mentioned film forming apparatus, since the temperature of the substrate (8) becomes very high, conventionally the substrate holder (6) is
) is cooled together with the rotating shaft (7).

すなわち、第3図に示すように、回転軸(7)の中心部
及び外周部にそれぞれ冷却水の流入路(11)及び流出
路(12)が軸方向に形成され、基板ホルダ(6)の下
層及び上層にそれぞれ流入路(11)及び流出路(12
)に連通した冷却水循環路f13+ 、 [+4+が形
成されると共に、両画環路(+37 、 Q4)間が基
板ホルダ(6)の外周部の連通孔(15)により連通さ
れている。
That is, as shown in FIG. 3, an inflow path (11) and an outflow path (12) of cooling water are formed in the axial direction at the center and outer circumference of the rotating shaft (7), respectively, and the cooling water flows through the substrate holder (6). An inlet (11) and an outlet (12) are provided in the lower and upper layers, respectively.
) are formed to communicate with the cooling water circulation paths f13+, [+4+, and the two image ring paths (+37, Q4) are communicated through a communication hole (15) in the outer periphery of the substrate holder (6).

一方、回転軸(7)ヲ支持する円筒状の軸受ハウジング
(16)には、上下両端にベアリング(Iη、(18J
が取り付けられると共に、軸受ハウジング吐の内周面に
、回転軸(7)の流入路(11)に案内孔(lQlt介
して常時連通する円環状の冷却水導入溝(20)と、流
出路02)に案内孔El+’!i−介して常時連通する
円環状の冷却水導出溝にとが凹設され、両溝嘆1 j 
Eがそれぞれ冷却水導入パイプ(23)及び冷却水回収
パイプの)に接続されている。
On the other hand, the cylindrical bearing housing (16) that supports the rotating shaft (7) has bearings (Iη, (18J
is attached to the inner peripheral surface of the bearing housing discharge, and an annular cooling water introduction groove (20) that constantly communicates with the inflow path (11) of the rotating shaft (7) via the guide hole (lQlt), and an outflow path 02. ) to guide hole El+'! An annular cooling water outlet groove is recessed into the annular cooling water outlet groove, which is always in communication through the groove.
E are connected to the cooling water introduction pipe (23) and the cooling water recovery pipe, respectively.

さらに、軸受ハウジング06)の内周面と回転軸(7)
の外周面との間の両溝(201# 翰の両側がそれぞれ
Oリング四によりシールされている。
Furthermore, the inner peripheral surface of the bearing housing 06) and the rotating shaft (7)
Both grooves between the outer peripheral surface of the wire (201#) Both sides of the wire are sealed with O-rings 4, respectively.

このような構成において、導入パイプ(23)より冷却
水を供給すると、これが導入溝間から回転中の回転軸(
7)の流入路(II)に案内路−全通して流入し、第3
図に矢印で示すように、案内路旺、循環路(13)を連
通孔+I5J m循環路(14j及び流出路(+2j 
i通り、案内孔(21)から導出溝@を経て回収パイプ
頴より流出し、基板ホルダ(6)と共に基板(8)が冷
却される。
In such a configuration, when cooling water is supplied from the introduction pipe (23), it flows from between the introduction grooves to the rotating shaft (
7) into the inflow path (II) through the guide path, and the third
As shown by the arrows in the figure, the guide path and circulation path (13) are connected to the communication hole +I5J m circulation path (14j and the outflow path (+2j
Accordingly, the liquid flows out from the guide hole (21) through the lead-out groove @ from the recovery pipe, and the substrate (8) is cooled together with the substrate holder (6).

なお、冷却水は、通常3〜5Kgf/cIItの圧力で
送水される。
Note that the cooling water is normally fed at a pressure of 3 to 5 Kgf/cIIt.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来技術にあっては、真空中において水冷式回
転軸(7)ヲ支持する場合に、冷却水の導入溝−)及び
導出溝−の両側をO+Jソング)によりシルするだけの
構造であるため、水圧が急上昇すると、真空中の圧力と
水圧との差圧が非常に大きくなり、ハウジング(16)
外に水がしみ出す虞れがあり、特に前述した成膜装置の
ような真空装置では真空中に水がしみ出すことになり、
所望の真空度が得られなくなるといった重大な問題を生
じる。
In the prior art described above, when supporting the water-cooled rotating shaft (7) in a vacuum, the structure is such that both sides of the cooling water inlet groove (-) and outlet groove (-) are simply sealed with O+J songs). Therefore, when the water pressure suddenly increases, the pressure difference between the pressure in the vacuum and the water pressure becomes extremely large, causing the housing (16) to
There is a risk of water seeping outside, especially in vacuum equipment such as the film forming equipment mentioned above, where water may seep into the vacuum.
A serious problem arises in that the desired degree of vacuum cannot be obtained.

本発明は、従来の技術の有するこのような問題点に留意
してなされたものであり、その目的とするところは、回
転軸内を循環する冷却水の真空中へのしみ出し全確実に
防止できる水冷式回転軸の軸受装置全提供することにあ
る。
The present invention has been made in consideration of these problems of the conventional technology, and its purpose is to completely prevent the cooling water circulating within the rotating shaft from seeping into the vacuum. Our goal is to provide a complete range of water-cooled rotating shaft bearing devices.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明の水冷式回転軸の軸
受装置にあっては、真空中に配設され。
In order to achieve the above object, the water-cooled rotary shaft bearing device of the present invention is arranged in a vacuum.

内部に冷却水の流入路及び流出路が軸方向に形成された
回転軸を回転自在に支持した筒状の軸受ハウジングと、
このハウジングの内周面に凹設されそれぞれ前記流入路
及び流出路に常時連通しだ円環状の冷却水導入溝及び導
出溝と、ハウジングの内周面の前記導入溝及び導出溝を
挾む位置にそれぞれ凹設された2つの円環状の大気案内
溝と、前記ハウジングに接続されそれぞれ前記導入溝、
導出溝及び両案内溝に連通した冷却水導入パイプ。
a cylindrical bearing housing that rotatably supports a rotating shaft in which cooling water inflow and outflow channels are formed in the axial direction;
An annular cooling water introduction groove and an annular outlet groove that are recessed in the inner circumferential surface of the housing and are in constant communication with the inlet and outlet channels, respectively, and positions that sandwich the inlet groove and the outlet groove on the inner circumferential surface of the housing. two annular air guide grooves respectively recessed in the housing; and the introduction grooves respectively connected to the housing;
A cooling water introduction pipe that communicates with the outlet groove and both guide grooves.

冷却水回収パイプ及び大気導入パイプと、前記ハウジン
グの内周面と前記回転軸の外周面との間の前記各溝の両
側をそれぞれシールしたシール部材とを備えたことを特
徴としている。
The present invention is characterized in that it includes a cooling water recovery pipe, an air introduction pipe, and a sealing member that seals both sides of each of the grooves between the inner circumferential surface of the housing and the outer circumferential surface of the rotating shaft.

〔作用〕[Effect]

前述した構成によれば、軸受ハウジングにおける冷却水
の導入溝及び導出溝を挾んで大気案内溝が設けられ、正
圧の冷却水と負圧の真空との間に大気が介在することに
なるため、冷却水と真空との間のシールが冷却水と大気
との間のシール及び大気と真空との間のシールに変換さ
れ、シール部材によるシール性が格段に向上する。
According to the above-mentioned configuration, the atmosphere guide groove is provided between the cooling water introduction groove and the outlet groove in the bearing housing, and the atmosphere is interposed between the positive pressure cooling water and the negative pressure vacuum. , the seal between the cooling water and the vacuum is converted into a seal between the cooling water and the atmosphere and a seal between the atmosphere and the vacuum, and the sealing performance of the sealing member is significantly improved.

このため、仮に回転軸の回転中に冷却水が導入溝あるい
は導出溝がらしみ出しても、大気と真空との間の比較的
容易でかつ確実なシールにより水の真空中へのしみ出し
が防止される。
Therefore, even if cooling water were to seep into the inlet or outlet grooves during rotation of the rotary shaft, the relatively easy and reliable seal between the atmosphere and the vacuum would prevent water from seeping into the vacuum. Prevented.

〔実施例〕〔Example〕

第2図のIBSにおける基板ホルダ(6)の回転軸(7
)に適用した場合の実施例につき、第1図を用いて説明
する。
The rotation axis (7) of the substrate holder (6) in the IBS shown in Figure 2
) will be described with reference to FIG. 1.

第1図において、前記と同一記号は同一もしくは相当す
るものを示すものとし、異なる点は、回転軸(7)全支
持する軸受ハウジングαQの内周面における冷却水導入
溝?0)及び冷却水導出溝−を挾んだ位置にそれぞれ円
環状の大気案内溝(26) 、 (27)を凹設すると
共に、ハウジング(16)に両案内溝(26+ 、 0
2カにそれぞれ連通した大気導入バイブ怒、 e29)
を接続し、かつ、ハウジング(16)の内周面と回転軸
(7)の外周面との間を、導入溝跋及び導出溝口の両側
のみならず両案内溝(26) 、 @ηの両側において
も0リング咋によりシールした点である。
In Fig. 1, the same symbols as above indicate the same or equivalent parts, and the difference is that the cooling water introduction groove is in the inner circumferential surface of the bearing housing αQ that fully supports the rotating shaft (7). Annular atmosphere guide grooves (26) and (27) are recessed at positions sandwiching the cooling water outlet grooves 0) and 0), respectively, and both guide grooves (26+ and 0) are provided in the housing (16).
Atmospheric introduction vibrator anger connected to 2 parts, e29)
and connect the inner circumferential surface of the housing (16) and the outer circumferential surface of the rotating shaft (7) not only on both sides of the introduction groove and the outlet groove, but also on both sides of both the guide grooves (26) and @η. This point was also sealed with an O-ring.

そして、大気導入パイプ+28+ 、 e291よりそ
れぞれ案内溝e2f31 、 (27)内に大気を導入
した状態で、従来の場合と同様に導入パイプAより冷却
水を供給し、回転中の回転軸(7)及び基板ホルダ(6
)内を循環させて基板ホルダ(6)に保持された基板(
8)の冷却を行う。
Then, with the atmosphere introduced into the guide grooves e2f31 and (27) from the atmosphere introduction pipes +28+ and e291, respectively, cooling water is supplied from the introduction pipe A as in the conventional case, and the rotating shaft (7) and substrate holder (6
) and held in the substrate holder (6).
8) Perform cooling.

この構成によれば、冷却水の水圧が急上昇して例えば導
入溝例より冷却水がしみ出しても、これが直接真空中に
もれ出ることはなく、大気案内溝(2(至)で受は止め
られ、しかも、大気と真空との間のシール構造により案
内溝(26)から真空中に水がしみ出すことが確実に防
止され、スパッタ室(2)内の真空度を低下させること
なく基板(8)の冷却が行える。
According to this configuration, even if the water pressure of the cooling water suddenly increases and, for example, the cooling water seeps out from the introduction groove, it will not directly leak into the vacuum, and will not be received by the atmosphere guide groove (2 (to)). In addition, the seal structure between the atmosphere and vacuum reliably prevents water from seeping into the vacuum from the guide groove (26), allowing the substrate to be removed without reducing the degree of vacuum in the sputtering chamber (2). (8) Cooling can be performed.

なお、本発明は、前述した真空成膜装置に限らず、その
他の真空装置において真空中で水冷式回転軸を支持する
場合に適用できるのは勿論である。
Note that the present invention is of course applicable not only to the vacuum film forming apparatus described above, but also to other vacuum apparatuses in which a water-cooled rotating shaft is supported in a vacuum.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているため、次
に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

軸受ハウジングにおける冷却水の導入溝及び導出溝を挾
んで大気案内溝を設け、これに大気を導入して冷却水と
真空との間に大気を介在させるようにしたため、水と真
空との間を直接シールする従来に比しシール性が良好と
なり、導入溝及び導出溝より多少の水もれが生じても、
大気と真空との間のシールにより水の真空中へのしみ出
しを確実に防止でき、この種回転軸を使用した真空装置
の信頼性を飛躍的に向上できるものである。
Atmosphere guide grooves are provided between the cooling water inlet and outlet grooves in the bearing housing, and the atmosphere is introduced into the grooves so that the atmosphere is interposed between the cooling water and the vacuum. The sealing performance is better than the conventional method of direct sealing, and even if some water leaks from the inlet and outlet grooves,
The seal between the atmosphere and the vacuum can reliably prevent water from seeping into the vacuum, and the reliability of vacuum equipment using this type of rotating shaft can be dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水冷式回転軸の軸受装置の1実施
例を示す断面図、第2図はイオンビームスパッタ装置の
概略構成図、第3図は従来例の断面図である。 (7)  回転軸、(11)・・・流入路、(12)・
・・流出路、■・・軸受ハウジング、(20)・・・冷
却水導入溝、曽・・・冷却水導出溝、(支))・・・冷
却水導入パイプ、ン4・・・冷却水回収パイプ、蕪・0
リング、(26) # (2カ・・・大気案内溝、怒。 し9)・・・大気導入パイプ。 111!1
FIG. 1 is a sectional view showing one embodiment of a bearing device for a water-cooled rotary shaft according to the present invention, FIG. 2 is a schematic configuration diagram of an ion beam sputtering device, and FIG. 3 is a sectional view of a conventional example. (7) Rotating shaft, (11)...inflow path, (12)...
・・Outflow path, ■・・Bearing housing, (20)・・・Cooling water inlet groove, ・・・Cooling water outlet groove, (support))・・・・Cooling water inlet pipe, n 4・・Cooling water Recovery pipe, turnip/0
Ring, (26) # (2 ka...atmosphere guide groove, 9)...atmosphere introduction pipe. 111!1

Claims (1)

【特許請求の範囲】[Claims] (1)真空中に配設され、内部に冷却水の流入路及び流
出路が軸方向に形成された回転軸を回転自在に支持した
筒状の軸受ハウジングと、 前記ハウジングの内周面に凹設されそれぞれ前記流入路
及び流出路に常時連通した円環状の冷却水導入溝及び導
出溝と、 前記ハウジングの内周面の前記導入溝及び導出溝を挾む
位置にそれぞれ凹設された2つの円環状の大気案内溝と
、 前記ハウジングに接続されそれぞれ前記導入溝、導出溝
及び両案内溝に連通した冷却水導入パイプ、冷却水回収
パイプ及び大気導入パイプと、 前記ハウジングの内周面と前記回転軸の外周面との間の
前記各溝の両側をそれぞれシールしたシール部材と を備えたことを特徴とする水冷式回転軸の軸受装置。
(1) A cylindrical bearing housing that is disposed in a vacuum and rotatably supports a rotating shaft in which cooling water inflow and outflow channels are formed in the axial direction; and a recess on the inner circumferential surface of the housing. an annular cooling water introduction groove and an annular cooling water outlet groove, which are provided and are in constant communication with the inlet and outlet channels, respectively; and two recessed cooling water inlet grooves and an annular coolant outlet groove, which are respectively recessed at positions sandwiching the introduction groove and the outlet groove on the inner circumferential surface of the housing. an annular air guide groove; a cooling water introduction pipe, a cooling water recovery pipe, and an air introduction pipe connected to the housing and communicating with the introduction groove, the outlet groove, and both guide grooves, respectively; the inner circumferential surface of the housing and the air introduction pipe; A bearing device for a water-cooled rotating shaft, comprising: a sealing member that seals both sides of each of the grooves between the outer circumferential surface of the rotating shaft.
JP14334490A 1990-05-31 1990-05-31 Bearing device of water-cooled rotary shaft Pending JPH0434216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14334490A JPH0434216A (en) 1990-05-31 1990-05-31 Bearing device of water-cooled rotary shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14334490A JPH0434216A (en) 1990-05-31 1990-05-31 Bearing device of water-cooled rotary shaft

Publications (1)

Publication Number Publication Date
JPH0434216A true JPH0434216A (en) 1992-02-05

Family

ID=15336608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14334490A Pending JPH0434216A (en) 1990-05-31 1990-05-31 Bearing device of water-cooled rotary shaft

Country Status (1)

Country Link
JP (1) JPH0434216A (en)

Similar Documents

Publication Publication Date Title
US6857635B1 (en) Ultra high vacuum ferrofluidic seals and method of manufacture
JPH06508886A (en) Cantilever mounting for rotating cylindrical magnetron
JP4037493B2 (en) Film forming apparatus provided with substrate cooling means
JPH076956A (en) Heat treating device
US4229655A (en) Vacuum chamber for treating workpieces with beams
KR102354877B1 (en) Sputtering apparatus and method of using the same
US3933644A (en) Sputter coating apparatus having improved target electrode structure
US11854843B2 (en) Substrate stage, substrate processing apparatus, and temperature control method
US4938858A (en) Cathode sputtering system
US6207006B1 (en) Vacuum processing apparatus
KR100608957B1 (en) Film deposition system and film deposition method using the same
JPH0434216A (en) Bearing device of water-cooled rotary shaft
US10250097B2 (en) Static pressure seal-equipped motor
US6093456A (en) Beam stop apparatus for an ion implanter
KR101343162B1 (en) plasma processing apparatus and plasma processing method
JP3253384B2 (en) Vertical reactor
CN220485813U (en) Target mounting device and semiconductor chip processing device
JP2023018812A (en) Rotary cathode unit for sputtering device
JP3564038B2 (en) Shaft sealing device
CN115466930B (en) Coating equipment and target bearing device thereof
JPH0239531A (en) Rotary processing equipment
JPS61160670A (en) Magnetic fluid sealing device
JPH03111575A (en) Vacuum treating device
JP2023057011A (en) actuator
JP2023066486A (en) Magnetron sputtering apparatus cathode unit and magnetron sputtering apparatus