JPH04341740A - Automatic inclination correcting device - Google Patents

Automatic inclination correcting device

Info

Publication number
JPH04341740A
JPH04341740A JP3111257A JP11125791A JPH04341740A JP H04341740 A JPH04341740 A JP H04341740A JP 3111257 A JP3111257 A JP 3111257A JP 11125791 A JP11125791 A JP 11125791A JP H04341740 A JPH04341740 A JP H04341740A
Authority
JP
Japan
Prior art keywords
sample
plane
sample surface
predetermined
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3111257A
Other languages
Japanese (ja)
Inventor
Taketoshi Noji
健俊 野地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3111257A priority Critical patent/JPH04341740A/en
Publication of JPH04341740A publication Critical patent/JPH04341740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable every operator to correct any inclination of a sample surface easily and in a short time by means of an automatic inclination correcting device. CONSTITUTION:The poisitoinal relation of a sample surface alpha to a specified plain-face is detected by using a parallel moving means 13 to move a sample 10 and then making surface detection by means of a surface detection means 11 at least at three points P1... not aligned in the same one line on the sample surface alpha. The paralell moving means 13 and an inclinating means 12 are driven in accordance with the detected results so that the sample surface alpha comes in a specific relation to the specified plain-face beta.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子線マイクロアナラ
イザ等に用いられる試料移動傾斜装置に関し、特に、試
料の表面を所定の平面(測定面)に一致させるために試
料表面の傾きを補正する装置に関する。
[Field of Industrial Application] The present invention relates to a sample moving and tilting device used in an electron beam microanalyzer, etc., and in particular, it corrects the tilt of the sample surface in order to make the sample surface coincide with a predetermined plane (measurement plane). Regarding equipment.

【0002】0002

【従来の技術】電子線マイクロアナライザでは多くの場
合、X線を分光するための分光光学系が固定されており
、X線発生点が所定の位置でないと正確な分析を行なう
ことができない。従って、面分析を行なう場合にも、X
線発生点となる試料表面の電子ビーム照射箇所は常に一
定の位置にある必要があるが、試料の表面が試料移動台
の移動面(これをX−Y面とする)に対して傾いている
と、試料を移動させたときに照射箇所が上下にずれてく
る。このような試料表面の試料台移動面に対する傾斜を
補正するため、従来は、試料台のX−Y面移動装置と試
料との間に試料を傾ける機構を設け、試料表面を光学顕
微鏡で観察しながら試料を移動させて、試料表面の3点
で焦点が合うように試料の傾斜の調整を行なっていた。
2. Description of the Related Art In most electron beam microanalyzers, a spectroscopic optical system for dispersing X-rays is fixed, and accurate analysis cannot be performed unless the X-ray generation point is at a predetermined position. Therefore, even when performing surface analysis,
The electron beam irradiation point on the sample surface, which is the line generation point, must always be at a constant position, but the sample surface is tilted with respect to the moving plane of the sample moving table (this is the X-Y plane). When the sample is moved, the irradiation point shifts vertically. In order to correct the inclination of the sample surface with respect to the sample table moving plane, conventionally a mechanism for tilting the sample is provided between the sample table's X-Y plane moving device and the sample, and the sample surface is observed with an optical microscope. While moving the sample, the tilt of the sample was adjusted so that three points on the sample surface were in focus.

【0003】0003

【発明が解決しようとする課題】上記従来の傾斜補正方
法では、試料が替わる毎に目視で3点の焦点合わせを行
なわなければならず、手間と時間がかかっていた。また
、試料の表面に特徴が無い場合には、焦点が合っている
こと(合焦)を目視で検出することが困難な場合があっ
た。本発明はこのような課題を解決するために成された
ものであり、その目的とするところは、誰でも容易に、
しかも短時間で試料表面の傾斜を補正することのできる
自動傾斜補正装置を提供することにある。
SUMMARY OF THE INVENTION In the conventional tilt correction method described above, it is necessary to perform visual focusing at three points each time the sample is changed, which takes time and effort. Furthermore, if the surface of the sample has no features, it may be difficult to visually detect that the sample is in focus. The present invention was made to solve such problems, and its purpose is to easily enable anyone to
Moreover, it is an object of the present invention to provide an automatic tilt correction device that can correct the tilt of a sample surface in a short time.

【0004】0004

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る自動傾斜補正装置では、図1に
その構成を概念的に示すように、(a)試料10の表面
αが所定平面β内の所定点p0に在るか否かを検出する
表面検出手段11と、(b)試料10を上記所定平面β
に平行な面の内部で、及びそれに垂直な方向に平行移動
させる平行移動手段13と、(c)試料10を上記所定
平面βに関して傾斜させる傾斜手段12と、(d)平行
移動手段13を用いて試料10を移動させ、表面検出手
段11により試料表面αの、同一直線上に乗らない少な
くとも3点p1,…で表面検出を行なうことにより試料
表面αの所定平面βに対する位置関係を検出し、検出結
果に基いて試料表面αが所定平面βに関して所定の関係
となるように、平行移動手段13及び傾斜手段12を駆
動する傾斜補正制御手段14とを備えることを特徴とす
る。
[Means for Solving the Problems] In an automatic tilt correction device according to the present invention, which has been made to solve the above problems, as conceptually shown in FIG. (b) surface detection means 11 for detecting whether or not the sample 10 is located at a predetermined point p0 within the predetermined plane β;
(c) a tilting means 12 that tilts the sample 10 with respect to the predetermined plane β; and (d) a parallel displacement means 13. the sample 10 is moved, and the surface detection means 11 detects the surface of the sample surface α at at least three points p1, . It is characterized by comprising a tilt correction control means 14 that drives the parallel movement means 13 and the tilt means 12 so that the sample surface α has a predetermined relationship with respect to the predetermined plane β based on the detection result.

【0005】[0005]

【作用】傾斜補正制御手段14の動作を中心に説明する
。まず、表面検出手段11により試料表面αが所定点p
0に在る(p0∈α)か否かを判定する。試料表面αが
所定点p0に来ていない場合には、平行移動手段13に
より試料を移動し、試料表面αが所定点p0に来るよう
にする。試料表面αが所定点p0に来た(これを「試料
表面の検出」と呼ぶ)時、平行移動手段13の制御パラ
メータ等によりその時点での試料の位置L1を記憶する
。次に、平行移動手段13を上記所定平面βに平行な面
(X−Y面とする)内で移動させ、試料10の位置を変
える。この試料10の位置で同様に試料表面αの検出を
行ない、その時点の試料10の位置L2を記憶する。こ
うして、少なくとも3点で試料表面αの検出を行ない、
各点での試料10の位置L1,L2,L3を記憶する。 ここで、この3点(所定点p0に来た試料表面α上の点
)p1,p2,p3(p2,p3は図示せず)は同一直
線上に乗らないようにする。この3点p1,p2,p3
により規定される平面は試料表面αに他ならないため、
各点に対応する試料10の位置L1,L2,L3より、
(この試料位置L1,L2,L3の基準座標系における
)試料表面αの位置が決定される。一方、所定平面βの
同じ基準座標系に対する位置は既知であるため、試料表
面αの所定平面βに対する関係がこれにより検出される
[Operation] The operation of the tilt correction control means 14 will be mainly explained. First, the surface detection means 11 detects the sample surface α at a predetermined point p.
0 (p0∈α). If the sample surface α is not at the predetermined point p0, the parallel moving means 13 moves the sample so that the sample surface α is at the predetermined point p0. When the sample surface α reaches a predetermined point p0 (this is referred to as "detection of the sample surface"), the position L1 of the sample at that time is memorized by the control parameters of the parallel movement means 13, etc. Next, the parallel moving means 13 is moved in a plane parallel to the predetermined plane β (referred to as the X-Y plane) to change the position of the sample 10. The sample surface α is similarly detected at this position of the sample 10, and the position L2 of the sample 10 at that time is stored. In this way, the sample surface α is detected at at least three points,
The positions L1, L2, and L3 of the sample 10 at each point are memorized. Here, these three points (points on the sample surface α that have reached the predetermined point p0) p1, p2, and p3 (p2 and p3 are not shown) are made not to lie on the same straight line. These three points p1, p2, p3
Since the plane defined by is nothing but the sample surface α,
From the positions L1, L2, and L3 of the sample 10 corresponding to each point,
The position of the sample surface α (in the reference coordinate system of the sample positions L1, L2, L3) is determined. On the other hand, since the position of the predetermined plane β with respect to the same reference coordinate system is known, the relationship of the sample surface α with respect to the predetermined plane β is detected thereby.

【0006】このようにして検出された試料表面αと所
定平面βとの関係に基き、傾斜手段12により試料を傾
斜させ、また、平行移動手段13(特に、X−Y面に垂
直な方向=Z軸方向の移動)により試料表面αを所定平
面βに関して所定の位置に置く(たとえば、試料表面α
を平面βに一致させたり、平面βから所定角度だけ傾斜
させる等)ことができる。
Based on the relationship between the sample surface α and the predetermined plane β thus detected, the sample is tilted by the tilting means 12, and the parallel moving means 13 (particularly in the direction perpendicular to the X-Y plane = (movement in the Z-axis direction) to place the sample surface α at a predetermined position with respect to a predetermined plane β (for example, by moving the sample surface α
can be made to coincide with the plane β, be inclined by a predetermined angle from the plane β, etc.).

【0007】[0007]

【実施例】本発明の一実施例である電子線マイクロアナ
ライザ(EPMA)用試料移動傾斜装置の構成を図2に
示す。本実施例の試料移動傾斜装置では表面検出手段と
して電子撮像装置30を使用し、そのイメージセンサ3
1上に形成された像をイメージ信号処理装置20で処理
することにより、撮像装置30の光学系の焦点が試料室
33内の試料34の表面に合っているか否かを合焦判定
装置21で判定する。これらの装置による合焦判定処理
は、通常のビデオカメラ等で用いられているものを使用
することができる。
Embodiment FIG. 2 shows the structure of a sample moving and tilting device for an electron beam microanalyzer (EPMA) which is an embodiment of the present invention. The sample moving and tilting device of this embodiment uses an electronic imaging device 30 as a surface detection means, and its image sensor 3
1 is processed by the image signal processing device 20, the focus determination device 21 determines whether the focus of the optical system of the imaging device 30 is on the surface of the sample 34 in the sample chamber 33. judge. For focus determination processing by these devices, those used in ordinary video cameras and the like can be used.

【0008】平行移動手段及び傾斜手段は、ともに従来
の試料移動傾斜装置に備えられているものを用いること
ができる。本実施例では移動ステージ38のXYZ軸方
向(各方向は図2の下の座標系を参照)の移動はそれぞ
れのパルスモータ40、41、42により行ない、移動
ステージ38に対する試料台35の傾斜は2個のDCモ
ータ36、37により調整する。傾斜モータ36、37
はそれぞれ、X軸方向の傾斜角θx及びY軸方向のθy
を調整するものである。平行移動用パルスモータ40、
41、42及び傾斜用DCモータ36、37はそれぞれ
のモータドライバ24及び23により駆動され、各モー
タドライバ23、24は後述のマイコン22により制御
される。
[0008] Both the parallel moving means and the tilting means can be those provided in a conventional sample moving and tilting device. In this embodiment, the movement of the moving stage 38 in the XYZ axis directions (see the coordinate system at the bottom of FIG. 2 for each direction) is performed by the respective pulse motors 40, 41, and 42, and the inclination of the sample stage 35 with respect to the moving stage 38 is It is adjusted by two DC motors 36 and 37. Tilt motors 36, 37
are the inclination angle θx in the X-axis direction and θy in the Y-axis direction, respectively.
This is to adjust the Parallel movement pulse motor 40,
41, 42 and the tilting DC motors 36, 37 are driven by respective motor drivers 24, 23, and each motor driver 23, 24 is controlled by a microcomputer 22, which will be described later.

【0009】傾斜補正制御手段としてはマイコン22を
使用している。本実施例における試料34の傾斜補正の
ためのマイコン22の働きを図3のフローチャートによ
り説明する。最初に、合焦判定装置21からの信号によ
り、撮像装置30の光学系の焦点が試料34の表面に合
っているか否かを検出する(ステップS10)。撮像装
置30の光学系の焦点の位置は、本実施例のEPMAの
X線光学系の焦点位置と同じ高さになるように調整され
ている。ステップS10で焦点が合っていないと判定さ
れると、マイコン22はZ軸パルスモータ42を駆動し
(ステップS11)、移動ステージ38を上下に移動さ
せる。いずれかの時点で光学系の焦点が合うと、処理は
ステップS12に進み、その位置における移動ステージ
38のXYZ座標の値(Fx1,Fy1,Fz1)をメ
モリに記憶する。なお、この座標値には、パルスモータ
40、41、42のパルス数を使用することができる。
A microcomputer 22 is used as the tilt correction control means. The operation of the microcomputer 22 for correcting the inclination of the sample 34 in this embodiment will be explained with reference to the flowchart of FIG. First, it is detected based on a signal from the focus determination device 21 whether or not the focus of the optical system of the imaging device 30 is on the surface of the sample 34 (step S10). The focal position of the optical system of the imaging device 30 is adjusted to be at the same height as the focal position of the X-ray optical system of the EPMA of this embodiment. If it is determined in step S10 that the image is out of focus, the microcomputer 22 drives the Z-axis pulse motor 42 (step S11) to move the moving stage 38 up and down. When the optical system is focused at any point in time, the process proceeds to step S12, and the XYZ coordinate values (Fx1, Fy1, Fz1) of the moving stage 38 at that position are stored in the memory. Note that the number of pulses of the pulse motors 40, 41, and 42 can be used for this coordinate value.

【0010】次のステップS13では、この合焦検出が
3回行なわれたか否かを判定する。未だ3回行なわれて
いない場合には、まずステップS14でX軸及びY軸パ
ルスモータ40、41を駆動し、前回の測定点のXY座
標とは異なるXY座標点に移動する。このとき、それま
でに既に2回の合焦検出を行なっているならば、次の1
点はそれまでの2点を結ぶ直線上に乗らないようにする
。ステップS14でXY座標の移動が終了するとステッ
プS10に戻り、上記ステップS10〜S12の処理を
同様に繰り返して、合焦検出位置のXYZ座標値(Fx
2,Fy2,Fz2)をメモリに記憶する。
In the next step S13, it is determined whether this focus detection has been performed three times. If the measurement has not been performed three times yet, first in step S14, the X-axis and Y-axis pulse motors 40 and 41 are driven to move to an XY coordinate point different from the XY coordinates of the previous measurement point. At this time, if focus detection has already been performed twice by then, the next
Make sure that the point does not lie on the straight line connecting the previous two points. When the movement of the XY coordinates is completed in step S14, the process returns to step S10, and the processes of steps S10 to S12 described above are repeated in the same way, and the XYZ coordinate values (Fx
2, Fy2, Fz2) in memory.

【0011】こうして3点の合焦検出を行ない、各点の
座標値(Fx1,Fy1,Fz1)、(Fx2,Fy2
,Fz2)、(Fx3,Fy3,Fz3)をメモリに記
憶した後、ステップS15に進んで3点を通る平面の式
を算出する。この平面は試料34の表面αに他ならない
。試料表面αの式が求められると、移動ステージ38の
移動面(X−Y面)を基準とする試料表面αの傾斜角θ
x、θyを算出する(ステップS16)。
[0011] In this way, the focus is detected at three points, and the coordinate values of each point (Fx1, Fy1, Fz1), (Fx2, Fy2
, Fz2), and (Fx3, Fy3, Fz3) in the memory, the process proceeds to step S15 to calculate the equation of a plane passing through the three points. This plane is nothing but the surface α of the sample 34. Once the equation of the sample surface α is determined, the inclination angle θ of the sample surface α with respect to the moving plane (X-Y plane) of the moving stage 38 is determined.
x and θy are calculated (step S16).

【0012】試料表面αの式及び傾斜角θx、θyが求
められると、最後にステップS17で、各傾斜モータ3
6、37を駆動して試料表面αをX−Y平面に平行にす
るとともに、Z軸モータ42を駆動して試料表面αを所
定の高さ(撮像装置30の光学系の焦点位置)に合わせ
る。これにより、試料表面αを2次元的にX線分析する
際、パルスモータ40、41により試料をX−Y平面内
で移動させても、試料表面αは常に同一平面内にあるこ
とになり、X線は常に固定点から発生することになる。
After the equation of the sample surface α and the inclination angles θx and θy are determined, finally in step S17, each inclination motor 3
6 and 37 to make the sample surface α parallel to the X-Y plane, and drive the Z-axis motor 42 to adjust the sample surface α to a predetermined height (focal position of the optical system of the imaging device 30). . As a result, when performing two-dimensional X-ray analysis of the sample surface α, even if the sample is moved within the X-Y plane by the pulse motors 40 and 41, the sample surface α will always remain within the same plane. X-rays will always originate from a fixed point.

【0013】なお、表面検出手段としては上記の撮像装
置の他に、超音波距離計や位相差検出式合焦検出装置等
も用いることができる。
[0013] In addition to the above-mentioned imaging device, an ultrasonic range finder, a phase difference detection type focus detection device, etc. can also be used as the surface detection means.

【0014】[0014]

【発明の効果】本発明に係る自動傾斜補正装置では、人
間の目による合焦判定を必要としないため、傾斜補正が
容易、迅速、かつ、正確に行なえるようになる。また、
表面検出手段に超音波測距装置等を用いることにより、
表面に特徴のない試料(たとえば、鏡面研磨試料)でも
容易に傾斜補正を行なうことができるようになる。本傾
斜補正装置は試料表面を水平にする必要がある通常のX
線マイクロアナライザ装置の他、試料表面を所定角度だ
け傾ける必要のある装置(例えば、試料を5゜程度傾け
て2回撮影するステレオ走査電子顕微鏡等)にも応用す
ることができる。
Effects of the Invention The automatic tilt correction device according to the present invention does not require focus determination by human eyes, so that tilt correction can be performed easily, quickly, and accurately. Also,
By using an ultrasonic ranging device etc. as a surface detection means,
It becomes possible to easily perform tilt correction even on a sample with no features on the surface (for example, a mirror-polished sample). This tilt correction device is suitable for normal
In addition to the line microanalyzer device, it can also be applied to devices that require the sample surface to be tilted by a predetermined angle (for example, a stereo scanning electron microscope that takes images twice by tilting the sample by about 5 degrees).

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の構成を概念的に示すブロック図。FIG. 1 is a block diagram conceptually showing the configuration of the present invention.

【図2】  本発明の一実施例であるEPMA用試料移
動傾斜装置の構成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of an EPMA sample moving and tilting device that is an embodiment of the present invention.

【図3】  実施例の試料移動傾斜装置の中央処理装置
であるマイコンが行なう試料傾斜補正処理のフローチャ
ート。
FIG. 3 is a flowchart of sample tilt correction processing performed by the microcomputer, which is the central processing unit of the sample moving and tilting device of the embodiment.

【符号の説明】[Explanation of symbols]

α…試料の表面                  
    β…所定の平面p0…面β上の所定の点   
             p1…試料の表面の点 35…試料台                   
     36、37…傾斜モータ 38…移動ステージ                
  40、41、42…X、Y、Z軸モータ
α…Surface of sample
β...Predetermined plane p0...Predetermined point on plane β
p1... Point 35 on the surface of the sample... Sample stage
36, 37...Tilt motor 38...Movement stage
40, 41, 42...X, Y, Z axis motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  試料表面が所定平面内の所定点に在る
か否かを検出する表面検出手段と、試料を上記所定平面
に平行な面内及びそれに垂直な方向に平行移動させる平
行移動手段と、試料を上記所定平面に関して傾斜させる
傾斜手段と、平行移動手段を用いて試料を移動させ、表
面検出手段により試料表面の、同一直線上に乗らない少
なくとも3点で表面検出を行なうことにより試料表面の
所定平面に対する位置関係を検出し、検出結果に基いて
試料表面が所定平面に関して所定の関係となるように、
平行移動手段及び傾斜手段を駆動する傾斜補正制御手段
とを備えることを特徴とする自動傾斜補正装置。
1. Surface detection means for detecting whether the sample surface is at a predetermined point within a predetermined plane; and parallel movement means for translating the sample in a plane parallel to the predetermined plane and in a direction perpendicular thereto. Then, the sample is moved using a tilting means for tilting the sample with respect to the predetermined plane and a parallel movement means, and the surface of the sample is detected by the surface detection means at at least three points on the sample surface that are not on the same straight line. The positional relationship of the surface with respect to a predetermined plane is detected, and based on the detection result, the sample surface has a predetermined relationship with respect to the predetermined plane.
An automatic tilt correction device comprising a parallel movement means and a tilt correction control means for driving a tilt means.
JP3111257A 1991-05-16 1991-05-16 Automatic inclination correcting device Pending JPH04341740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111257A JPH04341740A (en) 1991-05-16 1991-05-16 Automatic inclination correcting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111257A JPH04341740A (en) 1991-05-16 1991-05-16 Automatic inclination correcting device

Publications (1)

Publication Number Publication Date
JPH04341740A true JPH04341740A (en) 1992-11-27

Family

ID=14556611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111257A Pending JPH04341740A (en) 1991-05-16 1991-05-16 Automatic inclination correcting device

Country Status (1)

Country Link
JP (1) JPH04341740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076251A (en) * 2006-09-21 2008-04-03 Kurabo Ind Ltd Surface developing method for sample block
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076251A (en) * 2006-09-21 2008-04-03 Kurabo Ind Ltd Surface developing method for sample block
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer

Similar Documents

Publication Publication Date Title
US4627009A (en) Microscope stage assembly and control system
US11951564B2 (en) Method and computer program product for OCT measurement beam adjustment
JP2005347790A (en) Projector provided with trapezoidal distortion correction apparatus
EP0687380B1 (en) Electron microscope having a goniometer controlled from the image frame of reference
JPH09304703A (en) Focusing device
JP4327477B2 (en) X-ray fluoroscope
JPH08106873A (en) Electron microscope device
JPH0755439A (en) Three-dimensional shape measuring equipment
JPH04341740A (en) Automatic inclination correcting device
US6795240B2 (en) Microscope system
JP4687853B2 (en) X-ray fluoroscopic equipment
JPH0658212B2 (en) Three-dimensional coordinate measuring device
JP2005024506A (en) X-ray fluoroscope for precise measurement
JP2000193429A (en) Shape measuring device
JPH10221018A (en) Three-dimensional measuring method
JPH11147187A (en) Method and device for yag laser machining
JP3859245B2 (en) How to center the chart
JP2012154862A (en) Three-dimensional dimension measuring device
JP5220469B2 (en) Sample equipment for charged particle beam equipment
JPH1034571A (en) Robot dislocation correcting device
JPH01263703A (en) Camera visual field control device
JP3688748B2 (en) Laser trapping device
JP2621265B2 (en) Surface analysis mapping device
JPH08300178A (en) Laser beam machine
JP3303916B2 (en) Sample surface mapping device using the principle of electron beam microanalyzer