JPH0434054A - Production of porous composite material - Google Patents

Production of porous composite material

Info

Publication number
JPH0434054A
JPH0434054A JP13486690A JP13486690A JPH0434054A JP H0434054 A JPH0434054 A JP H0434054A JP 13486690 A JP13486690 A JP 13486690A JP 13486690 A JP13486690 A JP 13486690A JP H0434054 A JPH0434054 A JP H0434054A
Authority
JP
Japan
Prior art keywords
component
sheet
resin material
outer surfaces
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13486690A
Other languages
Japanese (ja)
Other versions
JP2776615B2 (en
Inventor
Katsuhiko Yamaji
克彦 山路
Masanori Nakamura
雅則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP13486690A priority Critical patent/JP2776615B2/en
Publication of JPH0434054A publication Critical patent/JPH0434054A/en
Application granted granted Critical
Publication of JP2776615B2 publication Critical patent/JP2776615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject material having light weight, excellent rigidity, heat-resistance and formability and especially remarkably improved flexural strength and useful as a ceiling material for automobile by sandwiching an inorganic fiber and a resin material between plural sheet materials and heating the laminate at a specific temperature. CONSTITUTION:The objective material is produced by sandwiching (A) an inorganic fiber and (B) a resin material between (C) a pair of sheet materials, heating the laminate at a temperature to melt the component B and keep the component C in solid state, applying a pressure to both outer faces of the component C to impregnate the component B into the component A and expanding both outer surfaces of the component C to make the core layer composed of the component A and the component B to be porous and fusing and integrating the surface layers of the component C to both outer surfaces of the core layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車用天井材として好適に用いられる多孔
性複合材料の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a porous composite material that is suitably used as a ceiling material for automobiles.

(従来の技術) 一般に、自動車用天井材には、軽量で、剛性、耐熱性、
吸音性、成形性等の性能に優れた材料が要求される。
(Conventional technology) In general, automotive ceiling materials are lightweight, rigid, heat resistant,
Materials with excellent performance such as sound absorption and moldability are required.

従来より、この種の材料の製造方法としては、例えば特
開昭64−77664号公報に示すような方法が知られ
ている。すなわち、この方法は、無機繊維を主体とする
マント状物の両面に熱可塑性樹脂フィルムを積層して積
層シートとする。この積層シートの両面に、上記熱可塑
性樹脂が溶融状態では融着するが非溶融状態では接着し
ない板状体を積層する。ついで、熱可塑性樹脂の溶融温
度以上の温度に加熱して熱可塑性樹脂を溶融した状態で
加圧圧縮した後、解圧する。そして、熱可塑性樹脂が溶
融した状態で拡開し、積層シートの厚みを増大させた後
、冷却する。その後、板状体を剥離して複合材料を得る
ものである。
Conventionally, as a method for manufacturing this type of material, a method as shown in, for example, Japanese Patent Application Laid-Open No. 64-77664 is known. That is, in this method, thermoplastic resin films are laminated on both sides of a mantle-like article mainly made of inorganic fibers to form a laminated sheet. On both sides of this laminated sheet, plate-like bodies are laminated on both sides of the laminated sheet, to which the thermoplastic resin is fused when it is molten, but not adhered when it is not molten. Next, the thermoplastic resin is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin, and the thermoplastic resin is compressed under pressure in a molten state, and then depressurized. Then, the thermoplastic resin is expanded in a molten state to increase the thickness of the laminated sheet, and then cooled. Thereafter, the plate-like body is peeled off to obtain a composite material.

そして、このような複合材料は、その表面に、塩化ビニ
ルレザー、不織布等の化粧用表皮材を積層することによ
って使用される。
Such a composite material is used by laminating a cosmetic skin material such as vinyl chloride leather or nonwoven fabric on its surface.

(発明が解決しようとする課題) このように、従来は、複合材料の製造工程と、化粧用表
皮材の積層工程とを分離して行っていたので、生産性が
劣るといった不都合を生じていた。
(Problem to be solved by the invention) As described above, in the past, the manufacturing process of composite materials and the laminating process of cosmetic skin materials were carried out separately, resulting in inconveniences such as poor productivity. .

本発明は、係る実情に鑑みてなされたもので、複合材料
の製造と化粧用表皮材の被覆とを同時に行う多孔性複合
材料の製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a porous composite material in which the production of the composite material and the coating of a cosmetic skin material are carried out simultaneously.

(課題を解決するための手段) 本発明の多孔性複合材料の製造方法は、無機繊維が樹脂
材料によって多数の空隙を有する状態で結着された中心
層と、前記樹脂材料が粘性状態になる温度より高温度で
固体状態を保持するシート状材料から成る表面層とから
なる多孔性複合材料の製造方法であって、無機繊維およ
び樹脂材料を、2枚のシート状材料に挟み、前記樹脂材
料が粘性状態になる温度以上で且つ前記シート状材料が
固体状態を保持する温度で加熱し、前記シート状材料の
両外面から圧力を加えて前記樹脂材料を前記無機繊維に
含浸させた後、前記シート状材料の両外面を拡開するこ
とにより、無機繊維と樹脂材料とからなる中心層を多孔
化させるとともに、該中心層の両外面にシート状材料か
らなる表面層を融着一体化させるものである。
(Means for Solving the Problems) The method for producing a porous composite material of the present invention includes a central layer in which inorganic fibers are bound together by a resin material with a large number of voids, and a core layer in which the resin material is in a viscous state. A method for producing a porous composite material comprising: a surface layer made of a sheet-like material that maintains a solid state at a temperature higher than that of the above-mentioned temperature; is heated at a temperature at which the sheet material becomes viscous or higher and maintains a solid state, and pressure is applied from both outer surfaces of the sheet material to impregnate the inorganic fibers with the resin material; By expanding both outer surfaces of a sheet-like material, a central layer made of inorganic fibers and a resin material is made porous, and a surface layer made of a sheet-like material is fused and integrated with both outer surfaces of the center layer. It is.

上記無機繊維としては、たとえばガラス繊維ロックウー
ル、セラミック繊維、炭素繊維等があげられ、その長さ
は中心層の成形体の形成性の点から10〜200fiが
好ましく5ON以上のものが70重量%以上含まれてい
るのがより好ましい。
Examples of the above-mentioned inorganic fibers include glass fiber rock wool, ceramic fibers, carbon fibers, etc., and the length thereof is preferably 10 to 200 fi from the viewpoint of forming a molded body in the center layer, and 70% by weight of 5ON or more. It is more preferable that the above is included.

又、その太さは細くなると機械的強度が低下し、太くな
ると重くなって萬密度が小さくなるので3〜30μmが
好ましく、より好ましくは5〜20μmである。
Further, the thickness is preferably 3 to 30 μm, more preferably 5 to 20 μm, because as the thickness becomes thinner, the mechanical strength decreases, and as the thickness becomes thicker, it becomes heavier and the density decreases.

上記樹脂材料は無機繊維同士を結着しうるちのであれば
よく、たとえば、ポリエチレン、ポリプロピレン、飽和
ポリエステル、ポリアミド、ポリスチレン、ポリビニル
ブチラール、ポリウレタン等の熱可塑性樹脂があげられ
る。
The resin material may be any material that binds inorganic fibers together, and includes thermoplastic resins such as polyethylene, polypropylene, saturated polyester, polyamide, polystyrene, polyvinyl butyral, and polyurethane.

樹脂材料の形態は繊維、粉末、溶液、サスペンション、
エマルジョン、フィルム等任意の形態が使用可能であり
、本発明の多孔性複合材料を製造する際の方法によって
それぞれ好適な形態で使用される。
The forms of resin materials are fiber, powder, solution, suspension,
Any form such as an emulsion or a film can be used, and each is used in a suitable form depending on the method for manufacturing the porous composite material of the present invention.

上記無機繊維と樹脂材料の比率は、樹脂材料の量が少な
くなると結合部分が少なくなり、中心層の機械的強度が
低下し、逆に多くなると空隙率が低下するので重量比で
1:4〜4:1が好ましい。
The ratio of the above-mentioned inorganic fibers and resin material is 1:4 to 1:4 by weight, because when the amount of resin material decreases, the number of bonding parts decreases and the mechanical strength of the center layer decreases, and when it increases, the porosity decreases. 4:1 is preferred.

上記表面層は、中心層に用いた前記樹脂が溶融状態にな
る温度よりも高温度で固体状態を保持する物質からなり
、例えば、中心層にPEやPPを用いた場合に対しては
表面層はポリアミド、 PET。
The surface layer is made of a substance that maintains a solid state at a temperature higher than the temperature at which the resin used for the center layer becomes molten. For example, when PE or PP is used for the center layer, the surface layer is polyamide, PET.

PBT等があげられる。又、中心層に樹脂を用い、表面
層に紙や鉄、アルミ、銅などの金属板やポリエステル不
織布や織布を用いることができる。
Examples include PBT. Further, a resin may be used for the center layer, and a metal plate such as paper, iron, aluminum, or copper, or a polyester nonwoven fabric or woven fabric may be used for the surface layer.

次に、本発明の多孔性複合材料の製造方法の一例を示す
Next, an example of a method for manufacturing the porous composite material of the present invention will be described.

まず、2枚のシート状材料間に無機繊維と樹脂材料とを
挟む。
First, an inorganic fiber and a resin material are sandwiched between two sheet-like materials.

この際、無機繊維は、マット状に形成しておく。At this time, the inorganic fibers are formed into a mat shape.

このマット状に形成する方法としては、たとえば無機繊
維をカードマシンに供給し、解繊、混繊しマット状に製
造する等、任意の方法が採用される。
Any method can be used to form the matte shape, such as supplying inorganic fibers to a card machine, defibrating and mixing them to produce a matte shape.

また、無機繊維を接着するためやマット状物の萬密度を
上げるために、ポリエチレン、ポリプロピレン、不飽和
ポリエステル、ポリアミド、ポリスチレン、ポリビニル
ブチラール等の熱可塑性樹脂よりなる有機繊維や有機粉
末が添加されてもよい。有機繊維の添加はマット状物を
製造する際に添加するのが好ましいが、有機粉末はマン
ト状物を製造する際でもよいしマット状物を製造した後
に散布してもよい。また、有機粉末は粉末として使用さ
れてもよいし、粉末の分散液やエマルジョンとして使用
されてもよい。有機繊維の長さ及び直径は無機繊維と混
繊してマント状物を形成する際の形成性がすぐれている
のが好ましいので、長さは5〜200mが好ましく、よ
り好ましくは20〜100mであり、太さは3〜50μ
mが好ましく、より好ましくは20〜40μmである。
In addition, organic fibers and organic powders made of thermoplastic resins such as polyethylene, polypropylene, unsaturated polyester, polyamide, polystyrene, and polyvinyl butyral are added to bond inorganic fibers and to increase the density of mat-like materials. Good too. It is preferable to add the organic fibers when producing the mat-like product, but the organic powder may be sprinkled during the production of the cloak-like product or after producing the mat-like product. Further, the organic powder may be used as a powder, or as a powder dispersion or emulsion. The length and diameter of the organic fibers are preferably 5 to 200 m, more preferably 20 to 100 m because they have excellent formability when mixed with inorganic fibers to form a cloak-like object. Yes, thickness is 3-50μ
m is preferable, and more preferably 20 to 40 μm.

さらに、有機粉末の直径は粉末状態で添加される際には
50〜100メツシユが好ましく、貧溶媒に分散された
状態もしくはエマルジョンにして添加される際にはもっ
と小さくてもよい。
Further, the diameter of the organic powder is preferably 50 to 100 mesh when added in a powdered state, and may be smaller when added in a state dispersed in a poor solvent or in the form of an emulsion.

なお、マント状物の機械的強度を向上させるためにニー
ドルパンチを施こしてもよく、ニードルバンチは1−当
たり10〜60個所行われるのが好ましい。
In addition, in order to improve the mechanical strength of the cloak-like article, needle punching may be performed, and it is preferable that needle punching is performed at 10 to 60 locations per 1 inch.

マット状物の密度は大きくなると重くなり、小さくなる
と機械的強度が低下するので0.01〜0.2g/cd
が好ましく、より好ましくは0.03〜0.07g/c
dである。また、全体としての空隙率は70〜98%が
好ましい。さらに、マ・ノド状物の厚さは用途により適
宜決定されればよいが、一般には2〜200mである。
As the density of the mat-like material increases, it becomes heavier, and as it becomes smaller, the mechanical strength decreases, so it is 0.01 to 0.2 g/cd.
is preferable, more preferably 0.03 to 0.07 g/c
It is d. Further, the overall porosity is preferably 70 to 98%. Furthermore, the thickness of the mandrel-shaped material may be appropriately determined depending on the intended use, but is generally 2 to 200 m.

一方、樹脂材料は、熱可塑性樹脂フィルムシートを、マ
ント状の無機繊維の片面または両面に積層することによ
って供給する。
On the other hand, the resin material is supplied by laminating a thermoplastic resin film sheet on one or both sides of a cloak-shaped inorganic fiber.

上記熱可塑性樹脂フィルムとしては、ポリエチレン、ポ
リプロピレン、ポリスチレン、不飽和ポリエステル、ポ
リウレタン、ポリビニルブチラール、ポリ塩化ビニル等
の熱可塑性樹脂のフィルムがあげられる。なお、有機繊
維もしくは粉末を接着剤としてマット状物に添加する際
には溶融温度の近いものを使用するのが好ましい。
Examples of the thermoplastic resin film include films of thermoplastic resins such as polyethylene, polypropylene, polystyrene, unsaturated polyester, polyurethane, polyvinyl butyral, and polyvinyl chloride. In addition, when adding organic fibers or powder to a mat-like material as an adhesive, it is preferable to use materials with a similar melting temperature.

熱可塑性樹脂フィルムの厚さは厚くなると重くなり、薄
くなると機械的強度が低下するので50〜500μmが
好ましく、より好ましくは70〜300μmである。ま
た、有機繊維や粉末を接着剤として併用する際には有機
繊維や粉末により無機繊維は接着されるので熱可塑性樹
脂フィルムの厚さを薄くすることができる。
The thickness of the thermoplastic resin film is preferably 50 to 500 μm, more preferably 70 to 300 μm, because the thicker the thermoplastic resin film, the heavier it becomes, and the thinner the film, the lower the mechanical strength. Further, when organic fibers or powder are used together as an adhesive, the inorganic fibers are bonded by the organic fibers or powder, so the thickness of the thermoplastic resin film can be reduced.

熱可塑性樹脂フィルムを積層する方法は任意の方法が採
用されてよく、たとえば単に載置する方法、熱融着する
方法、押出ラミネートする方法等があげられる。
Any method may be used to laminate the thermoplastic resin films, such as simply placing them, heat-sealing them, extrusion lamination, and the like.

そして、樹脂材料が溶融状態になる温度以上で且つ前記
シート状材料が固体状態を保持する温度で加熱し、シー
ト状材料の両外面から圧力を加えて樹脂材料を無機繊維
に含浸させる。
Then, the inorganic fibers are impregnated with the resin material by heating at a temperature higher than the temperature at which the resin material melts and at which the sheet material remains solid, and by applying pressure from both outer surfaces of the sheet material.

この際、加熱する方法は任意の方法が採用されてよく、
たとえば熱風加熱方法、赤外線ヒーター遠赤外線ヒータ
ーなどによる輻射加熱方法等があげられる。
At this time, any heating method may be used,
Examples include a hot air heating method, a radiant heating method using an infrared heater, a far-infrared heater, and the like.

また、圧力を加える方法も任意の方法が採用されてよく
、たとえばプレスする方法、ロールで圧縮する方法等が
あげられる。プレス圧力は0. 1〜20kg/aJで
あって、中心層と表面層とを合わせた全体の厚みの41
5以下圧縮されるのが好ましく、圧縮時間は数秒あれば
よい。また、ロールで圧縮する際にはロール間を、中心
層と表面層とを合わせた全体の厚みの415〜1/20
に設定するのが好ましい。
Further, any method may be used to apply pressure, such as a pressing method, a method of compressing with a roll, etc. Press pressure is 0. 1 to 20 kg/aJ, and the total thickness of the center layer and surface layer is 41
It is preferable that the data be compressed by 5 or less, and the compression time may be several seconds. In addition, when compressing with rolls, the thickness between the rolls should be 415 to 1/20 of the total thickness of the center layer and surface layer.
It is preferable to set it to .

この際、溶融した熱可塑性樹脂は、加圧圧縮されること
によって無機繊維中に含浸される。次に解圧すると積層
シートは元の厚さに回復しようとするが無機繊維は一度
押しつぶされているので充分に回復しない。
At this time, the molten thermoplastic resin is compressed under pressure and impregnated into the inorganic fibers. Next, when the pressure is released, the laminated sheet attempts to recover to its original thickness, but since the inorganic fibers have been crushed once, they do not recover sufficiently.

そこで、熱可塑性樹脂が溶融した状態で表面層材料の両
外面を拡開することにより、無機繊維と樹脂材料とから
なる中心層の厚みを増大させ多孔化するとともに、該中
心層の両外面にシート状材料からなる表面層を融着一体
化し、その後冷却する。
Therefore, by expanding both outer surfaces of the surface layer material in a state where the thermoplastic resin is molten, the thickness of the center layer made of inorganic fibers and resin material is increased and made porous, and both outer surfaces of the center layer are expanded. The surface layer made of sheet material is fused and integrated, and then cooled.

すると、中心層材料は表面層材料に融着しているから厚
みが回復され萬高くなる。なお、この際、熱可塑性樹脂
は溶融しているので無機繊維や接着部分が破断すること
はない。
Then, since the center layer material is fused to the surface layer material, the thickness is restored and the thickness is increased. Note that at this time, since the thermoplastic resin is molten, the inorganic fibers and the bonded portions will not break.

拡開の方法は、たとえば表面層材料の両端を持って行っ
てもよいし、真空吸引によって反対方向に引張してもよ
い。
The method of spreading may be carried out, for example, by holding both ends of the surface layer material or by pulling it in opposite directions by means of vacuum suction.

冷却は放冷であってもよいし冷風を吹き付けてもよい。Cooling may be done by air cooling or by blowing cold air.

なお、拡開しつつあるときも冷却してよいが、その場合
は拡開が終了するまで熱可塑性樹脂が溶融しているよう
に条件を設定する必要がある。
Note that cooling may be performed even when the expansion is in progress, but in that case, conditions must be set so that the thermoplastic resin remains molten until the expansion is completed.

冷却して熱可塑性樹脂を固化させることで、目的の複合
材料を得る。
By cooling and solidifying the thermoplastic resin, the desired composite material is obtained.

(作用) 本発明の多孔性複合材料の製造方法は、無機繊維および
樹脂材料を、2枚のシート状材料に挟み、前記樹脂材料
が溶融状態になる温度以上で且つ前記シート状材料が固
体状態を保持する温度で加熱し、前記シート状材料の両
外面から圧力を加えて前記樹脂材料を前記無機繊維に含
浸させた後、前記シート状材料の両外面を拡開する。こ
れにより、無機繊維と樹脂材料とからなる中心層が多数
の空隙を有する状態で結着されるとともに、該中心層の
両外面にシート状材料からなる表面層が融着−体化する
こととなる。
(Function) The method for producing a porous composite material of the present invention includes sandwiching an inorganic fiber and a resin material between two sheet-like materials, and heating the resin material at a temperature equal to or higher than the temperature at which the resin material is in a molten state and at which the sheet-like material is in a solid state. The inorganic fibers are impregnated with the resin material by applying pressure from both outer surfaces of the sheet-like material, and then both outer surfaces of the sheet-like material are expanded. As a result, the center layer made of inorganic fibers and resin material is bonded together with a large number of voids, and the surface layer made of sheet-like material is fused to both outer surfaces of the center layer. Become.

〔第1実施例〕 長さ40〜200fl、直径9〜13μmのガラス繊維
をカードマシンに供給し、混繊してマ・ット状にし、1
(Jl!当たり20箇所ニードルパンチを行って厚さ1
0MM、重さ600g/rrrのマント状物を得た。つ
いで、その両面にポリエチレンシート(厚さ100μm
、重さ100g/nf)を積層して積層シートを得た。
[First Example] Glass fibers with a length of 40 to 200 fl and a diameter of 9 to 13 μm were supplied to a card machine, mixed into a mat shape, and 1
(Needle punch 20 places per Jl! to a thickness of 1
A cloak-like article having a diameter of 0 MM and a weight of 600 g/rrr was obtained. Next, polyethylene sheets (thickness 100 μm
, weight 100 g/nf) were laminated to obtain a laminated sheet.

得られた積層シートの両面に厚さ50pmのわら半紙を
積層し、200℃で3分間加熱した。そして、クリアラ
ンスが1.3fiで、200℃に加熱したロールで10
cm/秒の速度で圧縮し、200℃に保って両表面層材
料を両端から0.56/秒の速度で真空吸引して拡開し
、積層シートの厚みを9鶴まで回復した後、3分間空冷
して多孔性複合材料を得た。
Straw paper with a thickness of 50 pm was laminated on both sides of the obtained laminated sheet and heated at 200° C. for 3 minutes. Then, with a clearance of 1.3 fi and a roll heated to 200°C,
After compressing at a speed of cm/sec, maintaining the temperature at 200°C, and expanding both surface layer materials by vacuum suction from both ends at a speed of 0.56/sec to restore the thickness of the laminated sheet to 9. A porous composite material was obtained by air cooling for a minute.

こうして得られた複合材料を200℃のオープンで2分
間加熱した後、30℃の金型で1 kg/Jの圧縮力で
1分間圧縮し、第1図に示すように段差りを形成した多
孔性複合材料の成形体1を得た。
The composite material thus obtained was heated in the open at 200°C for 2 minutes, and then compressed in a mold at 30°C for 1 minute with a compression force of 1 kg/J to form a porous structure with steps as shown in Figure 1. A molded article 1 of the composite material was obtained.

金型は最小肉厚部が3.0m、肉厚部が8.0m、凹部
の曲率半径が5鶴であり、得られた成形体1は長さLi
2O2日、幅W900m、段差D20nであった。
The minimum thickness of the mold is 3.0 m, the thick part is 8.0 m, and the radius of curvature of the concave part is 5. The molded body 1 obtained has a length Li.
It took 202 days, width W900m, and step D20n.

第2図に示すように、この成形体1を幅50日の長板状
に切断して試験片10とした。そして、これを100m
間隔A間隔持し、その中心位置の上方から荷重Gを加え
、該試験片lOが折れる寸前の曲げ荷重(kg15cm
幅)を測定した。結果を表1に示す。
As shown in FIG. 2, this molded body 1 was cut into a long plate shape having a width of 50 days to obtain a test piece 10. And this 100m
A load G is applied from above the center position of the test piece A, and a bending load (kg 15 cm) is applied just before the test piece lO breaks.
width) was measured. The results are shown in Table 1.

〔第2実施例〕 上記第1実施例のわら半紙に代えて、厚さ約21(30
0g/rrr>のポリエステル不織布を用い、その他を
上記第1実施例と同様にして多孔性複合材料を得た。ま
た、上記第1実施例同様に成形体を成形し、曲げ荷重を
測定した。結果を表1に示す。
[Second Embodiment] In place of the straw paper used in the first embodiment, a sheet with a thickness of about 21 (30
A porous composite material was obtained in the same manner as in Example 1 above, except that a polyester nonwoven fabric with a weight of 0g/rrr> was used. Further, a molded body was molded in the same manner as in the first example, and the bending load was measured. The results are shown in Table 1.

〔第3実施例〕 上記第1実施例のわら半紙に代えて、厚さ30μmのア
ルミ箔を用い、その他を上記第1実施例と同様にして多
孔性複合材料を得た。また、上記第1実施例の圧縮力を
1 kg/d!から7kg/−に変更し、その他を上記
第1実施例と同様にして成形体を成形し、曲げ荷重を測
定した。結果を表1に示す。
[Third Example] A porous composite material was obtained in the same manner as in the first example except that aluminum foil with a thickness of 30 μm was used in place of the straw paper used in the first example. Moreover, the compression force of the first embodiment is 1 kg/d! The weight was changed from 1 to 7 kg/-, and the other conditions were the same as in the first example to form a molded body, and the bending load was measured. The results are shown in Table 1.

〔比較例〕[Comparative example]

上記第1実施例のわら半紙を用いず、その他を上記第1
実施例と同様にして多孔性複合材料を得た。また、上記
第1実施例同様に成形体を成形し、曲げ荷重を測定した
。結果を表1に示す。
The straw hanshi of the first embodiment was not used, and the others were used in the first embodiment.
A porous composite material was obtained in the same manner as in the example. Further, a molded body was molded in the same manner as in the first example, and the bending load was measured. The results are shown in Table 1.

表  1 低下余白) (発明の効果) 以上述べたように、本発明によると、無機繊維と樹脂材
料とからなる中心層が多数の空隙を有する状態で結着さ
れるとともに、該中心層の両外面にシート状材料からな
る表面層が融着一体化することとなるので、軽量で、剛
性、耐熱性、賦形性に優れ、特に曲げ強さが著しく向上
した多孔性複合材料を容易に製造することができる。
Table 1 Decreasing Margin) (Effects of the Invention) As described above, according to the present invention, the central layer made of inorganic fibers and resin material is bound together with a large number of voids, and both sides of the central layer Since the surface layer made of sheet-like material is fused and integrated with the outer surface, it is possible to easily produce porous composite materials that are lightweight, have excellent rigidity, heat resistance, and shapeability, and in particular have significantly improved bending strength. can do.

また、両表面層が融着一体化した状態で製造されるため
無機繊維の飛散がほとんど無く、環境衛生的にも優れて
いる。
In addition, since both surface layers are manufactured in a state where they are fused and integrated, there is almost no scattering of inorganic fibers, which is excellent in terms of environmental hygiene.

さらに、両表面層が紙、合成繊維織布、不織布の場合、
加熱後賦形プレスして所定の形状に成形可能であるし、
金属板の場合特に加熱しなくても賦形成形可能である。
Furthermore, if both surface layers are paper, synthetic fiber woven fabric, or non-woven fabric,
It can be molded into a predetermined shape by shaping and pressing after heating,
In the case of a metal plate, it is possible to shape it without any special heating.

もちろん加熱して中心層を溶融した方が賦形は容易にな
る。
Of course, shaping becomes easier if the center layer is melted by heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第1実施例ないし第3実施例において成形さ
れる多孔性複合材料からなる成形体の全体構成の概略を
示す斜視図、第2図は同成形体を用いて行った曲げ荷重
試験の方法を示す概略図である。 1・・・成形体 (多孔性複合材料の製造方法)
Figure 1 is a perspective view schematically showing the overall structure of a molded body made of a porous composite material molded in the first to third examples, and Figure 2 is a bending load applied to the molded body. FIG. 2 is a schematic diagram showing the test method. 1... Molded body (method for manufacturing porous composite material)

Claims (1)

【特許請求の範囲】 1)無機繊維が樹脂材料によって多数の空隙を有する状
態で結着された中心層と、前記樹脂材料が溶融状態にな
る温度より高温度で固体状態を保持するシート状材料か
ら成る表面層とからなる多孔性複合材料の製造方法であ
って、 無機繊維および樹脂材料を、2枚のシート状材料に挟み
、前記樹脂材料が溶融状態になる温度以上で且つ前記シ
ート状材料が固体状態を保持する温度で加熱し、前記シ
ート状材料の両外面から圧力を加えて前記樹脂材料を前
記無機繊維に含浸させた後、前記シート状材料の両外面
を拡開することにより、無機繊維と樹脂材料とからなる
中心層を多孔化させるとともに、該中心層の両外面にシ
ート状材料からなる表面層を融着一体化させることを特
徴とする多孔性複合材料の製造方法。
[Claims] 1) A central layer in which inorganic fibers are bound by a resin material with a large number of voids, and a sheet-like material that maintains a solid state at a temperature higher than the temperature at which the resin material becomes molten. A method for producing a porous composite material comprising a surface layer consisting of an inorganic fiber and a resin material sandwiched between two sheet-like materials, the temperature at which the resin material melts or higher, and the sheet-like material By heating at a temperature that maintains a solid state and applying pressure from both outer surfaces of the sheet-like material to impregnate the inorganic fibers with the resin material, expanding both outer surfaces of the sheet-like material, A method for producing a porous composite material, which comprises making a center layer made of inorganic fibers and a resin material porous, and integrating surface layers made of a sheet-like material by fusing on both outer surfaces of the center layer.
JP13486690A 1990-05-24 1990-05-24 Method for producing porous composite material Expired - Fee Related JP2776615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13486690A JP2776615B2 (en) 1990-05-24 1990-05-24 Method for producing porous composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13486690A JP2776615B2 (en) 1990-05-24 1990-05-24 Method for producing porous composite material

Publications (2)

Publication Number Publication Date
JPH0434054A true JPH0434054A (en) 1992-02-05
JP2776615B2 JP2776615B2 (en) 1998-07-16

Family

ID=15138307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13486690A Expired - Fee Related JP2776615B2 (en) 1990-05-24 1990-05-24 Method for producing porous composite material

Country Status (1)

Country Link
JP (1) JP2776615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172200A1 (en) * 2000-07-11 2002-01-16 Honda Giken Kogyo Kabushiki Kaisha Ceiling member for automobile interior

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1172200A1 (en) * 2000-07-11 2002-01-16 Honda Giken Kogyo Kabushiki Kaisha Ceiling member for automobile interior

Also Published As

Publication number Publication date
JP2776615B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JPH0257333A (en) Sound absorption material
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JP2974581B2 (en) Manufacturing method of molded ceiling base material for automobile
JP2776615B2 (en) Method for producing porous composite material
JP2831673B2 (en) Method for producing fiber molded body
JP2582858B2 (en) Method for producing fiber molded article for thermoforming
JPH03161335A (en) Preparation of lightweight composite material
JPH0880601A (en) Production of composite sheet with skin material
JPH0276725A (en) Manufacture of composition material
JP2002036405A (en) Thermoformable core material and automobile ceiling material
JPH01166946A (en) Manufacture of fibrous molding for thermoforming
JPH0462053A (en) Manufacture of porous composite material
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JP3095503B2 (en) Thermoformable core material and method for producing the same
JP3050979B2 (en) Fiber composite material and method for producing the same
JPH04228665A (en) Production of fiber composite material
JP2536908B2 (en) Method for producing thermoformable composite material
JPH0280653A (en) Production of thermo-formable composite material
JPH0253948A (en) Thermo-formable composite material
JP3004183B2 (en) Manufacturing method of molded composite
JPH01165431A (en) Manufacture of fiber molding to be thermally molded
JPH07864B2 (en) Method for producing composite material for thermoforming
JPH05311556A (en) Production of fiber composite product
JPH0261150A (en) Thermally formable composite material and production thereof
JPH01314769A (en) Production of molded article of fiber for thermal molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees