JPH04341027A - Radio receiver for multi-carrier signal - Google Patents

Radio receiver for multi-carrier signal

Info

Publication number
JPH04341027A
JPH04341027A JP3113076A JP11307691A JPH04341027A JP H04341027 A JPH04341027 A JP H04341027A JP 3113076 A JP3113076 A JP 3113076A JP 11307691 A JP11307691 A JP 11307691A JP H04341027 A JPH04341027 A JP H04341027A
Authority
JP
Japan
Prior art keywords
level
carrier
signal
incoming call
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3113076A
Other languages
Japanese (ja)
Inventor
Akihiko Kitazawa
昭彦 北沢
Eiichi Hirayama
平山 栄一
Isamu Unno
海野 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3113076A priority Critical patent/JPH04341027A/en
Publication of JPH04341027A publication Critical patent/JPH04341027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To prevent an error rate from being deteriorated due to cross modulation distortion caused with a carrier of other low incoming call level when an incoming call level of a specific carrier in a multi-carrier signal is high extremely. CONSTITUTION:A comparator circuit 16b compares a threshold equivalent to a predetermined standard incoming call level to suppress cross modulation distortion within a prescribed reference value with a maximum level being an output of an OR circuit 23 and feeds back the difference to a variable attenuator 2. The maximum level of the output of the OR circuit 23 as a result, that is, a maximum incoming call level of the carrier in the received multi-carrier is higher than the threshold level, that is, the standard incoming call level, then the level of the carrier is decreased to the standard incoming call level and the level of other carrier is decreased in a same rate. Thus, the IF signal of the multi-carrier is sent to a branch device 6, in which the signal is branched into three and each carrier is extracted by band pass filters 7-9. Each extracted carrier is given to AGC amplifiers 10-12, in which the gain of the low level signal is increased and the result is given to demodulators 13-15, in which the signal is demodulated into a base band signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,フェージング耐性を高
めるためにマルチキャリア方式によりディジタル信号を
伝送する無線通信システムに関し,特にマルチキャリア
信号中の特定のキャリアの着信レベルがアンバランスに
高い場合に,他の低着信レベルのキャリアとの間に生じ
る混変調歪によりエラーレートが劣化するのを防ぐため
の高着信レベル対策用利得制御手段をそなえた無線受信
装置に関する。
[Industrial Application Field] The present invention relates to a wireless communication system that transmits digital signals using a multicarrier method in order to improve fading resistance, and particularly when the arrival level of a particular carrier in a multicarrier signal is unbalanced. The present invention relates to a radio receiving apparatus equipped with a gain control means for preventing high incoming signal levels from degrading the error rate due to cross-modulation distortion occurring between carriers with other low incoming signal levels.

【0002】近年のマルチキャリア方式における高着信
レベル対策用利得制御(AGC)方式は,マルチキャリ
ア信号(たとえば110, 130, 150MHの3
波)全ての着信電力を検出し,全電力が標準着信レベル
になるまでAGCにて可変減衰器を制御し,レベルを減
衰させるものである。
[0002] In recent years, the gain control (AGC) method for countering high incoming signal levels in multi-carrier systems has been developed for multi-carrier signals (for example, 110, 130, and 150 MH).
The system detects all incoming power and attenuates the level by controlling the variable attenuator using AGC until the total power reaches the standard incoming power level.

【0003】そのため,マルチパスフェージング(up
フェードの場合)または降雨減衰等により,マルチキャ
リアの各波間に振幅の差が生じ,例えば,1波の着信レ
ベルが極端に高いが,他の各波のレベルが低く,全電力
としては,標準着信レベルよりも低い場合には,AGC
によるレベル制御はかからない。それゆえ,着信レベル
が高い1波は,そのレベルのまま受信盤内の増幅器を通
過するので,増幅器の非線形特性によって混変調歪によ
るエラーレートの劣化が大となる。
[0003] Therefore, multipath fading (up
In the case of fading) or rain attenuation, differences in amplitude occur between each wave of a multicarrier. For example, the incoming level of one wave is extremely high, but the level of each other wave is low, and the total power is below the standard level. If it is lower than the incoming call level, the AGC
level control is not applied. Therefore, one wave with a high level of incoming signal passes through the amplifier in the receiving board with that level intact, and the error rate deteriorates significantly due to cross-modulation distortion due to the nonlinear characteristics of the amplifier.

【0004】そこで,高着信レベル対策として混変調歪
を劣化させることなく,常に高い通信品質が得られるA
GC制御手段をそなえた無線受信装置が強く要望されて
いる。
[0004] Therefore, as a countermeasure for high incoming call levels, A method that can always obtain high communication quality without deteriorating cross-modulation distortion is proposed.
There is a strong demand for a wireless receiving device equipped with GC control means.

【0005】[0005]

【従来の技術】図7に非スペースダイバーシティ方式の
場合のマルチキャリア信号の単独受信を行う無線受信装
置の従来例の構成を示す。マルチキャリアは110, 
130, 150MHzの3波で構成されているものと
する。
2. Description of the Related Art FIG. 7 shows the configuration of a conventional radio receiving apparatus that receives multicarrier signals independently in a non-space diversity system. Multicarrier is 110,
It is assumed that it is composed of three waves of 130 and 150 MHz.

【0006】図7において,1および3はRF信号の低
雑音増幅器,2は可変減衰器,4はRF信号をIF信号
に変換する周波数変換器(MIX),5はAGC制御回
路,,6はハイブリッド回路で構成された分岐器,7〜
9はマルチキャリア構成する3波のキャリアを分離する
帯域フィルタ(BPF),10〜12はS/Nを改善す
るため基準レベル以下の信号レベルを上げるAGC増幅
器,13〜15は復調器(DEM),48はマルチキャ
リアの電力レベルを各キャリアの平均で検出する検波器
,50は検出されたマルチキャリアの平均レベルを標準
着信レベルと比較するOPアンプを用いた比較回路であ
る。
In FIG. 7, 1 and 3 are low-noise amplifiers for RF signals, 2 is a variable attenuator, 4 is a frequency converter (MIX) that converts the RF signal into an IF signal, 5 is an AGC control circuit, and 6 is a Turnout composed of hybrid circuit, 7~
9 is a bandpass filter (BPF) that separates the three carrier waves that make up the multicarrier, 10 to 12 are AGC amplifiers that raise the signal level below the reference level to improve the S/N, and 13 to 15 are demodulators (DEM). , 48 is a detector that detects the power level of the multicarriers by averaging each carrier, and 50 is a comparison circuit using an OP amplifier that compares the average level of the detected multicarriers with a standard incoming signal level.

【0007】アンテナから入力された3波のマルチキャ
リアRF信号は,周波数変換器4でIF信号に周波数変
換される。このIF信号について,AGC制御回路5の
検波器48により全キャリアの平均レベルが検出される
。さらに比較回路50は,検出された平均レベルと標準
着信レベルに相当する閾値とを比較し,その差出力で可
変減衰器2を制御し,図中のIF信号レベルが標準着信
レベルに等しくなるように調節する。
[0007] Three waves of multicarrier RF signals inputted from an antenna are frequency-converted into an IF signal by a frequency converter 4 . Regarding this IF signal, the average level of all carriers is detected by the detector 48 of the AGC control circuit 5. Further, the comparison circuit 50 compares the detected average level with a threshold value corresponding to the standard incoming call level, and controls the variable attenuator 2 with the difference output, so that the IF signal level in the figure becomes equal to the standard incoming call level. Adjust to

【0008】このようにしてAGC制御されたIF信号
は分岐器6で3つのキャリアに分岐され,さらにAGC
増幅器10〜12で基準レベル以下のキャリアの信号レ
ベルを上げて復調器13〜15で復調される。次に図8
に,スペースダイバーシティ方式の場合の主(MAIN
)と補助(SD)の2系統のマルチキャリア信号を受信
する無線受信装置の従来例の構成を示す。
The AGC-controlled IF signal is branched into three carriers by the branching device 6, and further AGC-controlled.
Amplifiers 10 to 12 raise the signal level of the carrier below the reference level, and demodulators 13 to 15 demodulate the signal. Next, Figure 8
In the space diversity method, the main (MAIN)
) and auxiliary (SD) systems of multicarrier signals.

【0009】図8において,参照番号1〜4,24,4
8,で示される要素は,図7中の同一番号の要素にそれ
ぞれ対応するが,MAINの系統の要素と,MAINお
よびSD両系統共通の要素とを含む。また1′〜4′,
24′,48′で示される要素は,SDの受信信号の系
統に属し,MAINの1〜4,24,48の要素にそれ
ぞれ対応する。
In FIG. 8, reference numbers 1 to 4, 24, 4
The elements indicated by 8 correspond to the elements with the same numbers in FIG. 7, but include elements of the MAIN system and elements common to both the MAIN and SD systems. Also 1' to 4',
Elements 24' and 48' belong to the SD received signal system and correspond to elements 1 to 4, 24, and 48 of MAIN, respectively.

【0010】他方,新規要素の24,24′はそれぞれ
MAINとSDのIFのマルチキャリア信号を3つに分
岐する分岐器,25〜27はそれぞれ分岐器24′で分
岐されたSDのIF信号を位相シフトする無限移相器,
28〜30は分岐器24の3出力信号と無限移相器25
〜27の3出力信号とを1対1で結合する合波器,49
は検波器48と検波器48′の出力のうち大きい方の信
号レベルを取り出すOR回路である。
On the other hand, new elements 24 and 24' are branchers that branch the MAIN and SD IF multicarrier signals into three, and 25 to 27 are branchers that branch the SD IF signals branched by the brancher 24'. infinite phase shifter,
28 to 30 are the 3 output signals of the splitter 24 and the infinite phase shifter 25
A multiplexer that combines the three output signals of ~27 on a one-to-one basis, 49
is an OR circuit which takes out the larger signal level of the outputs of the wave detector 48 and the wave detector 48'.

【0011】主と副のアンテナで受信されたMAINと
SDの各RF信号は,それぞれ可変減衰器2,2′を通
り,周波数変換器4,4′でIF信号に変換される。そ
れぞれのIF信号は,AGC制御回路5に分岐されて検
波器48,48′で検波され,各IF信号の平均電力に
相当する直流信号がそれぞれ生成される。これらの直流
信号のレベルのうち大きい方がOR回路49から比較回
路50に入力される。
The MAIN and SD RF signals received by the main and sub antennas pass through variable attenuators 2 and 2', respectively, and are converted into IF signals by frequency converters 4 and 4'. Each IF signal is branched to the AGC control circuit 5 and detected by detectors 48, 48' to generate DC signals corresponding to the average power of each IF signal. The higher level of these DC signals is input from the OR circuit 49 to the comparison circuit 50 .

【0012】比較回路50は,入力された大きい方の直
流信号のレベルと予め設定されている標準着信レベルに
対応する閾値とを比較し,入力直流レベルが閾値レベル
を超えている場合にMAINとSDの両系統の可変減衰
器2,2′の減衰量を同時に増大させ,高着信となった
方の受信信号の平均レベルを標準着信レベルまで低下さ
せ,他方の受信信号のレベルも同じ割合で低下させる。
The comparator circuit 50 compares the level of the input DC signal with a preset threshold value corresponding to a standard incoming call level, and if the input DC level exceeds the threshold level, the MAIN signal is output. The attenuation amounts of the variable attenuators 2 and 2' of both SD systems are simultaneously increased, and the average level of the received signal of the one with high incoming calls is reduced to the standard incoming signal level, and the level of the other received signal is also increased at the same rate. lower.

【0013】このようにして,高着信の信号レベルを抑
圧されたMAIN,SD両系統のIF信号は,それぞれ
分岐器24,24′で3分割され,SD系統の信号につ
いてはさらに無限移相器25〜27でフェージング変動
を補償するための位相シフトを受け,合波器28〜30
で両系統の信号が合成される。
In this way, the IF signals of both the MAIN and SD systems, whose high incoming signal levels have been suppressed, are divided into three by branchers 24 and 24', respectively, and the signals of the SD system are further divided into three by an infinite phase shifter. 25 to 27 receive a phase shift to compensate for fading fluctuations, and multiplexers 28 to 30
The signals from both systems are combined.

【0014】合波器28〜30の各後続回路の構成は同
じであるため,合波器28以降の回路についてのみ説明
する。合波器28の合成出力は,分岐器6で3つに分岐
され,それぞれの分岐出力から帯域フィルタ7〜9で3
つの異なるキャリア信号成分が抽出される。抽出された
3つのキャリア信号は,それぞれAGC増幅器10〜1
2へ入力され,基準レベル以下の信号レベルは基準レベ
ルまで上げるように調節されて復調器13〜15でそれ
ぞれベースバンド信号に復調される。無限移相器25〜
27は,図示されていないフェージング補償回路によっ
て,各キャリア信号がそれぞれ最適レベルとなるように
位相シフト量を制御される。
Since the configurations of the circuits subsequent to the multiplexers 28 to 30 are the same, only the circuits after the multiplexer 28 will be described. The combined output of the multiplexer 28 is branched into three parts by the splitter 6, and each branch output is divided into three parts by the bandpass filters 7 to 9.
Two different carrier signal components are extracted. The three extracted carrier signals are sent to AGC amplifiers 10 to 1, respectively.
2, signal levels below the reference level are adjusted to raise them to the reference level, and demodulated into baseband signals by demodulators 13 to 15, respectively. Infinite phase shifter 25~
27, the amount of phase shift is controlled by a fading compensation circuit (not shown) so that each carrier signal is at its optimum level.

【0015】[0015]

【発明が解決しようとする課題】従来のAGCを用いた
高着信レベル対策用制御方式には,次に示す2つの問題
が有る。 ■.通常の運用状態では,マルチパスフェージング(特
にupフェード)または降雨減衰等により,マルチキャ
リアの各波(キャリア)間に着信レベル差が生じる場合
がひんぱんに発生する。このとき例えば,1波の着信レ
ベルが極端に高いが,他の2波のレベルが低く,しかも
3波全電力としては,標準着信レベルより低い場合には
AGC制御がかからないということが起こる。そのため
着信レベルが高い1波は,このレベルで受信盤内を通過
するので,3次や5次の混変調歪による劣化が大きくな
り,エラーレートが大となる。
[Problems to be Solved by the Invention] The conventional control system using AGC to counter high incoming call levels has the following two problems. ■. Under normal operating conditions, differences in incoming signal levels often occur between each wave (carrier) of a multicarrier due to multipath fading (particularly up fade) or rain attenuation. At this time, for example, if the incoming signal level of one wave is extremely high, the levels of the other two waves are low, and the total power of the three waves is lower than the standard incoming signal level, AGC control may not be applied. Therefore, a single wave with a high incoming level passes through the receiving board at this level, resulting in greater deterioration due to third-order and fifth-order cross-modulation distortion, resulting in a higher error rate.

【0016】■.他方,1波の着信レベルが極端に低い
が,他の2波のレベルが高く,3波全電力としては,標
準着信レベルより高い場合には,AGC制御により3波
の合成レベルは標準着信レベルまで下げられる。その結
果,レベルの高い2波の歪は改善されるが着信レベルが
低い残りの1波のレベルはさらに下げられるので,S/
Nが劣化し,エラーレートが大となって回線の品質が劣
化することになる。本発明は,マルチキャリア中の1波
の着信レベルが他の各波にくらべて特に高くあるいは低
いような場合にエラーレートを悪化させない高着信レベ
ル対策用手段をそなえた無線受信装置を提供することを
目的としている。
[0016]■. On the other hand, if the incoming signal level of one wave is extremely low, but the level of the other two waves is high, and the total power of the three waves is higher than the standard incoming signal level, the combined level of the three waves will be set to the standard incoming signal level by AGC control. can be lowered to As a result, the distortion of the two high-level waves is improved, but the level of the remaining one wave with a low incoming level is further lowered, so the S/
N deteriorates, the error rate increases, and the quality of the line deteriorates. An object of the present invention is to provide a radio receiving device equipped with means for dealing with a high incoming signal level that does not worsen the error rate when the incoming signal level of one wave in a multicarrier is particularly high or low compared to other waves. It is an object.

【0017】[0017]

【課題を解決するための手段】本発明は,マルチキャリ
ア中の1つのキャリアの着信レベルと他のキャリアの着
信レベルとの間に著しい差がある場合に各キャリアの着
信レベルの平均レベルでAGC制御を行うのではなく,
各キャリアの着信レベルのうちの最大のレベルに基づい
てAGC制御を行い,各キャリアの着信レベルを標準着
信レベル以下に抑制するものである。
[Means for Solving the Problems] The present invention provides AGC at the average level of the incoming level of each carrier when there is a significant difference between the incoming level of one carrier and the incoming level of other carriers in a multicarrier. Rather than controlling
AGC control is performed based on the maximum level of the incoming call level of each carrier, and the incoming call level of each carrier is suppressed to below the standard incoming call level.

【0018】図1および図2は,本発明の原理的構成図
であり,図1は単一受信方式,図2はスペースダイバー
シティ方式の場合の各無線受信装置の構成を例示的方法
で示してある。なおマルチキャリアは110 MHz,
 130 MHz, 150 MHz の3波のキャリ
アで構成されているものとする。
FIGS. 1 and 2 are diagrams showing the basic configuration of the present invention, with FIG. 1 illustrating the configuration of each radio receiving device in the case of the single reception method and FIG. 2 illustrating the configuration of each radio receiving device in the case of the space diversity method. be. Note that multicarrier is 110 MHz,
It is assumed that it is composed of three carrier waves of 130 MHz and 150 MHz.

【0019】まず図1の単一受信方式の場合の構成につ
いて説明する。1,3は低雑音増幅器,2は可変減衰器
,4は周波数変換器,5はAGC制御回路,6は分岐器
,7〜9はマルチキャリア中の各キャリアを抽出する帯
域フィルタ,10〜12はAGC(可変利得)増幅器,
13〜15は復調器,16aはレベル検出回路,16b
は比較回路,17〜19はマルチキャリア中の各キャリ
アを抽出する帯域フィルタ,20〜22は検波器,23
は最大レベルを検出するOR回路である。
First, the configuration of the single reception method shown in FIG. 1 will be explained. 1 and 3 are low noise amplifiers, 2 is a variable attenuator, 4 is a frequency converter, 5 is an AGC control circuit, 6 is a splitter, 7 to 9 are bandpass filters that extract each carrier in a multicarrier, 10 to 12 is an AGC (variable gain) amplifier,
13 to 15 are demodulators, 16a is a level detection circuit, 16b
is a comparison circuit, 17 to 19 are bandpass filters that extract each carrier in the multicarrier, 20 to 22 are detectors, and 23
is an OR circuit that detects the maximum level.

【0020】図1の回路のAGC制御を除く基本的動作
は,図7の従来例のものと同じであり,アンテナで受信
されたマルチキャリアのRF信号は,低雑音増幅器1で
増幅され,可変減衰器2でレベル調節され,さらに低雑
音増幅器3で増幅されて,周波数変換器4でIF信号に
変換される。変換されたマルチキャリアのIF信号は,
次に分岐器6とAGC制御回路5のレベル検出回路16
aへ入力される。
The basic operation of the circuit shown in FIG. 1 except for AGC control is the same as that of the conventional example shown in FIG. The level is adjusted by an attenuator 2, further amplified by a low noise amplifier 3, and converted into an IF signal by a frequency converter 4. The converted multi-carrier IF signal is
Next, the branch 6 and the level detection circuit 16 of the AGC control circuit 5
input to a.

【0021】レベル検出回路16aへ入力されたマルチ
キャリアのIF信号は,帯域フィルタ17〜19で要素
の3つのキャリア(110 MHz, 130MHz,
 150 MHz)に分離され,それぞれ検波器20〜
22で検波されて,各キャリアの信号レベルに相当する
直流信号に変換される。OR回路23は,各検波器出力
の直流信号レベルのうちの最大のレベルを比較回路16
bへ入力させる。
The multi-carrier IF signal input to the level detection circuit 16a is filtered by three carriers (110 MHz, 130 MHz,
150 MHz), each with a detector 20~
22, and converted into a DC signal corresponding to the signal level of each carrier. The OR circuit 23 compares the maximum level of the DC signal levels of each detector output with the comparison circuit 16.
input to b.

【0022】比較回路16bは,混変調歪を一定の基準
値内に抑えるための予め定められた標準着信レベルに相
当する閾値とOR回路23の出力の最大レベルとを比較
し,その差をとって可変減衰器2にフィードバックする
。その結果としてOR回路23の出力の最大レベルつま
り受信されたマルチキャリア中のキャリアの最大着信レ
ベルが,閾値つまり標準着信レベルよりも大きいときに
はそのキャリアのレベルを標準着信レベルまで引き下げ
,同じ割り合いで他のキャリアのレベルも引き下げる。
The comparison circuit 16b compares the maximum level of the output of the OR circuit 23 with a threshold value corresponding to a predetermined standard incoming signal level for suppressing cross-modulation distortion within a certain reference value, and calculates the difference. and feeds back to the variable attenuator 2. As a result, when the maximum level of the output of the OR circuit 23, that is, the maximum incoming level of a carrier in the received multicarrier, is larger than the threshold, that is, the standard incoming level, the level of that carrier is lowered to the standard incoming level, and the level of that carrier is lowered to the standard incoming level, and It also lowers the level of other carriers.

【0023】このようにして着信レベルを標準着信レベ
ル以下に抑制されたマルチキャリアのIF信号は,分岐
器6に送られて3つに分岐され,帯域フィルタ7〜9に
より個々のキャリアが抽出される。抽出された各キャリ
アは,AGC増幅器10〜12で低レベルの信号の利得
を上げて復調器13〜15でベースバンド信号に復調さ
れる。
The multi-carrier IF signal whose incoming signal level has been suppressed below the standard incoming signal level in this way is sent to a splitter 6 where it is split into three parts, and individual carriers are extracted by bandpass filters 7 to 9. Ru. Each extracted carrier is demodulated into a baseband signal by demodulators 13 to 15 after increasing the gain of the low level signal in AGC amplifiers 10 to 12.

【0024】次に図2のスペースダイバーシティ方式の
場合の構成について説明する。図2の構成は,図8に示
された従来例の構成のAGC制御回路5において検波器
48,48′およびOR回路49,比較回路50を本発
明に基づくレベル検出回路16a,16a′および比較
回路16bで置き換えたものであり,その他の構成は同
じであるので説明を省略する。ここで図2におけるMA
IN系統とSD系統のレベル検出回路16a,16a′
は図1のレベル検出回路16aと同じものであり,それ
ぞれの回路要素17〜23と17′〜23′とは対応し
ている。
Next, the configuration of the space diversity system shown in FIG. 2 will be explained. In the configuration of FIG. 2, in the AGC control circuit 5 of the conventional configuration shown in FIG. This is replaced by the circuit 16b, and the other configurations are the same, so the explanation will be omitted. Here, MA in Figure 2
IN system and SD system level detection circuits 16a, 16a'
is the same as the level detection circuit 16a in FIG. 1, and the respective circuit elements 17-23 and 17'-23' correspond to each other.

【0025】レベル検出回路16aは,受信されたMA
IN系統のマルチキャリア信号の中の各キャリアの着信
レベルを検出し,他方,レベル検出回路16a′は受信
されたSD系統のマルチキャリア信号の中の各キャリア
の着信レベルを検出し,対応する直流信号がレベル検出
回路16a,16a′のそれぞれにおいてOR回路23
,23′に入力される。
The level detection circuit 16a detects the received MA
The level detection circuit 16a' detects the incoming level of each carrier in the multi-carrier signal of the IN system, and on the other hand, the level detection circuit 16a' detects the incoming level of each carrier in the received multi-carrier signal of the SD system, and detects the incoming level of each carrier in the received multi-carrier signal of the SD system, and The signal is output to the OR circuit 23 in each of the level detection circuits 16a and 16a'.
, 23'.

【0026】2つのOR回路23,23′の出力はワイ
アードOR接続されているので,2つのレベル検出回路
16a,16a′のそれぞれにおいて検出されたキャリ
アの全体の中で着信レベルがもっとも高いキャリアのレ
ベルに対応する直流信号のみが比較回路16bに入力さ
れる。
Since the outputs of the two OR circuits 23 and 23' are wired OR-connected, the carrier with the highest incoming level among all the carriers detected in each of the two level detection circuits 16a and 16a' is Only the DC signal corresponding to the level is input to the comparator circuit 16b.

【0027】比較回路16bは,入力された直流信号の
レベルと標準着信レベルに対応する閾値とを比較し,そ
の差をMAINとSDの可変減衰器2,2′にフィード
バックし,最大の着信レベルが標準着信レベルとなるよ
うに減衰量を調節する。このようにしてMAINとSD
の両系統の受信信号は,共通の1つの最大着信レベルを
もつキャリアに基づいて同時にレベルを制御され,標準
着信レベルを超えないように抑制される。
The comparison circuit 16b compares the level of the input DC signal with a threshold value corresponding to the standard incoming signal level, feeds back the difference to the MAIN and SD variable attenuators 2, 2', and determines the maximum incoming signal level. Adjust the attenuation amount so that it is at the standard incoming call level. In this way MAIN and SD
The levels of the received signals of both systems are simultaneously controlled based on the carrier having one common maximum incoming level, and are suppressed so as not to exceed the standard incoming level.

【0028】[0028]

【作用】図3の(a)〜(d)を用いて本発明の作用を
従来例と対照させて説明する。図の左側の波形はAGC
制御前のマルチキャリア受信信号,図の右側の波形はA
GC制御後のマルチキャリア受信信号の例である。
[Operation] The operation of the present invention will be explained in comparison with the conventional example using FIGS. 3(a) to 3(d). The waveform on the left side of the diagram is AGC
The multicarrier received signal before control, the waveform on the right side of the figure is A
It is an example of a multicarrier received signal after GC control.

【0029】図3の(a)と(b)は,単一受信方式の
場合の従来例と本発明のマルチキャリア受信信号の着信
レベル制御の違いを示したものであり,図3の(a)の
従来例の場合には標準着信レベルはマルチキャリアの3
波平均と比較されるため,ある1波の着信レベルが標準
着信レベルよりも高くとも,3波平均では標準着信レベ
ルと等しい場合にはAGC制御によるレベル抑制が働か
ないため,標準着信レベルを超えたキャリアのレベルは
そのまま出力される。
FIGS. 3(a) and 3(b) show the difference between the conventional example in the case of a single reception system and the incoming level control of the multicarrier received signal of the present invention, and (a) in FIG. ), the standard incoming call level is multi-carrier 3.
Since the incoming call level of one wave is higher than the standard incoming call level, if the three-wave average is equal to the standard incoming call level, level suppression by AGC control will not work, so it will not exceed the standard incoming call level. The carrier level is output as is.

【0030】これに対して図3の(b)の本発明の場合
には,標準着信レベルは各キャリアごとの着信レベルの
最大値と比較されて,マルチキャリア受信信号全体のA
GC制御が行われるため,いずれのキャリアの着信レベ
ルも標準着信レベルを超えないように制御される。
On the other hand, in the case of the present invention shown in FIG. 3(b), the standard incoming signal level is compared with the maximum value of the incoming signal level for each carrier, and the A of the entire multicarrier received signal is calculated.
Since GC control is performed, the incoming call level of any carrier is controlled so as not to exceed the standard incoming call level.

【0031】図3(c)と(d)はスペースダイバーシ
ティ方式の受信方式の場合の従来例と本発明の着信レベ
ル制御の違いを示したものであり,図3の(c)の従来
例では,MAINとSDのいずれの系統の3波平均も標
準着信レベルを超えていないためAGC制御が働かず,
標準着信レベルを超えているキャリアのレベルがそのま
ま出力される。
FIGS. 3(c) and 3(d) show the difference between the conventional example and the incoming signal level control of the present invention in the case of a space diversity reception method. In the conventional example shown in FIG. 3(c), , AGC control does not work because the three-wave average of both MAIN and SD systems does not exceed the standard incoming call level.
The carrier level exceeding the standard incoming call level is output as is.

【0032】これに対して図3の(d)では,MAIN
の3波のキャリアの1つのレベルが標準着信レベルを超
えたことによって,MAINとSDの各マルチキャリア
受信信号のレベルは抑制され,標準着信レベルを超えた
キャリアは出力されることがない。
On the other hand, in FIG. 3(d), MAIN
Since the level of one of the three carrier waves exceeds the standard arrival level, the level of each MAIN and SD multicarrier received signal is suppressed, and the carrier exceeding the standard arrival level is not output.

【0033】なお本発明によれば,標準着信レベルを超
えたキャリアを標準着信レベル以下に減衰させる結果,
標準着信レベルよりもかなり低レベルのキャリアも同じ
ように減衰され,S/Nを悪化させることになるが,こ
のような低レベルのキャリアについては,後段のAGC
増幅器においてそのレベルを基準レベルまで上げるよう
に増幅することができる。図4に,その場合のレベル制
御のアルゴリズムを示す。
According to the present invention, as a result of attenuating carriers exceeding the standard incoming level to below the standard incoming level,
Carriers with a level much lower than the standard incoming signal level are also attenuated in the same way, worsening the S/N ratio, but such low-level carriers are
It can be amplified in an amplifier to raise its level to a reference level. Figure 4 shows the level control algorithm in that case.

【0034】[0034]

【実施例】図5に本発明の1実施例の構成を示す。この
実施例は,標準着信レベルを減衰させる機構をもつが,
さらにS/Nが悪化する基準レベル以下のキャリアが生
じた場合には,マルチキャリアの各波中の最低レベルが
基準レベル以上となるように減衰を小さくする機構を付
加的にそなえている。なお便宜上,図1の単一受信方式
の場合に対応する実施例構成を示すが,容易に推測でき
るように,図2のスペースダイバーシティ方式の場合に
ついても同様に実施例を構成することができる。
Embodiment FIG. 5 shows the configuration of one embodiment of the present invention. This embodiment has a mechanism to attenuate the standard incoming call level, but
Furthermore, when carriers below the reference level that deteriorate the S/N occur, a mechanism is additionally provided to reduce attenuation so that the lowest level in each wave of the multicarrier becomes equal to or higher than the reference level. For convenience, the configuration of the embodiment corresponding to the single reception method shown in FIG. 1 is shown, but as can be easily guessed, the embodiment can be similarly configured for the case of the space diversity method shown in FIG. 2.

【0035】図5において,可変減衰器2aは図1の可
変減衰器2に対応するものであるが,図1の場合とは異
なってレベル検出回路16aの入力は可変減衰器2aの
出力側からとられている。また可変減衰器2aと縦続さ
せて可変減衰器2bが設けられており,最低レベルのキ
ャリアが基準レベル以下にならないようにするために使
用される。
In FIG. 5, the variable attenuator 2a corresponds to the variable attenuator 2 in FIG. 1, but unlike the case in FIG. 1, the input to the level detection circuit 16a is from the output side of the variable attenuator 2a. It is taken. Further, a variable attenuator 2b is provided in series with the variable attenuator 2a, and is used to prevent the lowest level carrier from falling below a reference level.

【0036】図5において,31〜41で示される回路
要素は,このキャリアの最低レベルを制御するためのも
のであり,31〜33は低雑音増幅器3の出力のマルチ
キャリア受信信号中の各キャリアを分離する帯域フィル
タ,34〜36はキャリアのレベルを検出する検波器,
37〜39は各キャリアのレベルの極性を反転しオフセ
ットを与える反転増幅器,40は反転増幅器37〜39
の出力のうちの最大レベル,すなわち最低の着信レベル
,を検出するOR回路,41はその最低レベルを基準レ
ベルを比較してその差出力により可変減衰器2bの減衰
量を制御する比較器,42はOR回路,43は比較器4
1が基準レベル以下の減衰制御を行うのを禁止するため
のリミットレベルを与える基準電圧回路である。
In FIG. 5, circuit elements 31 to 41 are for controlling the lowest level of this carrier, and 31 to 33 are for controlling each carrier in the multicarrier received signal output from the low noise amplifier 3. 34 to 36 are detectors that detect the level of the carrier,
37 to 39 are inverting amplifiers that invert the polarity of the level of each carrier and provide an offset; 40 are inverting amplifiers 37 to 39;
41 is a comparator that compares the lowest level with a reference level and controls the attenuation amount of the variable attenuator 2b based on the difference output; 42 is an OR circuit, 43 is a comparator 4
1 is a reference voltage circuit that provides a limit level for prohibiting attenuation control below a reference level.

【0037】図5の実施例構成により,マルチキャリア
受信信号のキャリアの最大レベルが歪を増大させるとこ
ろの標準着信レベル以上にならないように減衰させるの
を基本動作として,さらに最低レベルがS/Nを悪化さ
せる基準レベル以下となる場合には基準レベル以下とな
る減衰を抑制するような動作が得られる。
With the configuration of the embodiment shown in FIG. 5, the basic operation is to attenuate the maximum carrier level of the multicarrier received signal so that it does not exceed the standard incoming level, which increases distortion, and furthermore, the minimum level is set to S/N. When the attenuation is below the reference level, which deteriorates the attenuation, an operation can be obtained to suppress the attenuation below the reference level.

【0038】図6は,図5のAGC制御機能をMPUで
置き換えた実施例であり,図中の44は検波器20〜2
2の出力の各直流信号をディジタル信号に変換するA/
D変換器,45は最大レベルや最小レベルを検出し,最
適のキャリア信号レベルが得られるAGC制御信号を生
成するMPU,46は制御プログラムや変換テーブルな
どが格納されているROM,47はMPU出力信号をア
ナログ信号に変換するD/A変換器である。
FIG. 6 shows an embodiment in which the AGC control function of FIG. 5 is replaced with an MPU, and 44 in the figure is the detector 20-2.
A/2 converts each output DC signal into a digital signal.
D converter, 45 is an MPU that detects the maximum level and minimum level and generates an AGC control signal that can obtain the optimum carrier signal level, 46 is a ROM in which control programs and conversion tables are stored, 47 is an MPU output This is a D/A converter that converts signals into analog signals.

【0039】このような図6の実施例構成により,ハー
ドウェア量の削減と実装スペースの縮小化とが可能にさ
れる。
The configuration of the embodiment shown in FIG. 6 makes it possible to reduce the amount of hardware and the mounting space.

【0040】[0040]

【発明の効果】本発明によれば,フェージングあるいは
降雨減衰等によりマルチキャリア受信信号中の各キャリ
アにレベル差が生じても歪が最適になるようにAGC制
御を行うことができ,更にS/Nを考慮したAGC制御
も可能となり,高着信時の有効なAGC制御方式をそな
えた無線受信装置が実現できる。
According to the present invention, even if a level difference occurs between carriers in a multicarrier received signal due to fading or rain attenuation, AGC control can be performed to optimize distortion, and furthermore, S/ AGC control that takes N into consideration is also possible, and a wireless receiving device equipped with an effective AGC control method when receiving a high number of calls can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】単一受信方式による本発明の原理的構成図であ
る。
FIG. 1 is a diagram showing the basic configuration of the present invention using a single reception method.

【図2】スペースダイバーシティ方式による本発明の原
理的構成図である。
FIG. 2 is a diagram showing the basic configuration of the present invention using a space diversity method.

【図3】本発明の作用説明図である。FIG. 3 is an explanatory diagram of the operation of the present invention.

【図4】本発明によるマルチキャリア信号レベル制御の
アルゴリズムの説明図である。
FIG. 4 is an explanatory diagram of an algorithm for multicarrier signal level control according to the present invention.

【図5】単一受信方式による本発明の実施例構成図であ
る。
FIG. 5 is a configuration diagram of an embodiment of the present invention using a single reception method.

【図6】MPUを用いた本発明の実施例構成図である。FIG. 6 is a configuration diagram of an embodiment of the present invention using an MPU.

【図7】単一受信方式による従来例装置の構成図である
FIG. 7 is a configuration diagram of a conventional device using a single reception method.

【図8】スペースダイバーシティ方式による従来例装置
の構成図である。
FIG. 8 is a configuration diagram of a conventional device using a space diversity method.

【符号の説明】[Explanation of symbols]

1,3  低雑音増幅器 2      可変減衰器 4      周波数変換器 5      AGC制御回路 16a  レベル検出回路 16b  比較回路 17〜19  帯域フィルタ 20〜22  検波器 23    OR回路 1,3 Low noise amplifier 2 Variable attenuator 4 Frequency converter 5 AGC control circuit 16a Level detection circuit 16b Comparison circuit 17-19 Bandpass filter 20~22 Detector 23 OR circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  単一系統のマルチキャリア信号の無線
受信装置において,受信されたマルチキャリア信号のレ
ベルを調節する可変減衰器(2)と,受信されたマルチ
キャリア信号中の個々のキャリアのレベルのうちの最大
のレベルを検出するレベル検出回路(16a)とレベル
検出回路(16a) で検出された各キャリアのレベル
のうちの最大レベルが予め定められた標準の受信レベル
よりも大きいとき,その最大レベルが予め定められた標
準の受信レベルに等しくなるように上記可変減衰器(2
)の利得を制御する比較回路(16b)と,をそなえて
いることを特徴とする単一系統のマルチキャリア信号の
無線受信装置。
Claim 1: A single system multi-carrier signal radio reception device comprising: a variable attenuator (2) for adjusting the level of the received multi-carrier signal; and a level of each carrier in the received multi-carrier signal. When the maximum level of the levels of each carrier detected by the level detection circuit (16a) and the level detection circuit (16a) is greater than a predetermined standard reception level, the The variable attenuator (2
) A comparison circuit (16b) for controlling the gain of a single system multi-carrier signal radio receiving apparatus.
【請求項2】  スペースダイバーシティ方式による複
数系統のマルチキャリア信号の無線受信装置において,
複数系統の各系統ごとに受信されたマルチキャリア信号
のレベルを調節する可変減衰器(2,2′)と,複数系
統の各系統ごとに受信されたマルチキャリア信号中の個
々のキャリアのレベルのうちの最大レベルを検出するレ
ベル検出回路(16a, 16a′)と,複数系統の各
系統に共通に,各レベル検出回路(16a, 16a′
)で検出された各キャリアのレベルの全体について,そ
のうちの最大のレベルを識別し,それが予め定められた
標準の受信レベルよりも大きいとき,その最大レベルが
標準の受信レベルに等しくなるように各系統の可変減衰
器(2,2′)の利得を同時に制御する比較回路(16
b)と,をそなえていることを特徴とする複数系統のマ
ルチキャリア信号の無線受信装置。
[Claim 2] In a wireless receiving device for multiple systems of multicarrier signals using a space diversity method,
A variable attenuator (2, 2') that adjusts the level of the multicarrier signal received for each of the multiple systems, and a variable attenuator (2, 2') that adjusts the level of the individual carrier in the multicarrier signal received for each of the multiple systems. A level detection circuit (16a, 16a') that detects the maximum level of each system, and a level detection circuit (16a, 16a') that is common to each of the multiple systems.
), identify the maximum level among them, and when it is greater than a predetermined standard reception level, make the maximum level equal to the standard reception level. Comparison circuit (16) that simultaneously controls the gain of variable attenuator (2, 2') of each system
A wireless receiving device for multi-carrier signals of multiple systems, characterized by comprising the following.
JP3113076A 1991-05-17 1991-05-17 Radio receiver for multi-carrier signal Withdrawn JPH04341027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113076A JPH04341027A (en) 1991-05-17 1991-05-17 Radio receiver for multi-carrier signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113076A JPH04341027A (en) 1991-05-17 1991-05-17 Radio receiver for multi-carrier signal

Publications (1)

Publication Number Publication Date
JPH04341027A true JPH04341027A (en) 1992-11-27

Family

ID=14602874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113076A Withdrawn JPH04341027A (en) 1991-05-17 1991-05-17 Radio receiver for multi-carrier signal

Country Status (1)

Country Link
JP (1) JPH04341027A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384547A (en) * 1993-08-02 1995-01-24 Motorola, Inc. Apparatus and method for attenuating a multicarrier input signal of a linear device
WO1999004524A1 (en) * 1997-07-15 1999-01-28 Mitsubishi Denki Kabushiki Kaisha Transmitter, receiver, transmitting method, and receiving method
JP2001127735A (en) * 1999-09-13 2001-05-11 Hyundai Electronics Ind Co Ltd Inter-fa power level controller of rf receiver of cdma type mobile communication base station system
WO2004071005A1 (en) * 2003-02-01 2004-08-19 Qualcomm Incorporated Method and apparatus for automatic gain control of a multi-carrier signal in a communication receiver
JP2006067369A (en) * 2004-08-27 2006-03-09 Maspro Denkoh Corp Amplifier for television reception
JP2008028647A (en) * 2006-07-20 2008-02-07 Hitachi Kokusai Electric Inc Receiving device
JP2009027439A (en) * 2007-07-19 2009-02-05 Casio Comput Co Ltd Radio wave receiver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384547A (en) * 1993-08-02 1995-01-24 Motorola, Inc. Apparatus and method for attenuating a multicarrier input signal of a linear device
WO1999004524A1 (en) * 1997-07-15 1999-01-28 Mitsubishi Denki Kabushiki Kaisha Transmitter, receiver, transmitting method, and receiving method
JP2001127735A (en) * 1999-09-13 2001-05-11 Hyundai Electronics Ind Co Ltd Inter-fa power level controller of rf receiver of cdma type mobile communication base station system
WO2004071005A1 (en) * 2003-02-01 2004-08-19 Qualcomm Incorporated Method and apparatus for automatic gain control of a multi-carrier signal in a communication receiver
US7995684B2 (en) 2003-02-01 2011-08-09 Qualcomm, Incorporated Method and apparatus for automatic gain control of a multi-carrier signal in a communication receiver
JP2006067369A (en) * 2004-08-27 2006-03-09 Maspro Denkoh Corp Amplifier for television reception
JP2008028647A (en) * 2006-07-20 2008-02-07 Hitachi Kokusai Electric Inc Receiving device
JP2009027439A (en) * 2007-07-19 2009-02-05 Casio Comput Co Ltd Radio wave receiver
US8068801B2 (en) 2007-07-19 2011-11-29 Casio Computer Co., Ltd. Electric wave receiving apparatus

Similar Documents

Publication Publication Date Title
EP2731265B1 (en) Reception device, and gain control method
US7167693B2 (en) Scanning receiver for use in power amplifier linearization
JP4436387B2 (en) Method and apparatus for improving receiver interference immunity
US5457811A (en) System for controlling signal level at both ends of a transmission sink based on a detected value
US20030236107A1 (en) Calibration system for array antenna receiving apparatus
KR20010041252A (en) Lna control-circuit for a receiver having closed loop automatic gain control
JPH08330986A (en) Equipment and method for optimizing quality of receiving signal in radio receiver
US9461681B1 (en) Receiver
US7203470B2 (en) Phase combining diversity receiving apparatus and method
CN101119121B (en) Anti-interference method in receiver, anti-interference receiver and anti-interference device
EP2119018A1 (en) Techniques to deterministically reduce signal interference
US7283797B1 (en) System and method of improving the dynamic range of a receiver in the presence of a narrowband interfering signal
JP2004135120A (en) Diversity receiving system and method
JPH04341027A (en) Radio receiver for multi-carrier signal
JP2001086172A (en) Receiver
US5678218A (en) Circuit for removing random FM noise
KR20080050192A (en) Apparatus and method for adaptive voltage reference agc in wlans
US6785524B2 (en) Device and method for controlling the amplitude of signals
JPS61131625A (en) Space diversity reception system
WO2007111311A1 (en) Receiver apparatus
JPH11186946A (en) Diversity receiver and agc circuit used for the receiver
GB2298551A (en) Determining ideal received signal strength power
JPH02246428A (en) Common agc system
JPS6342235A (en) Fading equalizing circuit
JPH1022892A (en) Diversity receiver using synthesizing system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806