JPH04340930A - Active matrix liquid crystal display device with two-terminal element - Google Patents

Active matrix liquid crystal display device with two-terminal element

Info

Publication number
JPH04340930A
JPH04340930A JP3113314A JP11331491A JPH04340930A JP H04340930 A JPH04340930 A JP H04340930A JP 3113314 A JP3113314 A JP 3113314A JP 11331491 A JP11331491 A JP 11331491A JP H04340930 A JPH04340930 A JP H04340930A
Authority
JP
Japan
Prior art keywords
metal
film
liquid crystal
active matrix
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3113314A
Other languages
Japanese (ja)
Other versions
JP3087340B2 (en
Inventor
Kyoji Momoi
桃井 恭次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11331491A priority Critical patent/JP3087340B2/en
Publication of JPH04340930A publication Critical patent/JPH04340930A/en
Application granted granted Critical
Publication of JP3087340B2 publication Critical patent/JP3087340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a bright liquid crystal panel which is free from after-images, seizure and problems in reliability and is bright by oxidizing the metal of one-side metallic ultra-thin films constituting MIMs to prevent the deterioration in transmittance and forming MIM elements which are free from the polarity difference of electric characteristics and shift. CONSTITUTION:The two-terminal elements of the MIMs are formed by using the metal oxide 3 to form the electrode material on the opposite side near at least the boundary with the insulating film 2 of the opposite side electrodes of the MIM elements constituted by forming the insulating film 2 on the surface of a 1st metallic thin film forming pattern 1 and forming the film pattern of the opposite side metallic ultra-thin films thereon. The electrode material to be formed on this insulating film 2 is formed of a 2nd metallic ultra-thin film consisting of Cr, etc., and further, this film is oxidized during or after the film formation. Then, the 2nd metallic ultra-thin film is formed of the metal oxide ultra-thin film 3, by which the transmittance of visible light is improved. The polarity difference of the electrical characteristics of the MIM elements is eliminated by executing some annealing treatment when the Cr is used for the 2nd metal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、MIM素子の基本構造
の改良に関するもので、特にフォト工程の簡略化を実現
する手段及び高信頼MIMを提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in the basic structure of an MIM element, and particularly to providing a means for simplifying the photo process and a highly reliable MIM.

【0002】0002

【従来の技術】従来のMIMの基本プロセスは、Ta成
膜パターン形成ー陽極酸化ーCr成膜パターン形成ー画
素透明電極としてのITO成膜パターン形成であり、パ
ターン形成のためのフォト工程の回数は、最低でも3回
必要であった。従来のMIM素子形成基板断面図を図3
に示す。Taなどの第1の金属1の表面に陽極酸化など
の方法により第1の絶縁膜2を形成し、その上にCrな
どの第2の金属7を成膜パターン形成する。最後に画素
透明電極4を成膜パターン形成して、MIM素子形成基
板が出来上がる。フォト工程が3回必要である理由は、
MIM素子の電気特性の非対称をなくすため、つまり極
性差をなくすためにMIMを構成する反対側の電極であ
る第2の金属7をCrなどの金属材料として独立にパタ
ーン形成する必要があることによる。画素透明電極とし
てのITOなどの膜をMIMの反対側電極としても兼用
することができればフォト工程2回となるが、この場合
極性差大となり、故に液晶にDC電圧成分が乗り液晶デ
ィスプレイとしての残像その他の信頼性上の問題となり
、使えない。一画素内に素子を2個形成して極性差を補
正する方法もあるが、この場合プロセスが複雑になり生
産効率の低減及び歩留り低減となる。
[Prior Art] The basic process of conventional MIM is Ta film formation pattern formation - anodization - Cr film formation pattern formation - ITO film formation pattern formation as a pixel transparent electrode, and the number of photo steps for pattern formation. required at least three times. Figure 3 shows a cross-sectional view of a conventional MIM element forming substrate.
Shown below. A first insulating film 2 is formed on the surface of a first metal 1 such as Ta by a method such as anodic oxidation, and a second metal 7 such as Cr is deposited and patterned thereon. Finally, the pixel transparent electrode 4 is formed into a film pattern to complete the MIM element forming substrate. The reason why the photo process is required three times is as follows.
This is due to the fact that in order to eliminate the asymmetry of the electrical characteristics of the MIM element, that is, to eliminate the polarity difference, it is necessary to independently pattern the second metal 7, which is the electrode on the opposite side of the MIM, using a metal material such as Cr. . If the film such as ITO as the pixel transparent electrode could also be used as the electrode on the opposite side of the MIM, it would require two photo steps, but in this case there would be a large polarity difference, and therefore a DC voltage component would be applied to the liquid crystal, resulting in an afterimage as a liquid crystal display. Due to other reliability problems, it cannot be used. There is also a method of correcting the polarity difference by forming two elements in one pixel, but in this case, the process becomes complicated and production efficiency and yield are reduced.

【0003】現在の有力な方法である従来の特開昭60
ー164724の公報で記載されているMIM素子は、
第2の金属の厚さを100Å以下として、第2の金属と
透明ITO電極を同一の形状に形成することによりフォ
ト工程2回のMIMを達成するものである。。このフォ
ト工程2回で形成できるMIM素子形成基板断面図を図
4に示す。この場合、Crなどの第2の金属8が、薄い
ながらもMIMの電極として機能しているため、MIM
素子の極性差がなくなるか、または非常に少なくなる。 また、第2の金属8を100Å以下という超薄膜で形成
しているため、この超薄膜そのものの可視光透過率が向
上し、画素の透明電極としても機能する。以上により、
第2の金属超薄膜8とITOなどの画素透明電極4を1
回のフォト工程で同一パターンに形成できるためフォト
工程2回のMIMが達成できる。
[0003] Conventional Japanese Patent Application Laid-Open No. 1983-1989, which is currently a powerful method.
The MIM device described in the publication No. 164724 is
By setting the thickness of the second metal to 100 Å or less and forming the second metal and the transparent ITO electrode in the same shape, MIM with two photo steps is achieved. . FIG. 4 shows a cross-sectional view of the MIM element forming substrate that can be formed by two photo steps. In this case, the second metal 8 such as Cr, although thin, functions as an electrode for the MIM.
The polarity difference between the elements disappears or becomes very small. Further, since the second metal 8 is formed of an ultra-thin film of 100 Å or less, the visible light transmittance of this ultra-thin film itself is improved and it also functions as a transparent electrode of the pixel. Due to the above,
A second ultra-thin metal film 8 and a pixel transparent electrode 4 made of ITO etc.
Since the same pattern can be formed in one photo process, MIM can be achieved in two photo processes.

【0004】0004

【発明が解決しようとする課題】但し、この図4に示す
フォト工程2回で達成できるMIM方式の唯一の欠点と
して、第2の金属超薄膜8の可視光透過率が約70%程
度と低く、画素の透明電極として機能はするけれども、
液晶ディスプレイの画面が暗くなってしまう。暗い画面
ではコントラストも悪く見え、画質面での大きなマイナ
スとなる。
[Problems to be Solved by the Invention] However, the only drawback of the MIM method shown in FIG. 4, which can be achieved with two photo steps, is that the visible light transmittance of the second ultra-thin metal film 8 is as low as about 70%. , although it functions as a transparent electrode of the pixel,
The LCD screen becomes dark. The contrast looks poor on dark screens, which is a big negative in terms of image quality.

【0005】本発明は、従来のこのような欠点を解決し
て、液晶ディスプレイの可視光透過率を損なうことなく
、MIM素子基板のフォト工程2回プロセスを達成して
、生産効率向上及び歩留り向上を達成するものである。 また、本発明のもう1つの目的は、従来からある第3図
に示すMIM素子形成基板において、MIM素子の特性
シフトが原因となる液晶ディスプレイの残像及び焼き付
き現象をなくすことにもある。
The present invention solves these conventional drawbacks and achieves a two-step photo process for MIM element substrates without impairing the visible light transmittance of a liquid crystal display, thereby improving production efficiency and yield. The goal is to achieve the following. Another object of the present invention is to eliminate afterimages and burn-in phenomena in liquid crystal displays caused by characteristic shifts of MIM elements in the conventional MIM element forming substrate shown in FIG.

【0006】[0006]

【課題を解決するための手段】本発明の2端子素子アク
ティブマトリクス液晶表示装置は、第1の金属薄膜形成
パターンの表面に絶縁膜を形成しその上に反対側電極を
成膜パターン形成してなるMIM素子の反対側電極にお
いて、少なくとも絶縁膜との界面近傍の反対側電極材料
を金属酸化物にしてMIMの2端子素子を形成すること
を特徴とする。また、第1の金属の表面を陽極酸化して
絶縁膜を形成し、その上に第2の金属を成膜形成してな
るMIM素子の第2の金属を質量膜厚500Å以下であ
る超薄膜として、さらに第2の金属とITO画素電極を
同一の形状に形成することによりフォト工程の簡略化を
図ったMIMアクティブマトリクス素子形成基板におい
ても、第2の金属を膜厚制限のない金属酸化物にするこ
とを特徴とする。
[Means for Solving the Problems] A two-terminal element active matrix liquid crystal display device of the present invention is provided by forming an insulating film on the surface of a first metal thin film forming pattern, and forming an opposite electrode pattern thereon. In the opposite electrode of the MIM element, the opposite electrode material at least near the interface with the insulating film is made of a metal oxide to form a two-terminal MIM element. In addition, the second metal of the MIM element is formed by anodizing the surface of the first metal to form an insulating film, and forming a second metal on top of the insulating film. Furthermore, in a MIM active matrix element forming substrate that simplifies the photo process by forming the second metal and the ITO pixel electrode in the same shape, the second metal is formed of a metal oxide with no film thickness restrictions. It is characterized by making it.

【0007】また、前記第2の金属の酸化方法は、スパ
ッタ成膜時のプラズマガスをO2ガスを混入したArガ
スとするリアクティブスパッタ法とすることを特徴とす
る。
The method for oxidizing the second metal is characterized in that it is a reactive sputtering method in which Ar gas mixed with O2 gas is used as a plasma gas during sputtering film formation.

【0008】また、前記第2の金属の別の酸化方法を、
成膜後の熱酸化とすることを特徴とする。
[0008] Another method of oxidizing the second metal is as follows:
It is characterized by thermal oxidation after film formation.

【0009】また、前記第2の金属の別の酸化方法を、
成膜後のランプアニールとすることを特徴とする。
[0009] Another method of oxidizing the second metal is as follows:
It is characterized by lamp annealing after film formation.

【0010】また、前記第2の金属の質量膜厚が500
Å以下の場合の酸化方法を、第2の金属成膜及びパター
ン形成後の次の工程である画素透明電極形成時に、IT
Oターゲットなどを用いてスパッタ成膜する条件を、ス
パッタ温度200℃以上にすることまたはプラズマガス
中の02流量比を1%以上にすることの内少なくとも1
方法とすることを特徴とする。
[0010] Further, the mass film thickness of the second metal is 500
The oxidation method in the case of less than Å
At least one of the conditions for sputtering film formation using an O target etc. is that the sputtering temperature is 200°C or higher, or the 02 flow rate ratio in the plasma gas is 1% or higher.
method.

【0011】[0011]

【作用】第2の金属超薄膜を金属酸化物超薄膜とするこ
とにより、可視光透過率が向上する。同一質量膜厚で比
較した場合、金属超薄膜の可視光透過率約70%に対し
て金属酸化物超薄膜の可視光透過率は約95%となり大
幅に向上する。しかも、第2の金属をCrとした場合の
実験評価結果では、第2の金属を酸化してもMIM素子
の電気特性の極性差が、若干のアニール処理を行うこと
により、なくなるか、または非常に少なくなることが判
明した。
[Operation] Visible light transmittance is improved by making the second ultra-thin metal film an ultra-thin metal oxide film. When compared with the same mass and film thickness, the visible light transmittance of the metal oxide ultra-thin film is approximately 95%, which is a significant improvement, compared to the approximately 70% visible light transmittance of the metal ultra-thin film. Moreover, experimental evaluation results when the second metal is Cr show that even if the second metal is oxidized, the polarity difference in the electrical characteristics of the MIM element disappears or becomes very large after a slight annealing treatment. It was found that there were fewer

【0012】酸化することにより、可視光透過率が向上
する原理メカニズムを以下に述べる。
The principle mechanism by which visible light transmittance is improved by oxidation will be described below.

【0013】金属は一般的に、伝導帯と価電子帯とが重
なりあっているため、バンドギャップが小さく、光を吸
収し電子が励起されやすい。よって、光が吸収されやす
く光透過率が悪い。一方金属酸化物は、伝導帯が上がり
バンドギャップが大きくなることにより、電子が励起さ
れにくく、故に光吸収分も減少する。つまり、光透過率
が向上するという原理である。
[0013] Generally, metals have a conduction band and a valence band that overlap each other, so the band gap is small and light is easily absorbed and electrons are easily excited. Therefore, light is easily absorbed and light transmittance is poor. On the other hand, in metal oxides, the conduction band rises and the band gap becomes large, making it difficult for electrons to be excited, and therefore light absorption also decreases. In other words, the principle is that the light transmittance is improved.

【0014】[0014]

【実施例】以下、本発明の第1の実施例を、図1のMI
M素子形成基板断面図及び図2のMIM素子形成基板平
面図により説明する。
[Embodiment] Hereinafter, a first embodiment of the present invention will be explained using the MI shown in FIG.
This will be explained with reference to a sectional view of an M element forming substrate and a plan view of an MIM element forming substrate in FIG.

【0015】第1の絶縁膜2の形成方法については、第
1の金属1の表面を陽極酸化法などで酸化して形成する
方法が一般的であるが、SiNx、SiO2などの絶縁
材料を成膜する方法などもある。本発明の一番の特徴は
、この絶縁膜の上に形成する電極材料をCrなどの第2
の金属超薄膜として、さらにその膜を成膜中または成膜
後に酸化することにある。酸化する具体的方法は、色々
あるが、代表的な方法を以下に列挙する。
The first insulating film 2 is generally formed by oxidizing the surface of the first metal 1 by anodic oxidation. There is also a method of applying a film. The most important feature of the present invention is that the electrode material formed on the insulating film is a secondary material such as Cr.
The purpose of this method is to further oxidize the film during or after film formation. There are various specific methods for oxidation, but typical methods are listed below.

【0016】(1)スパッタ成膜中に、Arなどのプラ
ズマガス中にO2を混入するリアクティブスパッタ法と
する。
(1) A reactive sputtering method is used in which O2 is mixed into plasma gas such as Ar during sputtering film formation.

【0017】(2)スパッタまたは蒸着成膜後に、熱酸
化またはランプアニールによる酸化を行う。これにより
、1度金属薄膜として成膜した後でその金属を酸化する
ことになる。
(2) After sputtering or vapor deposition, oxidation is performed by thermal oxidation or lamp annealing. As a result, the metal is oxidized after being formed as a metal thin film once.

【0018】(3)第1の金属が100Å以下の超薄膜
の場合、第1の金属成膜中及び成膜後には特に酸化する
工程を設けないで、その次の成膜工程である画素透明電
極形成時に、ITOターゲットなどを用いてスパッタ成
膜する条件をスパッタ温度200℃以上またはプラズマ
ガス中のO2流量比を1%以上とすること。これにより
、画素透明電極を成膜しながら同時に第1の金属の酸化
も行うことができることがわかった。
(3) When the first metal is an ultra-thin film of 100 Å or less, no particular oxidation process is performed during or after the first metal film formation, and the pixel transparency is maintained in the next film formation process. When forming the electrode, the conditions for sputtering film formation using an ITO target or the like are such that the sputtering temperature is 200° C. or higher or the O2 flow rate ratio in the plasma gas is 1% or higher. As a result, it was found that the first metal could be oxidized simultaneously while forming the pixel transparent electrode.

【0019】以上により、第二の金属酸化物超薄膜3の
可視光透過率が約99%まで向上するため、ITOなど
の透明電極だけの透明度と同じとなる。ちなみに、従来
の第2の金属薄膜の可視光透過率は約70%であったか
ら、40%程度も透過率が向上したことになる。よって
、図2の5に示すようなITOなどの画素透明電極と共
に同一パターン形状の2層膜パターンとして、MIM素
子から画素領域までまたがって形成でき、フォト工程2
回の簡略化したプロセスが可能となる。
As a result of the above, the visible light transmittance of the second ultra-thin metal oxide film 3 is improved to about 99%, which is the same as the transparency of only a transparent electrode such as ITO. Incidentally, since the visible light transmittance of the conventional second metal thin film was about 70%, this means that the transmittance has been improved by about 40%. Therefore, as shown in 5 in FIG. 2, it is possible to form a two-layer film pattern with the same pattern shape as a pixel transparent electrode such as ITO, spanning from the MIM element to the pixel area, and in the photo process 2.
A simplified process is possible.

【0020】なお、第2の金属酸化物超薄膜3は、Cr
などの材料を用いることにより、酸化物となってもMI
M素子の反対側の電極として十分に機能する。すなわち
、MIM素子の電気特性の極性差を小さく抑えることが
できるのである。従来からMIM素子の片側電極材料は
Crなどの金属薄膜でなければ、素子の電気特性の対称
性維持ができないという事実が通説となっていたが、こ
こで初めて、以上の手段のところで述べたプロセスの工
夫により、片側電極材料が金属の酸化物でも素子の電気
特性の対称性維持が十分可能ということがわかった。 これを少し詳しく電気特性グラフに従って説明する。図
6に示す極性差の大きいMIM素子の電気特性は、第1
の金属=Ta、第1の絶縁膜=Ta2O5、反対側の電
極=ITO透明電極などの組合せのとき現れてしまう。 反対側の電極=Crとすると、第5図に示す極性差の小
さいMIM素子の電気特性となり、この構造が従来から
良く使われてきた。ここで重要なことは、反対側電極=
CrOxとしても第5図に示す極性差の小さいMIM素
子の電気特性となり、TaーTaOxーCrOxーIT
Oという新しい成膜の組合せが可能となり、しかもCr
OxーITOの2層を同一パターンに形成できることで
ある。つまり、CrOxが透明であるためにITOと同
じように画素透明電極としても使えるのである。ここで
、CrOxの具体的な状態は、Cr2O3またはCrO
2、CrO3などが考えられる。次に本発明の第2の実
施例を述べる。これを、従来のMIM素子形成基板断面
図である図3に従って説明することにする。この図が初
代MIMの基本構造をあらわすものであり、第1の金属
1の成膜パターニング、第2の金属7の成膜パターニン
グ、ITOなどの画素透明電極4の成膜パターニングと
いうように少なくとも3回のパターニングフォト工程が
必要である。この場合の第2の金属7の膜厚は、十分に
厚くできる。以上を基本構成とするMIM素子において
、第2の金属7の膜を例えばリアクティブスパッタなど
により金属酸化物として成膜する。これにより、金属の
陽極酸化などで形成した第1の絶縁膜のさらなる酸化を
進行させ、これにより第1の絶縁膜内を酸素リッチの状
態にする。以上の第2の実施例で述べたメカニズムは、
第1の実施例で述べた構造でも同様となる。ここで、第
2の金属7が酸化されて金属酸化物となった場合、シー
ト抵抗が大きくなりMIM素子の片側電極として必要な
電気導通の機能が果たせなくなる恐れがある。この場合
には、第1の絶縁膜との界面近傍のみ金属酸化物として
、その上の層を金属薄膜とする2層電極構造、または酸
化状態を連続的に変化させて形成する電極構造とするこ
とにより、電気導通の機能を果たしながらしかも第1の
絶縁膜を酸素リッチの状態にするという両立も達成でき
る。
Note that the second metal oxide ultra-thin film 3 is made of Cr.
By using materials such as oxides, MI
It functions well as the electrode on the opposite side of the M element. In other words, the polarity difference in the electrical characteristics of the MIM element can be kept small. Conventionally, it has been widely accepted that the symmetry of the electrical characteristics of the device cannot be maintained unless the material for one side electrode of an MIM device is a thin metal film such as Cr. It was discovered that the symmetry of the electrical characteristics of the device can be sufficiently maintained even when the electrode material on one side is a metal oxide. This will be explained in a little more detail according to the electrical characteristic graph. The electrical characteristics of the MIM element with a large polarity difference shown in FIG.
This appears when the metal is Ta, the first insulating film is Ta2O5, and the opposite electrode is an ITO transparent electrode. When the opposite electrode=Cr, the electrical characteristics of the MIM element with small polarity difference as shown in FIG. 5 are obtained, and this structure has been commonly used in the past. The important thing here is that the opposite electrode =
CrOx also has the electrical characteristics of an MIM element with a small polarity difference as shown in Fig. 5, and Ta-TaOx-CrOx-IT
A new film formation combination of O, and Cr
It is possible to form two layers of Ox-ITO in the same pattern. In other words, since CrOx is transparent, it can be used as a pixel transparent electrode in the same way as ITO. Here, the specific state of CrOx is Cr2O3 or CrO
2, CrO3, etc. can be considered. Next, a second embodiment of the present invention will be described. This will be explained with reference to FIG. 3, which is a sectional view of a conventional MIM element forming substrate. This figure shows the basic structure of the first generation MIM, and includes at least three steps: patterning of the first metal 1, patterning of the second metal 7, and patterning of the pixel transparent electrode 4, such as ITO. Two patterning photo steps are required. The film thickness of the second metal 7 in this case can be made sufficiently thick. In the MIM element having the above basic configuration, the second metal 7 film is formed as a metal oxide film by, for example, reactive sputtering. This causes further oxidation of the first insulating film formed by metal anodic oxidation, thereby making the inside of the first insulating film oxygen-rich. The mechanism described in the second embodiment above is
The same applies to the structure described in the first embodiment. Here, if the second metal 7 is oxidized and becomes a metal oxide, the sheet resistance will increase and there is a possibility that it will not be able to perform the electrical conduction function necessary as one side electrode of the MIM element. In this case, a two-layer electrode structure in which a metal oxide is used only in the vicinity of the interface with the first insulating film and a metal thin film is formed on the upper layer, or an electrode structure in which the oxidation state is continuously changed. By doing so, it is possible to achieve both the function of electrical conduction and the oxygen-rich state of the first insulating film.

【0021】[0021]

【発明の効果】生産効率向上及び歩留り向上を行い、コ
ストダウンを徹底して行う具体的方策の一つに断面図4
で示されるフォト工程2回だけで形成できるMIMがあ
る。本発明は、この第2の金属超薄膜8の透過率劣化を
抑え、液晶ディスプレイとして十分な明るさを確保する
ことができるものである。
[Effect of the invention] Cross-sectional view 4 is one of the specific measures to improve production efficiency and yield, and to thoroughly reduce costs.
There is an MIM that can be formed with only two photo steps as shown in FIG. The present invention can suppress the deterioration of the transmittance of the second ultra-thin metal film 8 and ensure sufficient brightness as a liquid crystal display.

【0022】第2の金属超薄膜を金属酸化物超薄膜とす
ることにより、可視光透過率が向上するのであるが同一
質量膜厚で比較した場合、金属超薄膜の可視光透過率約
70%に対して金属酸化物超薄膜の可視光透過率は約9
9%となり大幅に向上する。よって、この金属酸化物超
薄膜の厚みを厚く形成しても簡単に透過率がダウンする
こともなく、そのため500Å以下という膜厚制限もな
くなり薄膜形成が容易になる。しかも、第2の金属をC
rとした場合の実験評価結果では、第2の金属を酸化し
てもMIM素子の電気特性の極性差が、若干のアニール
処理を行うことにより、なくなるか、または非常に少な
くなることが判明した。本発明は、このように液晶ディ
スプレイとしての十分な明るさを維持しながら、フォト
工程を2回まで低減してプロセスの簡略化及び単純化を
図れるものである。
By using an ultra-thin metal oxide film as the second ultra-thin metal film, the visible light transmittance is improved, but when compared with the same mass and film thickness, the visible light transmittance of the ultra-thin metal film is about 70%. On the other hand, the visible light transmittance of ultra-thin metal oxide film is about 9
This is a significant improvement to 9%. Therefore, even if the ultra-thin metal oxide film is formed to be thick, the transmittance does not easily decrease, and therefore the film thickness limitation of 500 Å or less is eliminated, making it easy to form a thin film. Moreover, the second metal is C
The experimental evaluation results for the case where r is oxidized show that even if the second metal is oxidized, the polarity difference in the electrical characteristics of the MIM element is eliminated or becomes very small by performing a slight annealing treatment. . In this way, the present invention can simplify and simplify the process by reducing the number of photo steps to two while maintaining sufficient brightness for a liquid crystal display.

【0023】本発明はまた、第2の金属を酸化すること
により、第一の金属の表面を酸化してなる第一の絶縁膜
のさらなる酸化を進行させ、第一の絶縁膜内を酸素リッ
チの状態にすることができる。これは、第一の金属内の
酸化されていない可動金属イオンの濃度を減少させ、可
動イオンの移動により発生する素子の電気特性のシフト
をなくし、シフトが原因で発生していた液晶ディスプレ
イの残像減少および焼き付き減少をなくすことができる
ものである。従来からある断面図3で示すMIMにおい
ても、第2の金属を酸化することにより、以上述べた可
動イオンの移動により発生する素子の電気特性のシフト
をなくすことができるため、残像及び焼き付きなどにお
いて同様の効果が期待できる。
[0023] Furthermore, the present invention further oxidizes the first insulating film formed by oxidizing the surface of the first metal by oxidizing the second metal, thereby making the inside of the first insulating film rich in oxygen. can be in the state of This reduces the concentration of unoxidized mobile metal ions in the first metal, eliminates the shift in the electrical characteristics of the device caused by the movement of mobile ions, and eliminates the afterimage of the liquid crystal display that was caused by the shift. It is possible to eliminate reduction and burn-in reduction. Even in the conventional MIM shown in cross-sectional view 3, by oxidizing the second metal, it is possible to eliminate the shift in the electrical characteristics of the element caused by the movement of mobile ions as described above, so it is possible to prevent afterimages and burn-in. Similar effects can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のMIM素子形成基板断面図。FIG. 1 is a sectional view of a MIM element forming substrate of the present invention.

【図2】  本発明のMIM素子形成基板平面図。FIG. 2 is a plan view of the MIM element forming substrate of the present invention.

【図3】  従来のMIM素子形成基板断面図。FIG. 3 is a cross-sectional view of a conventional MIM element forming substrate.

【図4】  従来のフォト工程2回で形成できるMIM
素子形成基板断面図。
[Figure 4] MIM that can be formed using two conventional photo processes
A sectional view of an element forming substrate.

【図5】  極性差の小さいMIM素子の電気特性を表
すグラフ。
FIG. 5 is a graph showing the electrical characteristics of an MIM element with small polarity difference.

【図6】  極性差の大きいMIM素子の電気特性を表
すグラフ。
FIG. 6 is a graph showing the electrical characteristics of an MIM element with a large polarity difference.

【符号の説明】[Explanation of symbols]

1    第1の金属 2    第1の絶縁膜 3    第2の金属酸化物超薄膜 4    画素透明電極 5    第2の金属酸化物超薄膜と画素透明電極の2
層パターン 6    第1の金属と第1の絶縁膜の2層パターン7
    第2の金属 8    第2の金属超薄膜
1 First metal 2 First insulating film 3 Second metal oxide ultra-thin film 4 Pixel transparent electrode 5 Second metal oxide ultra-thin film and pixel transparent electrode 2
Layer pattern 6 Two-layer pattern 7 of first metal and first insulating film
Second metal 8 Second metal ultra-thin film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  第1の金属薄膜形成パターンの表面に
絶縁膜を形成しその上に反対側電極を成膜パターン形成
してなるMIM素子の反対側電極において、少なくとも
絶縁膜との界面近傍の反対側電極材料を金属酸化物にし
てMIMの2端子素子を形成することを特徴とする2端
子素子アクティブマトリクス液晶表示装置。
Claim 1: In an opposite electrode of an MIM element in which an insulating film is formed on the surface of a first metal thin film formation pattern and an opposite electrode is formed on the surface of the insulating film, at least a portion near the interface with the insulating film is formed. A two-terminal element active matrix liquid crystal display device characterized in that a two-terminal MIM element is formed by using a metal oxide as the material for the opposite electrode.
【請求項2】  第1の金属の表面を陽極酸化して絶縁
膜を形成し、その上に第2の金属を成膜形成してなるM
IM素子の第2の金属を質量膜厚500Å以下である超
薄膜として、さらに第2の金属とITO画素電極を同一
の形状に形成することによりフォト工程の簡略化を図っ
たMIMアクティブマトリクス素子形成基板において、
第2の金属を膜厚制限のない金属酸化物にすることを特
徴とする2端子素子アクティブマトリクス液晶表示装置
2. An M formed by anodizing the surface of a first metal to form an insulating film, and forming a film of a second metal on top of the insulating film.
Formation of an MIM active matrix element in which the photo process is simplified by forming the second metal of the IM element as an ultra-thin film with a mass film thickness of 500 Å or less, and by forming the second metal and the ITO pixel electrode in the same shape. On the board,
A two-terminal element active matrix liquid crystal display device, characterized in that the second metal is a metal oxide with no film thickness restrictions.
【請求項3】  前記第2の金属の酸化方法は、スパッ
タ成膜時のプラズマガスをO2ガスを混入したArガス
とするリアクティブスパッタ法とすることを特徴とする
請求項1記載の2端子素子アクティブマトリクス液晶表
示装置。
3. The method of oxidizing the second metal is a reactive sputtering method in which Ar gas mixed with O2 gas is used as a plasma gas during sputtering film formation. Active matrix liquid crystal display device.
【請求項4】  前記第2の金属の酸化方法を、成膜後
の熱酸化とすることを特徴とする請求項1記載の2端子
素子アクティブマトリクス液晶表示装置。
4. The two-terminal element active matrix liquid crystal display device according to claim 1, wherein the method of oxidizing the second metal is thermal oxidation after film formation.
【請求項5】  前記第2の金属の酸化方法を、成膜後
のランプアニールとすることを特徴とする請求項1記載
の2端子素子アクティブマトリクス液晶表示装置。
5. The two-terminal active matrix liquid crystal display device according to claim 1, wherein the method for oxidizing the second metal is lamp annealing after film formation.
【請求項6】  前記第2の金属の質量膜厚が500Å
以下の場合の酸化方法を、第2の金属成膜及びパターン
形成後の次の工程である画素透明電極形成時に、ITO
ターゲットなどを用いてスパッタ成膜する条件を、スパ
ッタ温度200℃以上にすることまたはプラズマガス中
の02流量比を1%以上にすることの内少なくとも1方
法とすることを特徴とする請求項1記載の2端子素子ア
クティブマトリクス液晶表示装置。
6. The mass film thickness of the second metal is 500 Å.
The oxidation method in the following case is used when forming the pixel transparent electrode, which is the next step after the second metal film formation and pattern formation.
Claim 1 characterized in that the conditions for sputtering film formation using a target or the like are at least one of setting the sputtering temperature to 200° C. or higher or setting the 02 flow rate ratio in the plasma gas to 1% or higher. The two-terminal active matrix liquid crystal display device described above.
JP11331491A 1991-05-17 1991-05-17 Transmissive liquid crystal display Expired - Fee Related JP3087340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11331491A JP3087340B2 (en) 1991-05-17 1991-05-17 Transmissive liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11331491A JP3087340B2 (en) 1991-05-17 1991-05-17 Transmissive liquid crystal display

Publications (2)

Publication Number Publication Date
JPH04340930A true JPH04340930A (en) 1992-11-27
JP3087340B2 JP3087340B2 (en) 2000-09-11

Family

ID=14609093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11331491A Expired - Fee Related JP3087340B2 (en) 1991-05-17 1991-05-17 Transmissive liquid crystal display

Country Status (1)

Country Link
JP (1) JP3087340B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861672A (en) * 1993-02-10 1999-01-19 Seiko Epson Corporation Nonlinear resistance element, manufacturing fabrication method thereof, and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861672A (en) * 1993-02-10 1999-01-19 Seiko Epson Corporation Nonlinear resistance element, manufacturing fabrication method thereof, and liquid crystal display device

Also Published As

Publication number Publication date
JP3087340B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
US20090051860A1 (en) Blank, black matrix, and color filter
JPH08234674A (en) Antireflection black matrix for display device and its manufacture
JPH08190091A (en) Thin film substrate for liquid crystal display, liquid crystal display using the thin film substrate and producing device for thin film substrate of liquid crystal display
US4983957A (en) Electrochromic display device capable of display in plural colors
JPH09213479A (en) El element and manufacture thereof
JPH04340930A (en) Active matrix liquid crystal display device with two-terminal element
JPH0237326A (en) Transparent substrate for color liquid crystal display
JP2680730B2 (en) Thin film EL panel
JPH11209884A (en) Production of substrate with light shielding layer and production of color filter substrate
JP2003107445A (en) Substrate for liquid crystal display device and its manufacturing method, liquid crystal display device employing it and its manufacturing method
JPH10307204A (en) Substrate with light shielding layer and its production as well as color filter substrate and liquid crystal display element
JPS59102216A (en) Production of fully solid-state type electrochromic element
JP2008010614A (en) Nonlinear element, its manufacturing method, electro-optic device, and reactive sputtering film-forming device
JPH0255342A (en) Electrochromic element
JPS61162048A (en) Production of liquid crystal display device
JPH0462050B2 (en)
JPH03174123A (en) Electrooptical device and production thereof
JPH09185085A (en) Nonlinear resistance element and its production
JPH10150233A (en) Manufacture of thin film diode
JPH0829768A (en) Light-shielding film for liquid crystal display device and liquid crystal display device
JPS62239124A (en) Liquid crystal display element
JPH06308538A (en) Production of liquid crystal display device
JPH08306710A (en) Fabrication of nonlinear element
JPH0566417A (en) Thin film transistor matrix and its manufacture
JPH05341325A (en) Mim liquid crystal panel and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees