JPH04341313A - Filter of three dimensional fabric in the form of flat plate - Google Patents

Filter of three dimensional fabric in the form of flat plate

Info

Publication number
JPH04341313A
JPH04341313A JP3115028A JP11502891A JPH04341313A JP H04341313 A JPH04341313 A JP H04341313A JP 3115028 A JP3115028 A JP 3115028A JP 11502891 A JP11502891 A JP 11502891A JP H04341313 A JPH04341313 A JP H04341313A
Authority
JP
Japan
Prior art keywords
filter
dimensional
fabric
fibers
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3115028A
Other languages
Japanese (ja)
Inventor
Akiji Anahara
穴原 明司
Yoshiharu Yasui
義治 安居
Kazuhisa Takimoto
滝本 和寿
Kazue Sasaki
佐々木 一衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP3115028A priority Critical patent/JPH04341313A/en
Publication of JPH04341313A publication Critical patent/JPH04341313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To improve filtration durability by changing the insertion density of wefts in the thickness direction of a three dimensional fabric structure in the title filter comprising warps, wefts, and vertical threads so that the size of openings produced at the intersections of fiber bundles in the fabric structure is different between one side and the other side in the thickness direction. CONSTITUTION:The title filter 1 is composed of warp layers comprising warps Z arranged in parallel to the longitudinal direction of a fabric, wefts arranged in the lateral direction of a fabric rectangularly crossing with the warps, and vertical threads being continuous on each line arranged along the thickness direction of the fabric rectangularly crossing with the warps Z between the respective lines of the warp layers. The insertion density of wafts changes in the thickness direction of the three dimensional fabric structure so that the size of voids produced at the intersections of fiber bundles in the fabric structure F is different between one side and the other side in the thickness direction. As the result of this structure, a reinforcing material for the maintenance of the form becomes unnecessary, and the filtration area is substantially increased to improve the durability of filtration effects.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は流体中の不純物を捕集す
る平板状三次元織物フィルターに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat three-dimensional fabric filter for collecting impurities in a fluid.

【0002】0002

【従来の技術】流体中に存在する不純物を捕集する方法
としてフィルターによるろ過が一般に行われている。一
般に使用されているフィルターは、平面状の織布を何重
にも重ねてろ過機能を確保している。ところが、平面布
を使用したフィルターの場合は次のような欠点がある。 ■流体の圧力により各層の圧着状態が変化して各層間に
隙間ができて浮き上がったり、逆に上層が下層にめり込
んで過剰に緻密な状態となったりして、処理時間の経過
と共にろ過性能が変化する。■平面布自体は形態保持性
に欠けるため形態維持のための補強材を必要とし、有効
ろ過面積が減少する。■限られた大きさの流路の中で断
面積をあまり変えずにろ過面積を大きく取るために平面
布積層型のフィルターを流体の流れと平行に配置した場
合、流れの方向が変更する際に生じる乱流によるフィル
ター表面の圧力変動で積層布相互の設定位置に乱れが生
じるのを防ぐため、積層布を両面から押さえる補強材(
多孔板)が必要となり、有効ろ過面積が減少する。
2. Description of the Related Art Filtration using a filter is generally used as a method of collecting impurities present in a fluid. Commonly used filters have multiple layers of flat woven fabric to ensure their filtration function. However, filters using flat cloth have the following drawbacks. ■The compressed state of each layer changes due to the pressure of the fluid, creating gaps between each layer and causing them to float, or conversely, the upper layer sinks into the lower layer, resulting in an excessively dense state, which deteriorates filtration performance as processing time progresses. Change. ■Plane cloth itself lacks shape retention, so reinforcing material is required to maintain shape, which reduces the effective filtration area. ■If a flat cloth laminated filter is placed parallel to the fluid flow in order to increase the filtration area without changing the cross-sectional area much in a limited-sized flow path, when the flow direction changes In order to prevent disturbances in the set positions of the laminated fabrics due to pressure fluctuations on the filter surface caused by turbulent flow, a reinforcing material (
perforated plate) is required, which reduces the effective filtration area.

【0003】又、繊維製フィルターによるエアロゾルの
捕集作用には慣性作用、拡散作用、静電気作用がある。 すなわち、慣性作用はエアロゾルが繊維に衝突する際に
生ずる渦流による負圧によってエアロゾルが繊維に付着
する作用、拡散作用はエアロゾルが繊維に衝突すると流
速が小さくなり、繊維の表面に堆積する作用、静電気作
用は繊維に帯電している静電気によりエアロゾルが繊維
に吸着する作用である。このうち、静電気作用は特殊な
素材の繊維の場合に生じ、一般的には慣性作用及び拡散
作用によりエアロゾルが捕集される。従来の織布あるい
は不織布によるフィルターはその構造が二次元的平面で
あるため、前記慣性作用と拡散作用を同時に満足させる
ことが難しく、複数のフィルターを組合せて両者の作用
を満足させるようにしていた。この不都合を解決するも
のとして特開平2−233115号公報には、互いに直
交する緯糸、経糸及び垂直糸の三成分の糸により組織さ
れる三次元構造織物からなる繊維製フィルターが提案さ
れている。
[0003]Furthermore, the aerosol collection action by a fiber filter includes an inertial action, a diffusion action, and an electrostatic action. In other words, the inertial effect is the effect of the aerosol adhering to the fiber due to the negative pressure caused by the vortex generated when the aerosol collides with the fiber, the diffusion effect is the effect of the aerosol colliding with the fiber, the flow velocity decreases, and it is deposited on the surface of the fiber, and the static electricity. The action is that the aerosol is adsorbed to the fibers due to the static electricity charged on the fibers. Among these, electrostatic action occurs in the case of fibers made of special materials, and aerosols are generally collected by inertial action and diffusion action. Since conventional filters made of woven or non-woven fabrics have a two-dimensional planar structure, it is difficult to simultaneously satisfy the above-mentioned inertial action and diffusion action, and it has been necessary to combine multiple filters to satisfy both actions. . To solve this problem, Japanese Patent Application Laid-Open No. 2-233115 proposes a fiber filter made of a three-dimensionally structured woven fabric made of three-component yarns, weft, warp, and perpendicular yarns, which are perpendicular to each other.

【0004】0004

【発明が解決しようとする課題】三次元構造織物はそれ
自体が形態保持機能を有するため、三次元構造織物から
なる繊維製フィルターは流体の通過に対して変形が少な
く、形態維持のための補強材が不要となって実質的なろ
過面積が大きくなり、前記平面布積層型フィルターの問
題点が解消される。前記特開平2−233115号公報
に提案された三次元構造織物フィルターは繊維のピッチ
(充填密度)が一定のため、流体中に含まれる不純物の
大きさが一定の場合は特に問題はないが、不純物の大き
さに幅が有る場合は問題がある。すなわち、繊維のピッ
チ(充填密度)は捕集すべき最小の不純物に合わせて設
定されるため、それより大きな不純物がフィルターの表
面を覆う状態で捕集されてろ過効果の持続性が低下する
[Problems to be Solved by the Invention] Since the three-dimensional structured fabric itself has a shape-retaining function, a fiber filter made of the three-dimensional structured fabric does not deform much when fluid passes through it, and requires reinforcement to maintain its shape. Since no material is required, the actual filtration area becomes larger, and the problems of the flat cloth laminated filter described above are solved. Since the three-dimensional structure fabric filter proposed in JP-A-2-233115 has a constant fiber pitch (filling density), there is no particular problem when the size of impurities contained in the fluid is constant. There is a problem when there is a wide range in the size of impurities. That is, since the pitch (packing density) of the fibers is set according to the minimum impurity to be collected, larger impurities are collected while covering the surface of the filter, reducing the sustainability of the filtration effect.

【0005】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は形態維持のための補強材が不要
で実質的なろ過面積が大きく、しかもろ過効果の持続性
が向上する平板状三次元織物フィルターを提供すること
にある。
[0005] The present invention has been made in view of the above-mentioned problems, and its purpose is to eliminate the need for reinforcing materials to maintain the shape, increase the substantial filtration area, and improve the sustainability of the filtration effect. An object of the present invention is to provide a flat three-dimensional fabric filter.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め本発明のフィルターは、少なくともX、Y、Zの3軸
方向に繊維束を多重に配列した平板状三次元織物で構成
され、三次元織物中の繊維束の交錯点に生じる空隙の大
きさを三次元織物の厚み方向の一方側が他方側より小さ
くなるようにした。
[Means for Solving the Problems] In order to achieve the above object, the filter of the present invention is composed of a flat three-dimensional fabric in which fiber bundles are arranged in multiple directions in at least three axes of X, Y, and Z. The size of the voids generated at the intersection points of fiber bundles in the original fabric was made smaller on one side in the thickness direction of the three-dimensional fabric than on the other side.

【0007】[0007]

【作用】本発明の平板状フィルターはフィルターを流体
の流れと平行に配置した状態で、かつフィルターを構成
する三次元織物中の繊維束の交錯点に生じる空隙が大き
な側から小さな側に向かって流体が通過する状態で使用
される。フィルターを構成する三次元織物自体が形態保
持機能を有するため、流体の通過に対して変形が少なく
、形態維持のための補強材が不要なため、実質的なろ過
面積が大きくなる。そして、繊維束の交錯点に生じる空
隙が大きな側から小さな側に向かって流体が通過するた
め、流体中の不純物の大きさに幅がある場合でも、大き
な不純物は大きな空隙部分において、小さな不純物は小
さな空隙部分においてそれぞれ立体的に交錯した繊維に
囲まれた空隙に捕捉されて蓄積されるため、長期間にわ
たりろ過効果が持続される。
[Operation] In the flat filter of the present invention, the filter is arranged parallel to the flow of fluid, and the voids formed at the intersections of fiber bundles in the three-dimensional fabric constituting the filter are arranged from the large side to the small side. Used with fluid passing through it. Since the three-dimensional fabric constituting the filter itself has a shape-retaining function, it is less deformed when fluid passes through it, and there is no need for reinforcing materials to maintain the shape, resulting in a substantial filtration area. Since the fluid passes through the voids created at the intersections of fiber bundles from the large side to the small side, even if the size of impurities in the fluid varies, large impurities will be present in the large voids, and small impurities will be The filtering effect is maintained over a long period of time because it is captured and accumulated in the voids surrounded by the three-dimensional intersecting fibers in the small voids.

【0008】[0008]

【実施例】【Example】

(実施例1)以下、本発明を具体化した第1実施例を図
1及び図2に従って説明する。図1は三次元織物構造体
Fの一部破断斜視図であり、平板状フィルター1を構成
する三次元織物構造体Fは、織物の長手方向(Z方向)
に沿って平行に配列された複数本の経糸zからなる経糸
層と、前記経糸zと直交する状態で織物の幅方向(X方
向)に配列された緯糸xと、前記経糸層の各列間及び列
の両外側の全てに前記経糸zと直交する状態で織物の厚
さ方向(Y方向)に配列された各列毎に連続する複数本
の垂直糸yとから構成されている。緯糸xの挿入密度が
三次元織物構造体Fの厚み方向に変化しており、三次元
織物構造体Fの繊維含有率がその厚み方向の一方側が他
方側より小さくなっている。すなわち、三次元織物構造
体F中の繊維束の交錯点に生じる空隙の大きさが図1の
上部側で大きく、下部側で小さくなっている。この三次
元織物構造体Fは公知の方法で製造される(例えば、特
開平2−191743号公報)。
(Embodiment 1) A first embodiment embodying the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a partially cutaway perspective view of the three-dimensional textile structure F, and the three-dimensional textile structure F constituting the flat filter 1 is oriented in the longitudinal direction (Z direction) of the textile.
A warp layer consisting of a plurality of warp threads z arranged in parallel along the warp threads, weft threads x arranged in the width direction (X direction) of the fabric in a state perpendicular to the warp threads z, and between each row of the warp thread layers. and a plurality of vertical threads y that are continuous in each row and arranged in the thickness direction (Y direction) of the fabric in a state perpendicular to the warp threads z on both outer sides of the row. The insertion density of the weft x changes in the thickness direction of the three-dimensional woven structure F, and the fiber content of the three-dimensional woven structure F is smaller on one side in the thickness direction than on the other side. That is, the size of the voids generated at the intersections of fiber bundles in the three-dimensional woven structure F is larger on the upper side of FIG. 1 and smaller on the lower side in FIG. This three-dimensional woven structure F is manufactured by a known method (for example, JP-A-2-191743).

【0009】経糸z、緯糸x及び垂直糸yの繊維素材は
フィルターの使用目的により適宜選択され、高温度の排
気ガスや液体をろ過する場合には、炭化珪素繊維、アル
ミナ繊維、チラノ繊維(珪素、チタン、炭素、酸素から
成る非晶質の耐熱性に極めて優れた繊維、宇部興産の商
品名)等のセラミック繊維やカーボン繊維あるいは金属
繊維等の耐熱性に優れた無機繊維が使用され、耐熱性が
要求されない用途では合成繊維フィラメント(ポリエス
テル繊維、ポリエチレン繊維、ポリスチレン繊維、ポリ
プロピレン繊維等)も使用される。
The fiber materials of the warp z, weft , amorphous fibers made of titanium, carbon, and oxygen with extremely high heat resistance; In applications where properties are not required, synthetic fiber filaments (polyester fibers, polyethylene fibers, polystyrene fibers, polypropylene fibers, etc.) are also used.

【0010】三次元織物構造体F内では糸相互の交錯・
圧着により、糸は与えられた空間を充填するように外形
が多角形状をなすが、糸を構成する繊維本数が少ないと
、空間を均整に埋め尽くすことができず、ランダムに空
隙を生じ、捕集効果にばらつきがでる虞がある。従って
、1本の糸束の構成繊維本数は、少なくとも70本以上
の細い繊維の集合体であることが望ましい。又、1本の
単繊維の直径も100μm以下、望ましくは20μm以
下の細いしなやかな繊維であるほうが空間の充填効果が
大きく好適である。
[0010] In the three-dimensional woven structure F, the threads intertwine and
By crimping, the thread forms a polygonal shape so as to fill the given space, but if the number of fibers that make up the thread is small, the space cannot be evenly filled and voids are created randomly, causing capture. There is a risk that the collection effect will vary. Therefore, it is desirable that the number of fibers constituting one yarn bundle is an aggregate of at least 70 or more thin fibers. Further, it is preferable that the diameter of each single fiber is thin and flexible, with a diameter of 100 μm or less, preferably 20 μm or less, for a greater space-filling effect.

【0011】又、三次元織物構造体Fの全容積中に繊維
の占める容積比率は、35%以上好ましくは40%以上
である。フィルターを構成する各成分の繊維束(糸)相
互を圧着して、繊維束の交錯点に生ずる空隙を充分に充
填するには、繊維束の外形形状を繊維束周辺の空隙を埋
めるように多角形状に変形させる必要があり、そのため
には繊維相互が緊密に密着されるように前記の含有率と
する必要がある。又、繊維の充填密度は高い方が細かい
粒子を除去することができるが、流体の通過抵抗が増大
するため、両者の兼ね合いで決定することが重要で、そ
れには三次元織物構造体Fの厚みも適切に選ぶ必要があ
る。
[0011] Furthermore, the volume ratio occupied by the fibers in the total volume of the three-dimensional woven structure F is 35% or more, preferably 40% or more. In order to press the fiber bundles (threads) of each component of the filter together and sufficiently fill the voids that occur at the intersections of the fiber bundles, the outer shape of the fiber bundles should be polygonal to fill the voids around the fiber bundles. It is necessary to deform the fiber into a shape, and for that purpose, the content must be set to the above content so that the fibers are closely adhered to each other. In addition, the higher the fiber packing density, the more fine particles can be removed, but the fluid passage resistance increases, so it is important to determine the balance between the two. must also be selected appropriately.

【0012】平板状フィルター1は1個でも使用される
が、ろ過面積を増大させるため、通常は図3に示すよう
に多数の平板状フィルター1が1個のハウジング2内に
多段に組付けられたフィルター装置3として使用される
。ハウジング2は本体部が四角筒状に形成されるととも
に入口2a側及び出口2b側に向かって次第に細くなる
ように形成され、その内部に流体の流れる方向と直交す
る状態で一対の四角形状の区画板4,5が、その周面が
ハウジング2の内面に嵌合する状態で固定配置されてい
る。入口2a側に配置された区画板4には5個の透孔6
が所定間隔で形成され、出口2b側に配置された区画板
5には6個の透孔7が前記透孔6の形成位置と位相がず
れた状態で等間隔に形成されている。又、両区画板4,
5の互いに対向する面には平板状フィルター1の長手方
向端部が嵌入される嵌合溝4a,5aが一定間隔でかつ
互いに1/2ピッチずれた位置に平行に形成されている
。そして、多数(この実施例では10枚)の平板状フィ
ルター1がその長手方向端部が前記各嵌合溝4a,5a
に嵌入された状態で、2枚の平板状フィルター1を1組
として入口2a側に配置された区画板4に形成された透
孔6側が拡がる三角柱状の空間を区画形成するように、
両区画板4,5間にジグザグ状に固定配置されている。 各平板状フィルター1は三次元織物構造体Fの繊維の充
填密度の低い側が透孔6から流入する流体と対向するよ
うに配置されている。又、各平板状フィルター1の両側
面はハウジング2の内壁に対して密着固定されている。
Although one flat filter 1 can be used, in order to increase the filtration area, usually a large number of flat filters 1 are assembled in one housing 2 in multiple stages as shown in FIG. It is used as a filter device 3. The main body of the housing 2 is formed into a rectangular cylindrical shape and gradually becomes thinner toward the inlet 2a side and the outlet 2b side, and has a pair of rectangular compartments inside thereof perpendicular to the direction of fluid flow. The plates 4 and 5 are fixedly arranged so that their peripheral surfaces fit into the inner surface of the housing 2. Five through holes 6 are provided in the partition plate 4 arranged on the entrance 2a side.
are formed at predetermined intervals, and six through holes 7 are formed at equal intervals in the partition plate 5 disposed on the exit 2b side, with the phase shifted from the formation position of the through holes 6. Also, both partition plates 4,
Fitting grooves 4a and 5a into which the longitudinal end portions of the flat filter 1 are fitted are formed parallel to each other at constant intervals and at positions shifted by 1/2 pitch from each other on the mutually opposing surfaces of the filter 5. A large number (10 filters in this embodiment) of flat filters 1 are arranged so that their longitudinal ends are connected to the respective fitting grooves 4a, 5a.
When fitted, the two flat filters 1 are used as a set to form a triangular prism-shaped space in which the through hole 6 side formed in the partition plate 4 disposed on the inlet 2a side expands.
It is fixedly arranged in a zigzag manner between both partition plates 4 and 5. Each flat filter 1 is arranged such that the side of the three-dimensional textile structure F with a lower fiber packing density faces the fluid flowing in from the through holes 6. Further, both side surfaces of each flat filter 1 are tightly fixed to the inner wall of the housing 2.

【0013】次に前記のように構成されたフィルター装
置3の作用を説明する。入口2aからハウジング2内に
導入された流体は一方の区画板4の透孔6を通って各平
板状フィルター1のフィルター面と対応する位置に導か
れ、平板状フィルター1を構成する三次元織物構造体F
の繊維の充填密度の低い側から高い側へ向かって平板状
フィルター1を通過し、その間に流体中に含まれる微粒
子等がろ過され、清浄になった流体が他方の区画板5の
透孔7を経て出口2bから排出される。被ろ過流体が前
記のように三次元織物構造体Fの繊維の充填密度の低い
側から高い側へ向かって流れるため、被ろ過流体中に含
まれる不純物の大きさに幅がある場合でも、大きな不純
物は繊維の充填密度が低い部分において、小さな不純物
は繊維の充填密度が高い部分においてそれぞれ立体的に
交錯した繊維に囲まれた空隙に捕捉されて蓄積される。 従って、捕集すべき最小の不純物に合わせた繊維の充填
密度で厚み方向の充填密度が一定に構成された三次元織
物構造体Fを使用した場合に比較して、長期間にわたり
ろ過効果が持続される。
Next, the operation of the filter device 3 constructed as described above will be explained. The fluid introduced into the housing 2 from the inlet 2a is guided through the through hole 6 of one partition plate 4 to a position corresponding to the filter surface of each flat filter 1, and the three-dimensional fabric constituting the flat filter 1 is guided to a position corresponding to the filter surface of each flat filter 1. Structure F
The fluid passes through the flat filter 1 from the side where the packing density of fibers is low to the side where the packing density is high, during which particulates and the like contained in the fluid are filtered out, and the purified fluid passes through the through holes 7 of the other partition plate 5. and is discharged from the outlet 2b. As the fluid to be filtered flows from the side of the three-dimensional textile structure F with a lower packing density of fibers to the side with a higher density of fibers as described above, even if there is a wide range in the size of impurities contained in the fluid to be filtered, large Impurities are trapped and accumulated in the voids surrounded by three-dimensionally intersecting fibers in areas where the fiber packing density is low, and small impurities are trapped in areas where the fiber packing density is high. Therefore, the filtration effect lasts for a long time compared to the case of using the three-dimensional woven structure F, which has a constant packing density in the thickness direction with the packing density of fibers matched to the minimum impurity to be collected. be done.

【0014】フィルター装置3のろ過部を構成する三次
元織物構造体Fは平面布を積層した場合と異なり、三次
元織物構造体Fを構成する各糸間の距離が固定されて繊
維の充填密度が安定した状態に保持され、ろ過性能が安
定する。又、三次元織物構造体F自体が形態保持機能を
有するため、流体の通過に対して変形が少なく、形態維
持のための補強材が不要となり、実質的なろ過面積が大
きくなるとともに、高温流体を処理する場合に、補強材
と繊維の熱膨張率の違いで両者の間隙にずれを生じ、ろ
過性能が不安定となるという問題も確実に回避される。 又、三次元織物構造体Fを構成する立体的に交錯した繊
維に囲まれた空隙に、捕捉された堆積物が蓄積されるた
め、長期間にわたりろ過効果が持続される。
The three-dimensional woven structure F constituting the filtration section of the filter device 3 is different from the case where plane cloths are laminated, and the distance between each yarn constituting the three-dimensional woven structure F is fixed, so that the packing density of the fibers is fixed. is maintained in a stable state, resulting in stable filtration performance. In addition, since the three-dimensional woven structure F itself has a shape-retaining function, it is less deformed when fluid passes through it, eliminates the need for reinforcing materials to maintain its shape, and increases the effective filtration area. This also reliably avoids the problem of unstable filtration performance due to the gap between the reinforcing material and the fibers being misaligned due to the difference in coefficient of thermal expansion between the reinforcing material and the fibers. Moreover, since the trapped sediment is accumulated in the voids surrounded by the three-dimensionally intertwined fibers that constitute the three-dimensional textile structure F, the filtration effect is maintained for a long period of time.

【0015】前記のように三次元織物構造体Fをエアロ
ゾルの捕集に適用した場合は気体が側壁の厚さ方向に進
む際に、厚さ方向に多層に配列された繊維による慣性衝
撃の回数が多くなり、慣性作用による捕集効率が向上す
る。又、慣性衝撃により気体の流速が急速に低下して拡
散作用による捕集効率も向上する。そして、この実施例
のフィルター装置3のように三次元織物構造体Fの面が
流体の流れに対して平行あるいは平行に近い状態に配置
すると、流体が三次元織物構造体Fを通過する際の実質
的な厚みが増大し、前記のろ過効果が向上する。
When the three-dimensional textile structure F is applied to aerosol collection as described above, when the gas advances in the thickness direction of the side wall, the number of inertial impacts caused by the fibers arranged in multiple layers in the thickness direction increases. is increased, and the collection efficiency due to inertial action is improved. Furthermore, the gas flow rate is rapidly reduced by the inertial impact, and the collection efficiency due to the diffusion effect is also improved. When the surface of the three-dimensional textile structure F is arranged parallel or nearly parallel to the flow of fluid as in the filter device 3 of this embodiment, when the fluid passes through the three-dimensional textile structure F, The substantial thickness is increased and the filtration effect is improved.

【0016】平面布を積層したフィルターの場合は、使
用により一定量以上堆積物が溜まり、ろ過効果が低下し
てくると、フィルターを分解して堆積物を洗浄ろ過し、
再使用に供する。平面布の場合はフィルターを分解する
ことによりその表裏両面とも表層を露出できるため、堆
積物の洗浄除去が容易であるが、本発明の三次元織物構
造体Fのように三次元的に繊維が配列されしかも繊維層
が厚い場合は、洗浄により内部の堆積物を除去すること
は実質的に不可能である。堆積物の除去が不可能な場合
は、やむを得ず使い捨てにせざるを得ない。しかし、三
次元織物構造体Fを耐熱性繊維で構成した場合は、使用
によりろ過効果がある程度低下した時点で、被ろ過流体
をバイパスしたり、一旦ろ過を中断してフィルター装置
3をそれが取り付けられている装置本体から取り外し、
乾燥後加熱炉で加熱して堆積物を燃焼あるいは炭化した
うえで、適当な手段(例えば、振動を付与する)で炭化
物を除去することができる。耐熱性繊維としては通常の
物質が燃える1000°C程度の温度に空気中で耐えら
れる炭化珪素繊維、アルミナ繊維、チラノ繊維等のセラ
ミック系繊維や金属繊維等が使用される。
[0016] In the case of a filter made of laminated flat cloth, when a certain amount of deposits accumulates due to use and the filtration effect decreases, the filter is disassembled and the deposits are washed and filtered.
Provide for reuse. In the case of a flat cloth, the surface layer on both the front and back sides can be exposed by disassembling the filter, so it is easy to wash and remove deposits. If the fiber layer is arranged and the fiber layer is thick, it is virtually impossible to remove the internal deposits by washing. If it is not possible to remove the deposits, there is no choice but to make them disposable. However, when the three-dimensional textile structure F is made of heat-resistant fibers, when the filtration effect decreases to some extent due to use, the fluid to be filtered may be bypassed, or the filtration may be temporarily interrupted and the filter device 3 may be attached. Remove it from the main body of the device,
After drying, the deposits can be burned or carbonized by heating in a heating furnace, and then the carbides can be removed by appropriate means (for example, applying vibration). The heat-resistant fibers used include ceramic fibers such as silicon carbide fibers, alumina fibers, and tyranno fibers, and metal fibers that can withstand temperatures of about 1000° C. at which ordinary materials burn in the air.

【0017】前記の場合には堆積物を加熱除去する際に
、フィルター装置3をそれが取り付けられた装置本体か
ら一旦取り外し、加熱炉で加熱して堆積物を燃焼あるい
は炭化させる必要がある。そのため、フィルター装置3
の取外し、取付けに要する工数が多い。又、通常フィル
ター装置3は狭い場所に配設されているため、取外し、
取付け作業がやり難かったり、煤などの汚濁物を扱う場
合のように衛生面からも好ましくない作業である場合が
多いなどの不都合がある。従って、フィルター装置3を
装置本体から取り外さずに堆積物の除去が可能なことが
好ましい。特に、高温の気体や液体のろ過処理をしてい
るような場合には、フィルター装置3の取外し・取付け
作業に伴う冷却・加熱も不要となり、省エネルギーの面
からも能率向上の面からも有利となる。
In the above case, when removing the deposits by heating, it is necessary to once remove the filter device 3 from the apparatus body to which it is attached and heat it in a heating furnace to burn or carbonize the deposits. Therefore, the filter device 3
It takes a lot of man-hours to remove and install. Also, since the filter device 3 is usually installed in a narrow space, it is difficult to remove it.
There are disadvantages such as the installation work being difficult to perform, and the work often being undesirable from a sanitary standpoint, such as when handling polluted substances such as soot. Therefore, it is preferable that the deposits can be removed without removing the filter device 3 from the device main body. In particular, when high-temperature gases or liquids are being filtered, cooling and heating associated with the removal and installation of the filter device 3 are not required, which is advantageous in terms of energy saving and efficiency improvement. Become.

【0018】このような要求に対し、前記耐熱性繊維で
構成された三次元織物構造体Fの全面あるいは一部に発
熱性線条を織り込むことにより、フィルター装置3を装
置本体から取り外さずに堆積物の除去が可能となる。す
なわち、三次元織物構造体Fを構成する糸の交錯部に堆
積した捕捉物を定期的に燃焼除去するため、予め発熱性
線条を混織しておき、ろ過効果がある程度低下した時点
で被ろ過流体の供給を停止して、発熱性線条を発熱させ
ながら空気流を供給して堆積物を燃焼させる。三次元織
物構造体Fの全面に発熱性線条を織り込んだ場合は、発
熱性線条を発熱させることにより全体の堆積物が燃焼す
る。又、三次元織物構造体Fの一部に発熱性線条を織り
込んだ場合は、空気流を発熱性線条のある側から流し、
堆積物の燃焼熱を利用して逐次風下側へ類焼させる。
In response to such demands, by weaving heat-generating filaments into the entire surface or part of the three-dimensional fabric structure F made of the heat-resistant fibers, the filter device 3 can be deposited without removing it from the device body. It becomes possible to remove objects. That is, in order to periodically burn and remove the trapped substances accumulated in the intersecting parts of the threads constituting the three-dimensional textile structure F, exothermic filaments are interwoven in advance, and when the filtration effect has decreased to a certain extent, the entrapment is removed. The supply of filtration fluid is stopped and a flow of air is supplied while the exothermic filament generates heat to burn off the deposits. When exothermic filaments are woven over the entire surface of the three-dimensional textile structure F, the entire deposit is combusted by generating heat from the exothermic filaments. In addition, when heat-generating filaments are woven into a part of the three-dimensional textile structure F, the airflow is caused to flow from the side with the heat-generating filaments,
The heat of combustion of the deposits is used to sequentially cause the fire to spread to the leeward side.

【0019】発熱性線条としてはニクロム線やカンタル
線(二珪化モリブデン(Mo Si2)と容積比で約2
0%のガラス相セラミック添加物を主体としたサーメッ
ト材料で、1800°Cまでもの高温度発熱体として使
用され、カンタルスーパーの商品名を持つカンタル・ガ
デリウス株式会社の製品)等、電気抵抗の大きな金属線
条が通電の有無や条件により発熱量をコントロールでき
るので好ましいが、特に限定されない。そして、これら
の発熱性線条を前記耐熱性繊維と引き揃え状に用いて三
次元織物構造体Fの製織に使用してもよいが、これらの
金属線条は直径が太く、剛性が高いため一部の耐熱性繊
維に代えて緯糸xとして用いたり、三次元織物構造体F
の内層又は外層に圧着状に配列して用いるのがよい。
Examples of exothermic filaments include nichrome wire and Kanthal wire (molybdenum disilicide (Mo Si2) with a volume ratio of about 2
It is a cermet material mainly containing 0% glass-phase ceramic additives, and is used as a high-temperature heating element up to 1800°C. Metal wires are preferred because the amount of heat generated can be controlled depending on whether or not electricity is applied and the conditions, but there is no particular limitation. These heat-generating filaments may be used in alignment with the heat-resistant fibers to weave the three-dimensional textile structure F, but since these metal filaments have a large diameter and high rigidity, It can be used as a weft x in place of some heat-resistant fibers, or it can be used as a three-dimensional textile structure F.
It is preferable to use them by arranging them in a compressed manner on the inner or outer layer of the .

【0020】又、三次元織物構造体Fを耐熱性繊維で構
成するとともに、フィルター装置3に組み込まれた三次
元織物構造体Fに対して火炎を放射可能なバーナーノズ
ルをフィルター装置3に装備し、バーナーノズルから火
炎を放射して堆積物を燃焼させるようにしてもよい。 (実施例2)次に第2実施例を図3に従って説明する。 この実施例の三次元織物構造体Fは三次元織物構造体F
を構成する緯糸として多数本の細い単繊維が束ねられて
構成され、圧着された際に多角形(四角形)状に変形す
るマルチフィラメントのみでなく、圧着された際に変形
しないワイヤあるいはモノフィラメントが一部に使用さ
れている点と、緯糸の挿入密度が三次元織物構造体F全
体で均一に形成されている点とが前記実施例の三次元織
物構造体Fと異なっている。すなわち、この実施例の三
次元織物構造体Fは前記実施例の三次元織物構造体Fで
緯糸xが挿入されなかった箇所に、ワイヤあるいはモノ
フィラメントからなる緯糸x1が挿入されている。
[0020] Furthermore, the three-dimensional woven structure F is made of heat-resistant fibers, and the filter device 3 is equipped with a burner nozzle capable of emitting a flame to the three-dimensional woven structure F incorporated in the filter device 3. , a burner nozzle may emit a flame to burn the deposits. (Embodiment 2) Next, a second embodiment will be explained according to FIG. The three-dimensional textile structure F in this example is a three-dimensional textile structure F.
It is composed of a large number of thin single fibers bundled together as weft yarns, and not only multifilaments that deform into polygonal (square) shapes when crimped, but also wires or monofilaments that do not deform when crimped. This is different from the three-dimensional textile structure F of the previous embodiment in that the weft yarns are used in the three-dimensional textile structure F and that the insertion density of the weft yarns is uniform throughout the three-dimensional textile structure F. That is, in the three-dimensional woven structure F of this embodiment, a weft x1 made of wire or monofilament is inserted into a location where the weft x was not inserted in the three-dimensional woven structure F of the previous embodiment.

【0021】前記実施例の三次元織物構造体Fはその厚
み方向の片側(図1の上部)寄りに挿入される緯糸xが
少ないため、平板状フィルター11が図1の上方に向か
って反る虞がある。しかし、この実施例の三次元織物構
造体Fは緯糸x,x1の挿入密度が三次元織物構造体F
全体で均一に形成されているため、そのような虞がない
。又、緯糸x,x1の挿入密度が三次元織物構造体F全
体で均一であっても、ワイヤあるいはモノフィラメント
からなる緯糸x1はマルチフィラメントと異なり隣接す
る経糸zや垂直糸yに圧着された場合にも変形せず、断
面が丸のままに保持される。従って、緯糸x1の周囲に
隙間が生じ、マルチフィラメントからなる緯糸xのみか
らなる層に比較して三次元織物構造体Fの繊維束(糸)
の交錯点に生じる空隙が大きくなり、流体が通り易い。
Since the three-dimensional woven structure F of the above embodiment has fewer wefts x inserted toward one side in the thickness direction (upper part in FIG. 1), the flat filter 11 warps upward in FIG. There is a possibility. However, in the three-dimensional woven structure F of this embodiment, the insertion density of the wefts x and x1 is
Since it is formed uniformly throughout, there is no such possibility. Furthermore, even if the insertion density of the weft yarns x and x1 is uniform throughout the three-dimensional textile structure F, the weft yarn x1 made of wire or monofilament, unlike multifilament yarns, will not be as crimped to the adjacent warp yarns z or vertical yarns y. The cross section remains round without deformation. Therefore, a gap is created around the weft x1, and the fiber bundle (yarn) of the three-dimensional textile structure
The gap created at the intersection of the two becomes larger, making it easier for fluid to pass through.

【0022】(実施例3)次に第3実施例を図4に従っ
て説明する。この実施例は多数の平板状フィルター1を
1個のハウジング2内に多段に組付けて使用するフィル
ター装置3において、ハウジング2の入口2a側の構造
が変更されている点が前記実施例と異なっている。すな
わち、ハウジング2内の入口2aと区画板4との間の空
間に、入口2aからハウジング2内に導入された流体を
区画板4に形成された各透孔6に向かって案内する板状
のフィン8が複数個設けられている。
(Embodiment 3) Next, a third embodiment will be explained with reference to FIG. This embodiment differs from the previous embodiment in that the structure of the inlet 2a side of the housing 2 is changed in a filter device 3 in which a large number of flat filters 1 are assembled in one housing 2 in multiple stages. ing. That is, in the space between the inlet 2a in the housing 2 and the partition plate 4, there is a plate-shaped plate that guides the fluid introduced into the housing 2 from the inlet 2a toward each through hole 6 formed in the partition plate 4. A plurality of fins 8 are provided.

【0023】フィルター装置3は平板状フィルター1が
配置された箇所より入口2a側が細いため、入口2aと
三次元織物構造体Fの配置箇所との間になにもない場合
は、流体がハウジング2の中央部に配置された平板状フ
ィルター1に多く集中しがちであり、堆積物の量も中央
の平板状フィルター1で最も多い傾向がある。ところが
、前記のようなフィン8を設けた場合は、ハウジング2
内に導入される流体が中央部の平板状フィルター1に集
中せずに、全ての平板状フィルター1と対応する箇所に
均一に流れ、全ての平板状フィルター1が有効に機能し
てろ過効果の持続性が向上する。
Since the filter device 3 is narrower on the inlet 2a side than the place where the flat filter 1 is placed, if there is nothing between the inlet 2a and the place where the three-dimensional fabric structure F is placed, the fluid will flow through the housing 2. A large amount of deposits tends to be concentrated on the flat filter 1 located in the center of the screen, and the amount of deposits tends to be the largest in the central flat filter 1. However, when the fins 8 as described above are provided, the housing 2
The fluid introduced into the filter does not concentrate on the flat filter 1 in the center, but flows uniformly to the locations corresponding to all the flat filters 1, so that all the flat filters 1 function effectively and the filtration effect is improved. Improves sustainability.

【0024】なお、本発明は前記各実施例に限定される
ものではなく、例えば、図5に示すようにハウジング3
内に平板状フィルター1を斜めに多段に配置しろ過面積
を増すとともに、入口側にフィン8を設けた構造を採用
してもよい。又、三次元織物構造体Fとして経糸z及び
緯糸xの層数を変更したり、X,Y,Zの3軸方向に配
列される糸だけでなく、経糸層と平行な面内で経糸zに
対して斜めに交差する状態に配置されるバイアス糸を有
する5軸構造としたりしてもよい。又、平板状フィルタ
ー1を多段に配置したフィルター装置3として使用する
場合、入口2aからハウジング2内に導入された流体が
中央部に集中するのを防止する方法として第3実施例の
ようにフィン8を設ける代わりに、ハウジング2の中央
部付近に配置される三次元織物構造体Fの繊維密度を高
めたり、厚みを大きくするなどして流体の通過抵抗を増
し、流れが周辺の平板状フィルター1へ向かい易くして
もよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, as shown in FIG.
A structure may be adopted in which flat filters 1 are arranged diagonally in multiple stages to increase the filtration area, and fins 8 are provided on the inlet side. In addition, as a three-dimensional textile structure F, the number of layers of the warp z and the weft x can be changed, and the number of layers of the warp z and weft A five-axis structure having bias threads disposed obliquely across each other may also be used. In addition, when the flat filter 1 is used as a filter device 3 arranged in multiple stages, fins are used as in the third embodiment to prevent the fluid introduced into the housing 2 from the inlet 2a from concentrating in the center. 8, the three-dimensional woven structure F placed near the center of the housing 2 may have a higher fiber density or a greater thickness to increase the resistance to fluid passage, and the flow will be directed toward the surrounding flat filter. It may be possible to make it easier to move toward 1.

【0025】[0025]

【発明の効果】以上詳述したように本発明によれば、平
面布を積層した場合と異なり平板状フィルターを構成す
る各糸間の距離が固定されて繊維の充填密度が安定した
状態に保持されるため、ろ過性能が安定する。又、フィ
ルターを構成する三次元織物自体が形態保持機能を有す
るため、流体の通過に対して変形が少なく、形態維持の
ための補強材が不要となり、実質的なろ過面積が大きく
なる。そして、繊維束の交錯点に生じる空隙が大きな側
から小さな側に向かって流体が通過するため、流体中の
不純物の大きさに幅がある場合でも、大きな不純物は大
きな空隙部分において、小さな不純物は小さな空隙部分
においてそれぞれ立体的に交錯した繊維に囲まれた空隙
に捕捉されて蓄積されるため、長期間にわたりろ過効果
が持続される。
Effects of the Invention As detailed above, according to the present invention, unlike the case where plane cloths are laminated, the distance between the threads constituting the flat filter is fixed, and the packing density of the fibers is maintained in a stable state. filtration performance is stabilized. In addition, since the three-dimensional fabric that constitutes the filter itself has a shape-retaining function, it is less deformed when fluid passes through it, eliminates the need for reinforcing materials to maintain the shape, and increases the substantial filtration area. Since the fluid passes through the voids created at the intersections of fiber bundles from the large side to the small side, even if the size of impurities in the fluid varies, large impurities will be present in the large voids, and small impurities will be The filtering effect is maintained over a long period of time because it is captured and accumulated in the voids surrounded by the three-dimensional intersecting fibers in the small voids.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】第1実施例の平板状フィルターの一部破断概略
斜視図である。
FIG. 1 is a partially cutaway schematic perspective view of a flat filter of a first embodiment.

【図2】多数の平板状フィルターを備えたフィルター装
置の断面図である。
FIG. 2 is a cross-sectional view of a filter device comprising a number of flat filters.

【図3】第2実施例の平板状フィルター1の一部破断概
略斜視図である。
FIG. 3 is a partially cutaway schematic perspective view of a flat filter 1 according to a second embodiment.

【図4】第3実施例のフィルター装置の断面図である。FIG. 4 is a sectional view of a filter device according to a third embodiment.

【図5】変更例のフィルター装置の部分断面図である。FIG. 5 is a partial cross-sectional view of a modified filter device.

【符号の説明】[Explanation of symbols]

1…平板状フィルター、2…ハウジング、3…フィルタ
ー装置、4,5…区画板、8…フィン、F…三次元織物
構造体、x,x1…緯糸、y…垂直糸、z…経糸。
DESCRIPTION OF SYMBOLS 1... Flat filter, 2... Housing, 3... Filter device, 4, 5... Partition plate, 8... Fin, F... Three-dimensional textile structure, x, x1... Weft, y... Vertical thread, z... Warp.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  少なくともX,Y,Zの3軸方向に繊
維束を多重に配列した平板状三次元織物で構成され、三
次元織物中の繊維束の交錯点に生じる空隙の大きさを三
次元織物の厚み方向の一方側が他方側より小さくなるよ
うにした平板状三次元織物フィルター。
Claim 1: Consisting of a flat three-dimensional fabric in which fiber bundles are arranged in multiple directions in at least the three axes of X, Y, and Z, the size of the voids that occur at the intersections of the fiber bundles in the three-dimensional fabric is A flat three-dimensional fabric filter in which one side of the original fabric in the thickness direction is smaller than the other side.
JP3115028A 1991-05-20 1991-05-20 Filter of three dimensional fabric in the form of flat plate Pending JPH04341313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3115028A JPH04341313A (en) 1991-05-20 1991-05-20 Filter of three dimensional fabric in the form of flat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115028A JPH04341313A (en) 1991-05-20 1991-05-20 Filter of three dimensional fabric in the form of flat plate

Publications (1)

Publication Number Publication Date
JPH04341313A true JPH04341313A (en) 1992-11-27

Family

ID=14652435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115028A Pending JPH04341313A (en) 1991-05-20 1991-05-20 Filter of three dimensional fabric in the form of flat plate

Country Status (1)

Country Link
JP (1) JPH04341313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517645A (en) * 2004-01-09 2007-07-05 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Particle filter including a metal fiber layer
JP2011000673A (en) * 2009-06-18 2011-01-06 Denso Wave Inc Filter of robot controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517645A (en) * 2004-01-09 2007-07-05 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Particle filter including a metal fiber layer
JP2011000673A (en) * 2009-06-18 2011-01-06 Denso Wave Inc Filter of robot controller

Similar Documents

Publication Publication Date Title
US5454845A (en) Heat-resistant filter
US6811588B2 (en) High capacity hybrid multi-layer automotive air filter
CA1117443A (en) Stitch knitted filters for high temperature fluids and method of making them
CA1282014C (en) Uniform minimum-permeability woven fabric, filter and process therefor
EP0626879B1 (en) Hot-gas-filtering fabric of spaced uncrimped support strands and crimped lofty fill yarns
KR100352581B1 (en) Electrically Regenerated Diesel Particle Filter Cartridges and Filters
US8251231B2 (en) Corrugated or pleated flat material
GB1575130A (en) Inlet air cleaner assembly for turbine engines
JPH0324249B2 (en)
JPH0680291B2 (en) Roll pack diesel particulate filter
BRPI0809734B1 (en) sleeve filter
US5190571A (en) Diesel particulate trap based on a mass of fibrous filter material formed with longitudinal tunnels filled with flexible strands
JPH04341313A (en) Filter of three dimensional fabric in the form of flat plate
US2615477A (en) Filter media
KR20200028191A (en) Filter apparatus for treating exhaust gas containing metal oxide and treating apparatus for exhaust gas containing metal oxide having the same
KR102510133B1 (en) Membrane bundle layout having spacers
JPH06108820A (en) Heat-resistant filter
EP0536937B1 (en) Method of manufacturing a packing material
JPH05220313A (en) Filter
JPH054013A (en) Cylindrical filter
KR101013225B1 (en) Bag-filter with napping treatment
KR102047530B1 (en) Support structure of filter bag for dust collector
JPH06108823A (en) Heat-resistant cylindrical filter
JPH11114338A (en) Ceramic filter device for high temp. exhaust gas treatment
JP7035780B2 (en) Catalyst structure