JP2872896B2 - Thermoformable core material, production method thereof and interior material - Google Patents

Thermoformable core material, production method thereof and interior material

Info

Publication number
JP2872896B2
JP2872896B2 JP28475393A JP28475393A JP2872896B2 JP 2872896 B2 JP2872896 B2 JP 2872896B2 JP 28475393 A JP28475393 A JP 28475393A JP 28475393 A JP28475393 A JP 28475393A JP 2872896 B2 JP2872896 B2 JP 2872896B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
heat
mat
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28475393A
Other languages
Japanese (ja)
Other versions
JPH0760883A (en
Inventor
秀明 田中
文男 西谷
亮 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP28475393A priority Critical patent/JP2872896B2/en
Publication of JPH0760883A publication Critical patent/JPH0760883A/en
Application granted granted Critical
Publication of JP2872896B2 publication Critical patent/JP2872896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱成形される複合材、
特に自動車等の車両の天井基材、ドアの内装基材に使用
される熱成形性芯材、その製造方法及び内装材に関する
ものである。
This invention relates to thermoformed composites,
In particular, the present invention relates to a thermoformable core material used for a ceiling base material of a vehicle such as an automobile and an interior base material of a door, a method for producing the core material, and an interior material.

【0002】[0002]

【従来の技術】従来、自動車等の車両の内装材、特に熱
成形天井の基材に使用される熱成形性芯材は、軽量で、
剛性、耐熱性、熱賦形性、非通気性等の性能が優れてい
ることが要求される。この種の材料としては、例えば、
特開平1−56562号公報や特開平2−53948号
公報には、軽量性、耐熱性、熱賦形性、吸音性等を損な
うことなく、芯材自体が加熱賦形された後も完全に通気
遮断性を有する熱成形性芯材及びその製造方法が開示さ
れている。
2. Description of the Related Art Conventionally, thermoformable core materials used for interior materials of vehicles such as automobiles, in particular, base materials for thermoformed ceilings are lightweight,
It is required to have excellent properties such as rigidity, heat resistance, heat shaping, and air permeability. Such materials include, for example,
JP-A-1-56562 and JP-A-2-53948 disclose that the core material itself is completely heated and shaped without impairing the lightness, heat resistance, heat shaping property, sound absorbing property and the like. A thermoformable core material having ventilation blocking properties and a method for producing the same are disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかし、この種の熱成
形性芯材等を、例えば、自動車の成形天井の基材として
使用する場合、この熱成形性芯材の表面に、表皮材、例
えば、ニット表皮、ニットウレタン表皮、不織布表皮等
を積層するために、熱成形性芯材の加熱賦形後、表皮材
を積層すべき表面に接着性樹脂を有機溶剤に溶解もしく
は水に分散させた接着剤を塗布乾燥する工程を設け、そ
の後、熱成形性芯材に表皮材を積層しなければならな
い。このように従来法は接着剤の塗布乾燥工程を要し、
しかも作業環境を汚すといった欠点を有していた。
However, when such a thermoformable core material or the like is used as a base material of a molded ceiling of an automobile, for example, a surface material such as a skin material is formed on the surface of the thermoformable core material. After laminating a thermoformable core material to laminate a knit skin, a knit urethane skin, a nonwoven fabric skin, etc., the adhesive resin was dissolved in an organic solvent or dispersed in water on the surface on which the skin material was to be laminated. A step of applying and drying the adhesive must be provided, and then the skin material must be laminated to the thermoformable core material. Thus, the conventional method requires a coating and drying process of the adhesive,
In addition, there is a disadvantage that the working environment is soiled.

【0004】本発明の目的は、上記欠点に鑑み、軽量
性、耐熱性、熱賦形性、吸音性及び通気遮断性を損なう
ことなく、且つ、表皮材積層のための接着剤塗布及び乾
燥工程を設けることなく表皮材の積層を可能ならしめる
熱成形性芯材、その製造方法及び内装材を提供すること
にある。
An object of the present invention is to provide an adhesive application and drying process for laminating a skin material without impairing the lightness, heat resistance, heat shaping, sound absorption and air-permeability, in view of the above drawbacks. It is an object of the present invention to provide a thermoformable core material capable of laminating a skin material without providing the same, a production method thereof, and an interior material.

【0005】[0005]

【課題を解決するための手段】本発明1は、無機繊維と
熱可塑性樹脂繊維を主材料として形成されたマット状物
の少なくとも一外方に、前記熱可塑性樹脂繊維より溶融
温度の高い耐熱剛性樹脂層と、熱活性樹脂層とがこの順
に積層されてなる熱成形性芯材である。
According to the first aspect of the present invention, a heat-resistant stiffness having a higher melting temperature than that of the thermoplastic resin fiber is provided on at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers. It is a thermoformable core material in which a resin layer and a thermoactive resin layer are laminated in this order.

【0006】本発明1において、マット状物は無機繊維
と熱可塑性樹脂繊維を主材料としたものからなる。無機
繊維としては、例えば、ガラス繊維、ロックウール等が
挙げられる。無機繊維の長さは、基層の成形性の観点か
ら、5〜250mmが好ましく、より好ましくは、50
〜150mmのものが70重量%以上の分布をなすもの
である。又、無機繊維の太さは、得られる熱成形性芯材
の曲げ強度、厚み回復性の観点から、5〜20μmが好
ましく、より好ましくは7〜13μmである。
[0006] In the present invention 1, the mat-like material is composed mainly of inorganic fibers and thermoplastic resin fibers. Examples of the inorganic fibers include glass fibers and rock wool. From the viewpoint of the moldability of the base layer, the length of the inorganic fiber is preferably 5 to 250 mm, more preferably 50 to 250 mm.
Those having a size of about 150 mm have a distribution of 70% by weight or more. In addition, the thickness of the inorganic fiber is preferably from 5 to 20 μm, more preferably from 7 to 13 μm, from the viewpoint of the bending strength and the thickness recovery of the obtained thermoformable core material.

【0007】熱可塑性樹脂繊維は、溶融され易く無機繊
維と結着する樹脂が好ましい。このような熱可塑性樹脂
繊維としては、例えば、ポリエチレン、ポリプロピレ
ン、ポリスチレン等の樹脂からなる繊維が挙げられる。
熱可塑性樹脂繊維の長さ及び太さは、無機繊維に分散性
よく混繊して容易に基層を形成できる程度が好ましい。
具体的には、長さは好ましくは5〜200mm、より好
ましくは20〜100mmである。太さは5〜70μm
が好ましく、より好ましくは15〜40μmである。
The thermoplastic resin fiber is preferably a resin which is easily melted and binds to the inorganic fiber. Examples of such thermoplastic resin fibers include fibers made of a resin such as polyethylene, polypropylene, and polystyrene.
The length and thickness of the thermoplastic resin fibers are preferably such that the base layer can be easily formed by mixing the inorganic fibers with the dispersant with good dispersibility.
Specifically, the length is preferably 5 to 200 mm, more preferably 20 to 100 mm. The thickness is 5 to 70 μm
And more preferably 15 to 40 μm.

【0008】マット状物中には、必要に応じて熱可塑性
樹脂が含有されていてもよい。熱可塑性樹脂は、溶融状
態で無機繊維間に含浸し易く、且つ、無機繊維と結着し
易いものが好ましい。このような熱可塑性樹脂として
は、例えば、ポリエチレン、ポリプロピレン、ポリスチ
レン、エチレン−酢酸ビニル共重合体、飽和ポリエステ
ル及びこれらの変性物(例えば、無水マレイン酸変性ポ
リエチレン)等の熱可塑性樹脂が挙げられる。
The mat-like material may contain a thermoplastic resin as required. It is preferable that the thermoplastic resin is easily impregnated between the inorganic fibers in a molten state and easily bonded to the inorganic fibers. Examples of such a thermoplastic resin include thermoplastic resins such as polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, saturated polyester, and modified products thereof (for example, maleic anhydride-modified polyethylene).

【0009】本発明1の熱成形性芯材は、マット状物の
少なくとも一外方に、前記熱可塑性樹脂繊維より溶融温
度の高い耐熱剛性樹脂層と、熱活性樹脂層とがこの順に
積層されている。
In the thermoformable core material of the present invention 1, a heat-resistant rigid resin layer having a higher melting temperature than the thermoplastic resin fiber and a thermoactive resin layer are laminated in this order on at least one outer side of the mat-like material. ing.

【0010】耐熱剛性樹脂は、前記熱可塑性樹脂繊維及
び必要に応じて含有される熱可塑性樹脂より溶融温度の
高いものであり、必要に応じて含有される熱可塑性樹脂
の溶融温度より30℃以上、好ましくは50℃以上高い
ものが好ましい。これにより、マット状物に積層する層
全体を加熱して耐熱剛性樹脂以外の樹脂を溶融させるこ
とができる。このような耐熱剛性樹脂としては、例え
ば、ポリブチレンテレフタレート、ポリエチレンテレフ
タレート、ポリカーボネート、ポリアミド及びこれらの
変性物等の耐熱剛性樹脂が挙げられる。
The heat-resistant rigid resin has a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin contained as required, and is 30 ° C. or more higher than the melting temperature of the thermoplastic resin contained as necessary. , Preferably 50 ° C. or higher. This makes it possible to heat the entire layer to be laminated on the mat-like material to melt the resin other than the heat-resistant rigid resin. Examples of such a heat-resistant rigid resin include heat-resistant rigid resins such as polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyamide, and modified products thereof.

【0011】又、耐熱剛性樹脂は、良好な熱成形性を得
るために、熱成形絞り率(熱成形絞り率は真空成形機に
て円筒型に板状物を絞る際の直径Dと高さHの比率H/
Dにより規定する。)が0.5以上のものが好ましい。
熱成形絞り率が0.5以下であると芯材の熱成形性能、
即ち、賦形性に問題が生じる。
In order to obtain good thermoformability, the heat-resistant rigid resin has a thermoforming draw ratio (the thermoform draw ratio is a diameter D and a height when a plate-like material is drawn into a cylindrical shape by a vacuum forming machine). H ratio H /
Specified by D. ) Is preferably 0.5 or more.
When the thermoforming draw ratio is 0.5 or less, thermoforming performance of the core material,
That is, a problem occurs in the shapeability.

【0012】熱活性樹脂は、その熱活性発現温度が耐熱
剛性樹脂の溶融温度より好ましくは20℃以上低いもの
であり、熱可塑性樹脂及び熱可塑性樹脂繊維の溶融温度
と同程度であるものが好ましい。これにより、積層シー
ト全体を加熱して表面の熱活性樹脂を溶融活性化させる
ことができ、耐熱剛性樹脂層による通気性遮断性能を損
なうことなく、又、接着剤塗布乾燥工程を設けることな
く、表皮材を熱成形性芯材に接着することができる(先
願の特開平5−93352号では接着剤塗布乾燥工程が
必要であった)。
[0012] The thermoactive resin has a thermal activity manifestation temperature preferably lower than the melting temperature of the heat-resistant rigid resin by 20 ° C. or more, and is preferably about the same as the melting temperature of the thermoplastic resin and the thermoplastic resin fiber. . Thereby, it is possible to heat and heat-activate the heat-activated resin on the surface by heating the entire laminated sheet, without impairing the permeability blocking performance by the heat-resistant rigid resin layer, and without providing the adhesive application drying step. The skin material can be bonded to the thermoformable core material (in the prior application, Japanese Patent Application Laid-Open No. 5-93352, an adhesive application and drying step was required).

【0013】熱活性樹脂の流動性の目安としてのメルト
フローレート(MFRという)は好ましくは0.5〜2
0であり、より好ましくは2〜15である。MFRが2
0を越える場合は、熱活性樹脂が表皮材内部に全て含浸
してしまい接着強度が得られず、逆に、0.5未満の場
合は、熱活性樹脂が表皮材内部に含浸せずアンカー効果
が得られない。このような熱活性樹脂としては、例え
ば、ポリエチレン、ポリプロピレン、エチレン─酢酸ビ
ニル共重合体、無水マレイン酸変性ポリエチレン、飽和
ポリエステル変性ポリエチレン、共重合ポリアミド等が
挙げられる。
The melt flow rate (MFR) as a measure of the fluidity of the thermoactive resin is preferably 0.5 to 2
0, more preferably 2 to 15. MFR is 2
If it exceeds 0, the thermoactive resin impregnates all inside the skin material and no adhesive strength is obtained. Conversely, if it is less than 0.5, the heat active resin does not impregnate inside the skin material and anchor effect is obtained. Can not be obtained. Examples of such heat-active resins include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, maleic anhydride-modified polyethylene, saturated polyester-modified polyethylene, and copolymerized polyamide.

【0014】本発明1の熱成形性芯材は、厚み方向に拡
開されている。拡開の程度は、基層の空隙率が50〜9
9%になるような範囲が好ましい。これにより、基層は
無機繊維同士がその交差部において熱可塑性樹脂繊維及
び熱可塑性樹脂の溶融物により結着されており、且つ、
全体にわたって大きな空隙を有している。
The thermoformable core material of the present invention 1 is expanded in the thickness direction. The degree of expansion is such that the porosity of the base layer is
A range that becomes 9% is preferable. Thereby, in the base layer, the inorganic fibers are bonded by the thermoplastic resin fiber and the melt of the thermoplastic resin at the intersections thereof, and
It has large voids throughout.

【0015】本発明2は、耐熱剛性樹脂層と熱活性樹脂
層とからシート状物が形成され、該シート状物に微細貫
通孔が設けられている本発明1に記載の熱成形性芯材で
ある。
A second aspect of the present invention is the thermoformable core material according to the first aspect, wherein a sheet-like material is formed from the heat-resistant rigid resin layer and the heat-active resin layer, and the sheet-like material has fine through holes. It is.

【0016】微細貫通孔の大きさ及び密度は、得られる
熱成形性芯材の表面に窪みができない程度以上であり、
且つ、得られる熱成形性芯材の通気遮断性が維持される
程度以下である必要があり、具体的には、微細貫通孔の
直径は、0.02〜1mmの範囲が好ましく、その密度
は、5,000〜1,000,000個/m2 の範囲が
望ましい。
[0016] The size and density of the fine through-holes are not less than the extent that the surface of the obtained thermoformable core material cannot be depressed,
In addition, it is necessary that the air-permeable property of the obtained thermoformable core material is not more than the extent to be maintained, and specifically, the diameter of the fine through-hole is preferably in the range of 0.02 to 1 mm, and the density thereof is , 5,000 to 1,000,000 pieces / m 2 .

【0017】より一層好適なのは、次式 開孔率(%)=(微細貫通孔1個当り平均開孔面積×微
細貫通孔の密度)×100で定義される開孔率が、0.
01〜10%の範囲である。微細貫通孔の穿孔の方法
は,針孔、パンチ孔等のいずれの方法でも構わないが、
針の太さ及び針への加熱により任意の孔径の微細貫通孔
を安定的にあけることができるという理由で、機械式針
孔法が好適に使用される。
More preferably, the porosity defined by the following formula: porosity (%) = (average pore area per fine through-hole × density of fine through-holes) × 100 is 0.
The range is from 01 to 10%. The method of drilling the fine through-hole may be any method such as a needle hole or a punch hole,
The mechanical needle hole method is preferably used because a fine through hole having an arbitrary hole diameter can be stably formed by heating the needle and the thickness of the needle.

【0018】本発明3は、本発明1又は本発明2の熱成
形性芯材の熱活性樹脂層面に表皮材が積層され、賦形さ
れている内装材である。
A third aspect of the present invention is an interior material in which a skin material is laminated on the surface of the thermoactive resin layer of the thermoformable core material of the first or second aspect of the present invention and is shaped.

【0019】本発明3において、表皮材としては、例え
ば、綿、羊毛、麻等の天然繊維や、ポリエステル、ポリ
アミド、ポリウレタン等の合成繊維からなる風合い、柔
軟性、意匠性を有する不織布等が用いられる。
In the present invention 3, as the skin material, for example, a non-woven fabric having a feeling, flexibility, and design properties made of natural fibers such as cotton, wool, and hemp, and synthetic fibers such as polyester, polyamide, and polyurethane is used. Can be

【0020】熱活性樹脂層面に表皮材を積層し、賦形す
る方法としては、例えば、熱活性樹脂層面上に、ポリア
ミド系共重合体、ポリエステル系共重合体、酸変性ポリ
オレフィン等からなる熱活性樹脂フィルムや、ポリエチ
レン、ポリプロピレン、ポリウレタン等の合成繊維を介
して、表皮材を積層し、その上から加熱状態にてプレス
成形する方法等を採用することができる。
As a method of laminating and shaping the skin material on the surface of the heat-active resin layer, for example, a heat-active resin comprising a polyamide-based copolymer, a polyester-based copolymer, an acid-modified polyolefin, etc. A method of laminating a skin material via a resin film or a synthetic fiber such as polyethylene, polypropylene, polyurethane or the like, and press-molding the skin material in a heated state can be adopted.

【0021】本発明4は、無機繊維と熱可塑性樹脂繊維
を主材料として形成されたマット状物の少なくとも一外
方に、熱可塑性樹脂フィルムを積層して積層物を得る工
程、該積層物の少なくとも一外方に、熱可塑性樹脂層
(a)と、前記熱可塑性樹脂繊維及び熱可塑性樹脂フィ
ルムより溶融温度の高い耐熱剛性樹脂層(b)と、熱活
性樹脂層(c)からなる多層材料[(a)/(b)/
(c)]を、該熱活性樹脂層(c)が外側となるように
積層して積層シートを得る工程、積層シートを耐熱剛性
樹脂の溶融温度以下の温度にて加熱して熱可塑性樹脂繊
維及び熱可塑性樹脂を溶融させると共に圧縮して、耐熱
剛性樹脂及びマット状物に非接触の熱活性樹脂をマット
状物内に含浸させることなく、熱可塑性樹脂をマット状
物内に含浸させ、溶融状態の熱可塑性樹脂繊維及び熱可
塑性樹脂にて無機繊維相互を結着させた後、厚み方向に
拡開し、溶融状態の熱可塑性樹脂繊維及び熱可塑性樹脂
を硬化せしめる工程からなる熱成形性芯材の製造方法で
ある。
The present invention 4 is a process for obtaining a laminate by laminating a thermoplastic resin film on at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers, A multilayer material comprising a thermoplastic resin layer (a), a heat-resistant rigid resin layer (b) having a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin film, and a thermoactive resin layer (c) at least outwardly. [(A) / (b) /
(C)] to obtain a laminated sheet by laminating the thermoactive resin layer (c) to the outside, and heating the laminated sheet at a temperature equal to or lower than the melting temperature of the heat-resistant rigid resin to form a thermoplastic resin fiber. Melt and compress the thermoplastic resin, and impregnate the thermoplastic resin into the mat-shaped material without impregnating the heat-resistant rigid resin and the mat-shaped material with the non-contact thermoactive resin. Thermoforming core comprising a step of bonding inorganic fibers to each other with a thermoplastic resin fiber and a thermoplastic resin in a state, then expanding in a thickness direction, and curing the thermoplastic resin fiber and the thermoplastic resin in a molten state. It is a method of manufacturing a material.

【0022】本発明4においては、まず、積層物を得る
工程を有する。積層物を得る工程において、無機繊維と
熱可塑性樹脂繊維を主体としたマット状物を用いる。マ
ット状物の無機繊維と熱可塑性樹脂繊維の配合割合は、
無機繊維の割合が少ないと、得られる熱成形性芯材の耐
熱性が低下し、多くなると無機繊維相互の結合力が低下
して機械的強度即ち剛性が低下するので、無機繊維と熱
可塑性樹脂との重量比で5:1〜1:5の範囲に設定す
るのが好ましい。
The present invention 4 includes a step of obtaining a laminate. In the step of obtaining a laminate, a mat-like material mainly composed of inorganic fibers and thermoplastic resin fibers is used. The mixing ratio of the inorganic fiber and the thermoplastic resin fiber of the mat-like material is
When the proportion of the inorganic fibers is small, the heat resistance of the obtained thermoformable core material is reduced, and when the proportion is large, the bonding strength between the inorganic fibers is reduced and the mechanical strength, that is, the rigidity is reduced. Is preferably set in the range of 5: 1 to 1: 5 in terms of weight ratio with respect to.

【0023】マット状物の製造方法としては、任意の方
法が採用されてよく、一般的にはカードマシンに無機繊
維と熱可塑性樹脂繊維を供給し、これらを解繊してニー
ドルパンチを施し、マット状物を製造する。ニードルパ
ンチは、マット状物及び得られる熱成形性芯材の機械的
強度を向上する為、1cm2 当り2〜100箇所打たれ
るのが好ましく、より好ましくは10〜50箇所であ
る。
As a method for producing the mat-like material, any method may be adopted. In general, an inorganic fiber and a thermoplastic resin fiber are supplied to a card machine, and these are defibrated and subjected to a needle punch. A mat is manufactured. The needle punch is preferably punched at 2 to 100 points, more preferably at 10 to 50 points per 1 cm 2 in order to improve the mechanical strength of the mat-like material and the obtained thermoformable core material.

【0024】マット状物の密度は、大きくなるとマット
状物が重くなり、小さくなるとマット状物の機械的強度
が低下するので、0.01〜0.2g/cm3 が好まし
い。マット状物の重さは、機械的強度を得るためには2
00〜1500g/m2 が好ましく、より好ましくは3
00〜800g/m2 である。
The density of the mat-like material is preferably 0.01 to 0.2 g / cm 3 because the larger the density, the heavier the mat-like material, and the lower the density, the lower the mechanical strength of the mat-like material. The weight of the mat is 2 to obtain mechanical strength.
00 to 1500 g / m 2 is preferable, and 3 is more preferable.
It is 00 to 800 g / m 2 .

【0025】マット状物に用いる、無機繊維及び熱可塑
性樹脂繊維としては、本発明1と同様のものが用いられ
る。このマット状物の少なくとも一外方に、熱可塑性樹
脂フィルムを積層して積層物を得る。尚、マット状物の
両外方に、熱可塑性樹脂フィルムを積層してサンドイッ
チ積層物とするのが好ましい。このようにサンドイッチ
積層物とすることにより、熱可塑性樹脂フィルムを加熱
したとき、そのうちの一部はマット状物中に含浸せずに
マット状物の両外方に残るので、熱成形性芯材の強度を
出すことができるので好適である。
As the inorganic fibers and the thermoplastic resin fibers used for the mat-like material, the same ones as those of the first invention are used. A laminate is obtained by laminating a thermoplastic resin film on at least one outer side of the mat-like material. In addition, it is preferable to form a sandwich laminate by laminating a thermoplastic resin film on both outer sides of the mat-like material. When the thermoplastic resin film is heated by forming a sandwich laminate in this manner, a part of the thermoplastic resin film remains on both outer sides of the mat-like material without being impregnated into the mat-like material, so that the thermoformable core material Therefore, it is preferable because the strength can be increased.

【0026】熱可塑性樹脂フィルムとしては、本発明1
と同様の熱可塑性樹脂からなるフィルムが用いられる。
フィルムの厚さは、薄くなると機械的強度が低下し、厚
くなると重くなるので、50〜500μmが好ましく、
より好ましくは70〜300μmである。
The thermoplastic resin film according to the present invention 1
A film made of the same thermoplastic resin as described above is used.
The thickness of the film is preferably 50 to 500 μm because the mechanical strength decreases as the film becomes thinner and becomes heavier as the film becomes thicker.
More preferably, it is 70 to 300 μm.

【0027】本発明4においては、積層シートを得る工
程を有する。マット状物の少なくとも一外方に熱可塑性
樹脂フィルムを積層し、得られた積層物の少なくとも一
外方に、熱可塑性樹脂層(a)と耐熱剛性樹脂層(b)
と熱活性樹脂層(c)からなる多層材料[(a)/
(b)/(c)]を、熱活性樹脂層(c)が外側となる
ように積層して積層シートを得る。尚、多層材料として
は、〔(a)/(b)〕と〔(b)/(c)〕の間に接
着層を更に設けたものを用いてもよい。
The present invention 4 has a step of obtaining a laminated sheet. A thermoplastic resin film is laminated on at least one outer side of the mat-like material, and a thermoplastic resin layer (a) and a heat-resistant rigid resin layer (b) are laminated on at least one outer side of the obtained laminate.
And a multi-layered material comprising a thermoactive resin layer (c) [(a) /
(B) / (c)] so that the thermally active resin layer (c) is on the outside to obtain a laminated sheet. As the multilayer material, a material further provided with an adhesive layer between [(a) / (b)] and [(b) / (c)] may be used.

【0028】本発明4において、多層材料の製造方法は
特に限定されるものではなく、共押出し法、押出しラミ
ネート法、ドライラミネート法等が適用される。好まし
い方法は共押出し法、即ち、熱可塑性樹脂と耐熱剛性樹
脂との間に接着性樹脂を介し、同時押出し、それに、常
法であるTダイ等によって積層シートを製造する方法で
あり、より経済的である。
In the present invention 4, the method for producing a multilayer material is not particularly limited, and a coextrusion method, an extrusion lamination method, a dry lamination method, or the like is applied. A preferred method is a co-extrusion method, that is, a method of simultaneously extruding a thermoplastic resin and a heat-resistant stiff resin through an adhesive resin, and producing a laminated sheet by a conventional method such as a T-die. It is a target.

【0029】本発明4においては、積層シートを加熱し
圧縮後、厚み方向に拡開し、溶融状態の熱可塑性樹脂繊
維及び熱可塑性樹脂を硬化せしめる工程を有する。前記
の方法により得られる積層シートを、耐熱剛性樹脂の溶
融温度以下、且つ、熱可塑性樹脂フィルム及び熱可塑性
樹脂層(a)を形成する熱可塑性樹脂の溶融温度以上の
温度で加熱し、この加熱温度に保ったまま、圧縮する。
この圧縮圧力は2〜20kg/cm2 、圧縮時間は2〜
10秒の範囲が好ましい。
The present invention 4 includes a step of heating and compressing the laminated sheet, expanding the sheet in the thickness direction, and curing the thermoplastic resin fiber and the thermoplastic resin in a molten state. The laminated sheet obtained by the above method is heated at a temperature not higher than the melting temperature of the heat-resistant rigid resin and not lower than the melting temperature of the thermoplastic resin forming the thermoplastic resin film and the thermoplastic resin layer (a). Compress while maintaining the temperature.
The compression pressure is 2 to 20 kg / cm 2 and the compression time is 2 to
A range of 10 seconds is preferred.

【0030】この圧縮後、積層シート全体(マット状物
及び多層材料)を厚み方向に拡開する。厚み方向の拡開
は、無機繊維の弾力で回復させてもよいが、積層シート
の外側の多層材料を常温下で離型し易くするため、例え
ばテフロンコーティングされた鋼板あるいはガラスクロ
スシート等で挟みその両表面を真空吸引して強制的に行
ってもよい。
After this compression, the entire laminated sheet (mat and multilayer material) is expanded in the thickness direction. Spreading in the thickness direction may be recovered by the elasticity of the inorganic fibers, but in order to make it easier to release the multilayer material outside the laminated sheet at room temperature, for example, sandwich it with a Teflon-coated steel plate or glass cloth sheet. Vacuum suction of both surfaces may be performed forcibly.

【0031】この加熱圧縮工程において、熱可塑性樹脂
フィルム及び熱可塑性樹脂層(a)を形成する熱可塑性
樹脂は溶融しマット状物内に含浸され、同様に溶融した
熱可塑性樹脂繊維とともに、無機繊維相互を結着させ
る。一方、耐熱剛性樹脂は溶融せず、マット状物内に含
浸することはない。又、耐熱剛性樹脂より外側の熱活性
樹脂(c)は溶融されるが、マット状物内に含浸はされ
ない。
In the heating and compression step, the thermoplastic resin forming the thermoplastic resin film and the thermoplastic resin layer (a) is melted and impregnated into the mat-like material, and the inorganic fiber is melted together with the melted thermoplastic resin fiber. Bind each other. On the other hand, the heat-resistant rigid resin does not melt and does not impregnate into the mat-like material. Further, the thermoactive resin (c) outside the heat-resistant rigid resin is melted, but is not impregnated in the mat-like material.

【0032】溶融状態の熱可塑性樹脂繊維、熱可塑性樹
脂及び熱活性樹脂の硬化は、自然冷却により行ってもよ
いし、強制冷却により行ってもよく、又、拡開を行いつ
つ硬化させてもよいし、拡開後硬化させてもよい。
The curing of the thermoplastic resin fiber, thermoplastic resin and thermoactive resin in the molten state may be performed by natural cooling, forced cooling, or curing while expanding. Alternatively, it may be cured after spreading.

【0033】本発明5は、無機繊維と熱可塑性樹脂繊維
を主材料として形成されたマット状物の両外方に、熱可
塑性樹脂フィルムを積層してサンドイッチ積層物を得る
工程、該サンドイッチ積層物の少なくとも一外方に、前
記熱可塑性樹脂繊維及び熱可塑性樹脂より溶融温度の高
い耐熱剛性樹脂層(b)と、熱活性樹脂層(c)からな
る多層材料[(b)/(c)]を、該熱活性樹脂層
(c)が外側となるように積層して積層シートを得る工
程、積層シートを耐熱剛性樹脂の溶融温度以下の温度に
て加熱して熱可塑性樹脂繊維及び熱可塑性樹脂を溶融さ
せると共に圧縮して、耐熱剛性樹脂及びマット状物に非
接触の熱活性樹脂はマット状物内に含浸させることな
く、熱可塑性樹脂をマット状物内に含浸させ、溶融状態
の熱可塑性樹脂繊維及び熱可塑性樹脂にて無機繊維相互
を結着させた後、厚み方向に拡開し、溶融状態の熱可塑
性樹脂繊維及び熱可塑性樹脂を硬化せしめる工程からな
る熱成形性芯材の製造方法である。
The present invention 5 is a process for obtaining a sandwich laminate by laminating a thermoplastic resin film on both sides of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers, A multilayer material [(b) / (c)] comprising a heat-resistant stiff resin layer (b) having a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin, and a thermoactive resin layer (c) at least on the outside. To obtain a laminated sheet by laminating the thermoactive resin layer (c) to the outside, and heating the laminated sheet at a temperature equal to or lower than the melting temperature of the heat-resistant rigid resin to form a thermoplastic resin fiber and a thermoplastic resin. The thermoplastic resin in the molten state is melted and compressed, and the thermoplastic resin in the molten state is impregnated with the thermoplastic resin without impregnating the heat-resistant rigid resin and the thermo-active resin in a non-contact state with the mat-like substance. Resin fiber and After binding the inorganic fibers each other in the thermoplastic resin, and expanded in the thickness direction, a manufacturing method of a thermoformable core material comprising the step of curing the thermoplastic resin fibers and a thermoplastic resin in a molten state.

【0034】本発明5においては、本発明4の方法と比
べて積層シートを得る工程が、熱可塑性樹脂層(a)が
設けられていない多層材料を用いる点において異なる
が、マット状物の両外方に、熱可塑性樹脂フィルムが積
層されているので何ら差し支えない。
In the present invention 5, the step of obtaining a laminated sheet differs from that of the method of the present invention 4 in that a multilayer material having no thermoplastic resin layer (a) is used. There is no problem because the thermoplastic resin film is laminated on the outside.

【0035】本発明6は、多層材料[(a)/(b)/
(c)]に微細貫通孔が設けられていることを特徴とす
る本発明4に記載の熱成形性芯材の製造方法である。
The present invention 6 relates to a multilayer material [(a) / (b) /
(C)] A method for producing a thermoformable core material according to the fourth aspect of the present invention, wherein a fine through-hole is provided.

【0036】本発明6においては、本発明4の方法と比
べて微細貫通孔が設けられた多層材料を用いる点におい
て異なる。尚、多層フィルムに設けられる微細貫通孔の
直径及び密度は、本発明2において説明したのと同じで
ある。
The present invention 6 differs from the method of the present invention 4 in that a multilayer material provided with fine through holes is used. The diameter and density of the fine through holes provided in the multilayer film are the same as those described in the second embodiment.

【0037】本発明6においては、多層フィルムに微細
貫通孔が設けられていることにより、積層シートをテフ
ロンコーティングされた鋼板あるいはガラスクロスシー
ト等の間に挟んで圧縮したとき、積層シートとテフロン
コーティングされた鋼板あるいはガラスクロスシート間
に溜った空気が、圧縮の際の圧縮圧により微細貫通孔を
通ってマット状物側に追い出され、積層シートとテフロ
ンコーティングされた鋼板あるいはガラスクロスシート
間は完全に密着する。
According to the sixth aspect of the present invention, since the multilayer film is provided with fine through holes, when the laminated sheet is sandwiched between a Teflon-coated steel plate or a glass cloth sheet, the laminated sheet and the Teflon-coated The air collected between the laminated steel sheet or glass cloth sheet is expelled toward the mat-like object through the fine through holes by the compression pressure at the time of compression, and the space between the laminated sheet and the Teflon-coated steel sheet or glass cloth sheet is completely Adhere to

【0038】同時に、テフロンコーティングされた鋼板
あるいはガラスクロスシートと接している多層シートの
最外層、即ち、熱活性樹脂(c)は溶融されており、流
動状態にあるので、微細貫通孔は溶融した熱活性樹脂
(c)により埋められる。
At the same time, since the outermost layer of the multilayer sheet in contact with the Teflon-coated steel sheet or glass cloth sheet, that is, the thermoactive resin (c) is in a molten state and is in a fluid state, the fine through-holes have been melted. Filled with thermoactive resin (c).

【0039】そして、積層シートを厚み方向へ拡開した
とき、積層シートとテフロンコーティングされた鋼板あ
るいはガラスクロスシートは密着した状態となっており
空気溜まりができないので、均一に拡開させることがで
き、得られる熱成形性芯材に窪みができることがない。
When the laminated sheet is spread in the thickness direction, the laminated sheet and the Teflon-coated steel sheet or glass cloth sheet are in close contact with each other, and air cannot be trapped. In addition, no depression is formed in the obtained thermoformable core material.

【0040】[0040]

【作用】本発明1の熱成形性芯材は、無機繊維と熱可塑
性樹脂繊維を主材料として形成されたマット状物の少な
くとも一外方に、前記熱可塑性樹脂繊維より溶融温度の
高い耐熱剛性樹脂層と、熱活性樹脂層とがこの順に積層
されてなることにより、軽量性、耐熱性、熱賦形性及び
通気遮断性を損なうことなく、且つ、表皮材の積層のた
めの接着剤塗布乾燥工程を設けることなく表皮材の積層
が可能であり、又、表皮材を熱成形性芯材に接着する際
に、熱活性樹脂層面に直接表皮材を接触させることがで
きるので、熱活性樹脂の溶融活性化により接着性の優れ
た状態で表皮材の積層が可能である。
According to the first aspect of the present invention, the thermoformable core material has a heat-resistant stiffness having a higher melting temperature than the thermoplastic resin fiber at least one outside of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers. By laminating the resin layer and the thermo-active resin layer in this order, it is possible to apply the adhesive for laminating the skin material without impairing the light weight, heat resistance, heat shaping property and ventilation blocking property. The skin material can be laminated without providing a drying step, and when the skin material is bonded to the thermoformable core material, the skin material can be brought into direct contact with the surface of the thermoactive resin layer. By activating the melt, the skin material can be laminated with excellent adhesiveness.

【0041】本発明2の熱成形性芯材は、本発明1の耐
熱剛性樹脂層と熱活性樹脂層とからシート状物が形成さ
れ、該シート状物に微細貫通孔が設けられていることに
より、軽量性、耐熱性、熱賦形性及び通気遮断性を損な
うことがなく、圧縮工程で圧板と積層シートとの間にエ
アー溜まりができないので表面に窪みがなく、且つ、表
皮材の積層のための接着剤塗布乾燥工程を設けることな
く表皮材の積層が可能であり、又、表皮材を熱成形性芯
材に接着する際に、熱活性樹脂層面に直接表皮材を接触
させることができるので、熱活性樹脂の溶融活性化によ
り接着性の優れた状態で表皮材の積層が可能である。
The thermoformable core material according to the second aspect of the present invention has a sheet-like material formed from the heat-resistant stiff resin layer and the heat-active resin layer according to the first aspect of the present invention, and the sheet-like material has fine through holes. Because of this, without impairing the lightness, heat resistance, heat shaping property and ventilation blocking property, there is no air pocket between the pressure plate and the laminated sheet in the compression process, so there is no dent on the surface and lamination of the skin material It is possible to laminate the skin material without providing an adhesive application drying step for the purpose, and when the skin material is bonded to the thermoformable core material, the skin material can be brought into direct contact with the surface of the thermoactive resin layer. Therefore, it is possible to laminate the skin material in a state of excellent adhesiveness by activating the heat-active resin by melting.

【0042】本発明3の内装材は、本発明1又は本発明
2の熱成形性芯材の熱活性樹脂層面に表皮材が積層さ
れ、賦形されていることにより、軽量性、耐熱性、熱賦
形性及び通気遮断性を損なうことなく、且つ、表面に表
皮材が接着強度に優れた状態で設けられたものである。
The interior material according to the third aspect of the present invention has a light-weight, heat-resistant property because the skin material is laminated and shaped on the surface of the thermoactive resin layer of the thermoformable core material according to the first or second aspect of the invention. The skin material is provided on the surface in a state of excellent adhesive strength without impairing the heat shaping property and the ventilation blocking property.

【0043】本発明4の熱成形性芯材の製造方法は、無
機繊維と熱可塑性樹脂繊維を主材料として形成されたマ
ット状物の少なくとも一外方に、熱可塑性樹脂フィルム
を積層して積層物を得る工程、該積層物の少なくとも一
外方に、熱可塑性樹脂層(a)と、前記熱可塑性樹脂繊
維及び熱可塑性樹脂フィルムより溶融温度の高い耐熱剛
性樹脂層(b)と、熱活性樹脂層(c)からなる多層材
料[(a)/(b)/(c)]を、該熱活性樹脂層
(c)が外側となるように積層して積層シートを得る工
程、積層シートを耐熱剛性樹脂の溶融温度以下の温度に
て加熱して熱可塑性樹脂繊維及び熱可塑性樹脂を溶融さ
せると共に圧縮して、耐熱剛性樹脂及びマット状物に非
接触の熱活性樹脂をマット状物内に含浸させることな
く、熱可塑性樹脂をマット状物内に含浸させ、溶融状態
の熱可塑性樹脂繊維及び熱可塑性樹脂にて無機繊維相互
を結着させた後、厚み方向に拡開し、溶融状態の熱可塑
性樹脂繊維及び熱可塑性樹脂を硬化せしめる工程からな
ることにより、上記の熱成形性芯材を作業性よく製造す
ることができる。
The method for producing a thermoformable core material according to the fourth aspect of the present invention is a method of laminating a thermoplastic resin film on at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers. Obtaining a product, at least one outer side of the laminate, a thermoplastic resin layer (a), a heat-resistant rigid resin layer (b) having a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin film, and A step of obtaining a laminated sheet by laminating a multilayer material [(a) / (b) / (c)] composed of a resin layer (c) such that the thermoactive resin layer (c) is on the outside; The thermoplastic resin fibers and thermoplastic resin are melted and compressed by heating at a temperature not higher than the melting temperature of the heat-resistant rigid resin, and the heat-resistant resin that is not in contact with the heat-resistant rigid resin and the mat-like material is placed in the mat-like material. Without impregnation, the thermoplastic resin After impregnating the inside of the material, binding the inorganic fibers with each other with the thermoplastic resin fiber and the thermoplastic resin in the molten state, then expanding in the thickness direction to cure the thermoplastic resin fiber and the thermoplastic resin in the molten state By including the step of squeezing, the above-mentioned thermoformable core material can be manufactured with good workability.

【0044】本発明5の熱成形性芯材の製造方法は、熱
可塑性樹脂層(a)が設けられていない多層材料を用る
ことより、本発明4と同様に、マット状物の両外方に、
熱可塑性芯材を作業性よく製造することができる。
The method for producing a thermoformable core material according to the fifth aspect of the present invention uses a multilayer material having no thermoplastic resin layer (a). Towards,
A thermoplastic core material can be manufactured with good workability.

【0045】本発明6の熱成形性芯材の製造方法は、本
発明4の多層材料[(a)/(b)/(c)]に微細貫
通孔が設けられていることにより、積層シートをテフロ
ンコーティングされた鋼板あるいはガラスクロスシート
等の間に挟んで圧縮したとき、積層シートとテフロンコ
ーティングされた鋼板あるいはガラスクロスシート間に
溜ったる空気が、圧縮の際の圧縮圧により微細貫通孔を
通ってマット状物側に追い出され、積層シートを厚み方
向へ拡開したとき、積層シートとテフロンコーティング
された鋼板あるいはガラスクロスシートは密着した状態
となっており空気溜まりができないので、均一に拡開さ
せることができ、表面に窪みのない熱成形性芯材を作業
性よく製造することができる。
The method for producing a thermoformable core material according to the sixth aspect of the present invention is characterized in that the multilayer material [(a) / (b) / (c)] according to the fourth aspect of the invention is provided with fine through-holes, When sandwiched between a Teflon-coated steel plate or glass cloth sheet and compressed, air accumulated between the laminated sheet and the Teflon-coated steel plate or glass cloth sheet causes fine through-holes due to the compression pressure at the time of compression. When the laminated sheet is expelled to the mat side and spreads out in the thickness direction, the laminated sheet and the Teflon-coated steel sheet or glass cloth sheet are in close contact with each other and air cannot be trapped. The thermoforming core material having no depression on the surface can be manufactured with good workability.

【0046】[0046]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0047】[実施例1]長さが40〜75mm、直径
9μmのガラス繊維と、6デニール(太さ約30μ
m)、50mmカットの高密度ポリエチレン繊維とを、
重量比で2:1の割合で配合してカードマシンに供給
し、解繊及び混繊して綿状物を得た。次に、この綿状物
に20箇所/cm2 の密度でニードルパンチを打って、
目付量約500g/m2 のマット状物を得た。
Example 1 Glass fiber having a length of 40 to 75 mm and a diameter of 9 μm, and 6 denier (thickness of about 30 μm)
m), 50 mm cut high density polyethylene fiber,
The mixture was blended at a weight ratio of 2: 1 and supplied to a card machine, which was defibrated and mixed to obtain a floc. Next, a needle punch was performed on the cotton-like material at a density of 20 places / cm 2 ,
A mat having a basis weight of about 500 g / m 2 was obtained.

【0048】次に、図1に示す如く、この得られたマッ
ト状物11の両外方に、高密度ポリエチレン樹脂〔融点
135℃、MFR7.0〕からなる厚さが約100μm
の熱可塑性樹脂フィルム12、12を積層した。更に、
この積層物の一外方に、無水マレイン酸変性ポリエチレ
ン樹脂(MFR0.91)を含む高密度ポリエチレン樹
脂(融点135℃、MFR2.0)からなる熱可塑性樹
脂層131と、ナイロン─6樹脂(融点230℃)から
なる耐熱剛性樹脂層132と、共重合ナイロン樹脂(融
点80〜115℃)からなる熱活性樹脂層133とを、
層厚さ30μm/20μm/30μmで共押出して得ら
れた多層フィルム13を、熱活性樹脂層133が外側に
なるように積層して、厚さ約7mm、重さ約800g/
2 の積層シートを作製した。
Next, as shown in FIG. 1, on both sides of the obtained mat-like material 11, a thickness made of a high-density polyethylene resin [melting point 135 ° C., MFR 7.0] is about 100 μm.
Thermoplastic resin films 12 and 12 were laminated. Furthermore,
A thermoplastic resin layer 131 made of a high-density polyethylene resin (melting point 135 ° C., MFR 2.0) containing a maleic anhydride-modified polyethylene resin (MFR 0.91) and a nylon # 6 resin (melting point) 230 ° C.) and a heat-active resin layer 133 made of a copolymerized nylon resin (melting point: 80 to 115 ° C.)
The multilayer film 13 obtained by co-extrusion with a layer thickness of 30 μm / 20 μm / 30 μm is laminated so that the thermoactive resin layer 133 is on the outside, and is about 7 mm thick and about 800 g / weight.
A laminated sheet of m 2 was produced.

【0049】作製した積層シートを両外側から、テフロ
ンコーティングされたガラスクロスシートで挾み、20
0℃の熱風加熱炉に供給し、5分間放置した後、ガラス
クロスシートで挟んだまま200℃に加熱された平板プ
レスに移して、積層シートの厚さが0.9mmになるよ
うに圧縮し、5秒間保持した。次に、平板プレスの間隔
が約7mmになるように広げ、積層シートをガラスクロ
スシートで挾んだまま、平板状の真空拡開装置に移し
て、ガラスシートを両側から0.5mm/秒の速度で吸
引して、吸引板の間隔が6mmまで拡開して吸引を解除
し、取り出して、3分間空冷した。次に、ガラスクロス
シートを剥して、厚さ約5.5mm、重さ約800g/
2 の平板状の熱成形性芯材を得た。
The laminated sheet thus produced was sandwiched from both outer sides by a glass cloth sheet coated with Teflon,
After being supplied to a hot air heating furnace at 0 ° C. and left for 5 minutes, it was transferred to a flat plate press heated to 200 ° C. while being sandwiched by glass cloth sheets, and compressed so that the thickness of the laminated sheet became 0.9 mm. For 5 seconds. Next, the flat sheet press is spread so as to have an interval of about 7 mm, and the laminated sheet is transferred to a flat-plate vacuum expanding device while sandwiching the glass sheet with the glass cloth sheet. The suction was performed at a speed, the suction plate was widened to a distance of 6 mm to release the suction, taken out, and air-cooled for 3 minutes. Next, the glass cloth sheet was peeled off, the thickness was about 5.5 mm, and the weight was about 800 g /
An m 2 flat thermoformable core material was obtained.

【0050】得られた平板状熱成形性芯材の熱活性樹脂
層が積層された方の面を赤外線加熱ヒータで表面温度1
15℃に加熱した後、熱活性樹脂層面にウレタン表皮材
を積層し、所定の形状の施された平板プレスに移してそ
の間隔が4.0mmになるように圧縮し、10秒間保持
して熱成形性芯材を賦形すると同時に表皮材を貼り合わ
せた。次に、平板プレスから積層物を取り出し、表皮材
の貼り合わされた熱成形性芯材を得た。
The surface of the obtained flat thermoformable core material on which the thermally active resin layer was laminated was heated to a surface temperature of 1 with an infrared heater.
After heating to 15 ° C., a urethane skin material is laminated on the surface of the thermally active resin layer, transferred to a flat plate press having a predetermined shape, compressed so that the interval becomes 4.0 mm, and held for 10 seconds to be heated. At the same time as the moldable core material was shaped, a skin material was attached. Next, the laminate was taken out from the flat plate press to obtain a thermoformable core material to which a skin material was bonded.

【0051】得られた表皮材付き熱成形性芯材の表皮材
接着強度を測定したところ、表皮材が破断し、十分な接
着強度が得られることを確認した。又、得られた表皮材
付き熱成形性芯材の通気性を測定したところ、0.3cc
/cm2 ・秒以下であり、十分な通気遮断性が確認され
た。 [実施例2]図2に示す如く、実施例1で得られたマッ
ト状物21の一外方に、無水マレイン酸変性ポリエチレ
ン樹脂(MFR0.91)を含む高密度ポリエチレン樹
脂(融点135℃、MFR12.0)からなる厚さ13
0μmの熱可塑性樹脂フィルム22を積層した。更に、
この積層物の他外方に、無水マレイン酸変性ポリエチレ
ン樹脂(MFR0.91)を含む高密度ポリエチレン樹
脂(融点135℃、MFR12.0)からなる熱可塑性
樹脂層231と、ナイロン─6樹脂(融点230℃)か
らなる耐熱剛性樹脂層232と、無水マレイン酸変性ポ
リエチレン樹脂(融点130℃、MFR10.0)から
なる熱活性樹脂層233とを、層厚さ100μm/10
μm/100μmで共押出して得られた多層フィルム2
3を、熱活性樹脂層233が外側になるように積層し、
実施例1と同様に、厚さ約6.9mm、重さ約700g
/m2 の積層シートを作製した。
When the adhesive strength of the skin material of the obtained thermoformed core material with the skin material was measured, it was confirmed that the skin material was broken and sufficient adhesive strength was obtained. When the air permeability of the obtained thermoformed core material with a skin material was measured, 0.3 cc was obtained.
/ Cm 2 · sec or less, indicating that sufficient ventilation blocking properties were obtained. Example 2 As shown in FIG. 2, a high-density polyethylene resin containing maleic anhydride-modified polyethylene resin (MFR 0.91) (melting point: 135 ° C., outside of the mat-like material 21 obtained in Example 1) MFR 12.0) thickness 13
A 0 μm thermoplastic resin film 22 was laminated. Furthermore,
A thermoplastic resin layer 231 made of a high-density polyethylene resin (melting point 135 ° C., MFR 12.0) containing a maleic anhydride-modified polyethylene resin (MFR 0.91) and a nylon # 6 resin (melting point) 230 ° C.) and a heat-active resin layer 233 made of a maleic anhydride-modified polyethylene resin (melting point: 130 ° C., MFR 10.0) with a layer thickness of 100 μm / 10
Multi-layer film 2 obtained by co-extrusion at μm / 100 μm
3 are laminated so that the thermoactive resin layer 233 is on the outside,
As in Example 1, the thickness is about 6.9 mm, and the weight is about 700 g.
/ M 2 .

【0052】作製した積層シートより、実施例1と同様
にして、厚さ約5.5mm、重さ約700g/m2 の平
板状の熱成形性芯材を得た。得られた平板状熱成形性芯
材の熱活性樹脂層が積層された方の面を赤外線加熱ヒー
タで表面温度160℃に加熱した後、熱活性樹脂層面に
ポリエステル繊維製不織布からなる表皮材を積層し、所
定の形状の施された平板プレス金型に移してその間隔が
4.0mmになるように圧縮し、10秒間保持して熱成
形性芯材を賦形すると同時に表皮材を貼り合わせた。次
に、平板プレス金型から積層物を取り出し、表皮材の貼
り合わされた熱成形性芯材を得た。
In the same manner as in Example 1, a flat thermoformed core material having a thickness of about 5.5 mm and a weight of about 700 g / m 2 was obtained from the produced laminated sheet. After heating the surface of the obtained flat thermoformable core material on which the thermoactive resin layer is laminated to a surface temperature of 160 ° C. with an infrared heater, a skin material made of a nonwoven fabric made of polyester fiber is applied to the thermoactive resin layer surface. Laminated, transferred to a flat plate press die having a predetermined shape, compressed so that the interval becomes 4.0 mm, and held for 10 seconds to form a thermoformable core material and to attach a skin material at the same time. Was. Next, the laminate was taken out from the flat plate pressing mold to obtain a thermoformable core material to which a skin material was bonded.

【0053】得られた表皮材付き熱成形性芯材の表皮材
接着強度を測定したところ、表皮材が破断し、十分な接
着強度が得られることを確認した。又、得られた表皮材
付き熱成形性芯材の通気性を測定したところ、0.3cc
/cm2 ・秒以下であり、十分な通気遮断性が確認され
た。
When the adhesive strength of the skin material of the obtained thermoformed core material with the skin material was measured, it was confirmed that the skin material was broken and sufficient adhesive strength was obtained. When the air permeability of the obtained thermoformed core material with a skin material was measured, 0.3 cc was obtained.
/ Cm 2 · sec or less, indicating that sufficient ventilation blocking properties were obtained.

【0054】[実施例3]図3に示す如く、実施例1で
得られたマット状物31の両外方に、無水マレイン酸変
性ポリエチレン樹脂(MFR0.91)を含む高密度ポ
リエチレン樹脂(融点135℃、MFR12.0)から
なる厚さ130μmの熱可塑性樹脂フィルム32、32
を積層して積層物を得た。更に、この積層物の一外方
に、ナイロン─6樹脂(融点230℃)からなる耐熱剛
性樹脂層332と、無水マレイン酸変性ポリエチレン樹
脂(融点130℃、MFR10.0)からなる熱活性樹
脂層333とを、層厚さ10μm/100μmで共押出
して得られた多層フィルム33を、熱活性樹脂層333
が外側になるように積層し、実施例1と同様に、厚さ約
7mm、重さ約800g/m2 の積層シートを作製し
た。
Example 3 As shown in FIG. 3, a high-density polyethylene resin containing a maleic anhydride-modified polyethylene resin (MFR 0.91) (melting point) was provided on both sides of the mat-like material 31 obtained in Example 1. 135 ° C., MFR 12.0) and a thermoplastic resin film 32 having a thickness of 130 μm
Were laminated to obtain a laminate. Further, outside the laminate, a heat-resistant rigid resin layer 332 made of nylon # 6 resin (melting point 230 ° C.) and a heat-active resin layer made of maleic anhydride-modified polyethylene resin (melting point 130 ° C., MFR 10.0) 333 and a multilayer film 33 obtained by co-extrusion with a layer thickness of 10 μm / 100 μm.
Was laminated on the outside, and a laminated sheet having a thickness of about 7 mm and a weight of about 800 g / m 2 was produced in the same manner as in Example 1.

【0055】作製した積層シートより、実施例1と同様
にして、厚さ約5.5mm、重さ約800g/m2 の平
板状の熱成形性芯材を得た。得られた平板状熱成形性芯
材の熱活性樹脂層が積層された方の面を赤外線加熱ヒー
タで表面温度160℃に加熱した後、熱活性樹脂層面に
ポリエステル繊維製不織布からなる表皮材を積層し、所
定の形状の施された平板プレス金型に移してその間隔が
4.0mmになるように圧縮し、10秒間保持して熱成
形性芯材を賦形すると同時に表皮材を貼り合わせた。次
に、平板プレス金型から積層物を取り出し、表皮材の貼
り合わされた熱成形性芯材を得た。
In the same manner as in Example 1, a flat thermoformed core material having a thickness of about 5.5 mm and a weight of about 800 g / m 2 was obtained from the produced laminated sheet. After heating the surface of the obtained flat thermoformable core material on which the thermoactive resin layer is laminated to a surface temperature of 160 ° C. with an infrared heater, a skin material made of a nonwoven fabric made of polyester fiber is applied to the thermoactive resin layer surface. Laminated, transferred to a flat plate press die having a predetermined shape, compressed so that the interval becomes 4.0 mm, and held for 10 seconds to form a thermoformable core material and to attach a skin material at the same time. Was. Next, the laminate was taken out from the flat plate pressing mold to obtain a thermoformable core material to which a skin material was bonded.

【0056】得られた表皮材付き熱成形性芯材の表皮材
接着強度を測定したところ、表皮材が破断し、十分な接
着強度が得られることを確認した。又、得られた表皮材
付き熱成形性芯材の通気性を測定したところ、0.3cc
/cm2 ・秒以下であり、十分な通気遮断性が確認され
た。
When the adhesive strength of the skin material of the thermoformed core material with the skin material was measured, it was confirmed that the skin material was broken and sufficient adhesive strength was obtained. When the air permeability of the obtained thermoformed core material with a skin material was measured, 0.3 cc was obtained.
/ Cm 2 · sec or less, indicating that sufficient ventilation blocking properties were obtained.

【0057】〔実施例4〕図4に示す如く、実施例1で
得られたマット状物41の一外方に、高密度ポリエチレ
ン(融点135℃、MFR7.0)からなる厚さ130
μmの熱可塑性樹脂フィルム42を積層した。更に、こ
の積層物の他外方に、無水マレイン酸変性ポリエチレン
樹脂(MFR0.91)を含む高密度ポリエチレン樹脂
(融点135℃、MFR2.0)からなる熱可塑性樹脂
層431と、ナイロン─6樹脂(融点230℃)からな
る耐熱剛性樹脂層432と、マレイン酸変性直鎖状低密
度ポリエチレン(融点125℃、MFR10.0)から
なる熱活性樹脂層433とを、層厚さ130μm/20
μm/60μmで共押出して得られた多層フィルム43
に、孔径0.2mm、孔密度55,555個/m2 の微
細貫通孔を設けたものを、熱活性樹脂層433が外側と
なるように積層し、実施例1と同様に、厚さ約7mm、
重さ800g/m2 の積層シートを作製した。
[Example 4] As shown in FIG. 4, one side of the mat-like material 41 obtained in Example 1 has a thickness 130 made of high-density polyethylene (melting point 135 ° C, MFR 7.0).
A μm thermoplastic resin film 42 was laminated. Further, a thermoplastic resin layer 431 made of a high-density polyethylene resin (melting point 135 ° C., MFR 2.0) containing a maleic anhydride-modified polyethylene resin (MFR 0.91) and a nylon # 6 resin are provided outside the laminate. (A melting point of 230 ° C.) and a heat-active resin layer 433 of a maleic acid-modified linear low-density polyethylene (melting point of 125 ° C., MFR 10.0) having a layer thickness of 130 μm / 20.
μm / 60 μm co-extruded multilayer film 43
Having a fine through-hole having a hole diameter of 0.2 mm and a hole density of 55,555 / m 2 were laminated so that the thermoactive resin layer 433 was on the outside, and the thickness was approximately the same as in Example 1. 7mm,
A laminated sheet having a weight of 800 g / m 2 was prepared.

【0058】作製した積層シートを両側から、テフロン
コーティングされたガラスクロスシートで挟み、200
℃の熱風加熱炉に供給し、5分間放置した後、ガラスク
ロスシートで挟んだまま200℃に加熱された平板プレ
スに移して、積層シートの厚さが0.9mmになるよう
に圧縮し、5秒間保持した。次に、平板プレスの間隔が
約7mmになるように広げ、積層シートをガラスクロス
シートで挟んだまま、平板状の真空拡開装置に移してガ
ラスクロスシートを両側から0.5mm/秒の速度で吸
引して、吸引板の間隔が6mmまで拡開して吸引を解除
し、取り出して、3分間空冷した。次に、ガラスクロス
シートを剥がして、厚さ約5.5mm、重さ約800g
/m2 の平板状の熱成形性芯材を得た。得られた熱成形
性芯材は表面に窪みのない均一な厚さを有するものであ
った。
The laminated sheet was sandwiched from both sides with a glass cloth sheet coated with Teflon,
℃ hot air heating furnace, and left for 5 minutes, then transferred to a flat plate press heated to 200 ° C. while being sandwiched by glass cloth sheets, and compressed so that the thickness of the laminated sheet becomes 0.9 mm, Hold for 5 seconds. Next, the flat sheet press is spread so as to have an interval of about 7 mm, and while the laminated sheet is sandwiched between the glass cloth sheets, the sheet is transferred to a flat-plate vacuum expanding device, and the glass cloth sheet is moved from both sides at a speed of 0.5 mm / sec. , And the suction plate was widened to 6 mm to release the suction, removed, and air-cooled for 3 minutes. Next, the glass cloth sheet was peeled off, the thickness was about 5.5 mm, and the weight was about 800 g.
/ M 2 of a flat thermoformable core material. The obtained thermoformable core material had a uniform thickness without any depression on the surface.

【0059】得られた平板状熱成形性芯材の熱活性樹脂
層が積層された方の面を赤外線加熱ヒータで表面温度1
15℃に加熱した後、熱活性樹脂層面にウレタン表皮材
を積層し、所定の形状の施された平板プレスに移してそ
の間隔が4.0mmになるように圧縮し、10秒間保持
して熱成形性芯材を賦形すると同時に表皮材を貼り合わ
せた。次に、平板プレスから積層物を取り出し、表皮材
の貼り合わされた熱成形性芯材を得た。
The surface of the obtained flat thermoformable core material on which the thermally active resin layer was laminated was heated to a surface temperature of 1 with an infrared heater.
After heating to 15 ° C., a urethane skin material is laminated on the surface of the thermally active resin layer, transferred to a flat plate press having a predetermined shape, compressed so that the interval becomes 4.0 mm, and held for 10 seconds to be heated. At the same time as the moldable core material was shaped, a skin material was attached. Next, the laminate was taken out from the flat plate press to obtain a thermoformable core material to which a skin material was bonded.

【0060】得られた表皮材付き熱成形性芯材の表皮材
接着強度を測定したところ、表皮材が破断し、十分な接
着強度が得られることを確認した。又、得られた表皮材
付き熱成形性芯材の通気性を測定したところ、0.3cc
/cm2 ・秒以下であり、十分な通気遮断性が確認され
た。
When the adhesive strength of the skin material of the obtained thermoformable core material with the skin material was measured, it was confirmed that the skin material was broken and sufficient adhesive strength was obtained. When the air permeability of the obtained thermoformed core material with a skin material was measured, 0.3 cc was obtained.
/ Cm 2 · sec or less, indicating that sufficient ventilation blocking properties were obtained.

【0061】[比較例1]図5に示す如く、実施例1で
用いたのと同じマット状物51の両外方に、実施例1で
用いたのと同じ高密度ポリエチレンフィルムからなる熱
可塑性樹脂フィルム52、52を積層し、実施例1と同
様に、厚さ約6.9mm、重さ約700g/m2 の積層
シートを作製した。作製した積層シートより、実施例1
と同様にして、厚さ約5.5mm、重さ約700g/m
2 の平板状の熱成形性芯材を得た。
COMPARATIVE EXAMPLE 1 As shown in FIG. 5, a thermoplastic material comprising the same high-density polyethylene film as used in Example 1 was provided on both outer sides of the same mat-like material 51 as used in Example 1. The resin films 52 were laminated, and a laminated sheet having a thickness of about 6.9 mm and a weight of about 700 g / m 2 was produced in the same manner as in Example 1. Example 1 from the prepared laminated sheet
Approximately 5.5mm in thickness and 700g / m in weight
To obtain a 2 of a flat thermoformable core material.

【0062】得られた平板状熱成形性芯材の一表面を赤
外線加熱ヒータで表面温度160℃に加熱した後、該表
面にポリエステル繊維製不織布からなる表皮材を積層
し、所定の形状の施された平板プレス金型に移してその
間隔が4.0mmになるように圧縮し、10秒間保持し
て熱成形性芯材を賦形すると同時に表皮材を貼り合わせ
た。次に、平板プレス金型から積層物を取り出し、表皮
材の貼り合わされた熱成形性芯材を得た。
After heating one surface of the obtained flat thermoformable core material to a surface temperature of 160 ° C. with an infrared heater, a skin material made of a nonwoven fabric made of polyester fiber is laminated on the surface, and the surface is formed into a predetermined shape. It was then transferred to a flat plate press die, compressed so that the interval became 4.0 mm, and held for 10 seconds to shape the thermoformable core material and to attach the skin material at the same time. Next, the laminate was taken out from the flat plate pressing mold to obtain a thermoformable core material to which a skin material was bonded.

【0063】得られた表皮材付き熱成形性芯材の通気性
を測定したところ、0.3cc/cm 2 ・秒と、通気遮断
性が確認されたが、表皮材の接着強度を測定したとこ
ろ、表皮材は簡単に剥離し、充分な接着強度は得られな
かった。
Air permeability of the thermoformed core material with a skin material obtained
0.3cc / cm Two・ Second and ventilation cutoff
Performance was confirmed, but the adhesive strength of the skin material was measured.
Of course, the skin material peels off easily and does not provide sufficient adhesive strength
won.

【0064】[0064]

【発明の効果】本発明1の熱成形性芯材は、前記の如き
構成とされているので、上述したように通気遮断性に優
れる熱成形性芯材が得られ、又、接着剤塗布乾燥工程を
設けずに表皮材が貼り合わせ可能な熱成形性芯材が得ら
れる。
As described above, the thermoformable core material of the present invention 1 has the above-mentioned structure, so that a thermoformable core material having excellent ventilation blocking properties can be obtained as described above. A thermoformable core material to which a skin material can be bonded without providing a step is obtained.

【0065】本発明2の熱成形性芯材は、上述したよう
に表面に窪みがなく且つ通気遮断性に優れる熱成形性芯
材が得られ、また、接着剤塗布乾燥工程を設けずにより
接着性の優れた状態で表皮材の積層が可能である。
As described above, the thermoformable core material of the present invention 2 has no depression on the surface and is excellent in air-blocking properties, and can be bonded without providing an adhesive application drying step. The skin material can be laminated with excellent properties.

【0066】本発明3の内装材は、前記の如き構成とさ
れているので、軽量性、耐熱性、熱賦形性及び通気遮断
性を損なうことなく、且つ、表面に表皮材が接着強度に
優れた状態で設けられたものである。
The interior material according to the third aspect of the present invention has the above-mentioned structure, so that the skin material has an adhesive strength on the surface without impairing the lightness, heat resistance, heat shaping property and air permeability. It is provided in an excellent condition.

【0067】本発明4,5の熱成形性芯材の製造方法
は、それぞれ、前記の如き構成とされているので、上述
の効果を有する熱成形性芯材を作業性よく製造すること
ができる。
Since the methods for producing thermoformable core materials of the present inventions 4 and 5 are respectively configured as described above, thermoformable core materials having the above-described effects can be produced with good workability. .

【0068】本発明6の熱成形性芯材の製造方法は、前
記の如き構成とされているので、上述の効果を有し、且
つ、表面に窪みのない熱成形性芯材を作業性よく製造す
ることができる。
The method for producing a thermoformable core material according to the sixth aspect of the present invention is configured as described above, so that the thermoformable core material having the above-mentioned effects and having no depression on the surface can be obtained with good workability. Can be manufactured.

【0069】[0069]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱成形性芯材の製造方法の一実施例に
おける、積層シートの積層工程を説明する断面図であ
る。
FIG. 1 is a cross-sectional view illustrating a laminating step of a laminated sheet in one embodiment of a method for producing a thermoformable core material of the present invention.

【図2】本発明の熱成形性芯材の製造方法の別の実施例
における、積層シートの積層工程を説明する断面図であ
る。
FIG. 2 is a cross-sectional view illustrating a step of laminating a laminated sheet in another embodiment of the method for producing a thermoformable core material of the present invention.

【図3】本発明の熱成形性芯材の製造方法の更に別の実
施例における、積層シートの積層工程を説明する断面図
である。
FIG. 3 is a cross-sectional view illustrating a step of laminating a laminated sheet in still another embodiment of the method for producing a thermoformable core material according to the present invention.

【図4】本発明の熱成形性芯材の製造方法の更に別の実
施例における、積層シートの積層工程を説明する断面図
である。
FIG. 4 is a cross-sectional view illustrating a step of laminating a laminated sheet in still another embodiment of the method for producing a thermoformable core material according to the present invention.

【図5】従来の熱成形性芯材の製造方法における、積層
シートの積層工程を説明する断面図である。
FIG. 5 is a cross-sectional view illustrating a laminating step of a laminated sheet in a conventional method for producing a thermoformable core material.

【符号の簡単な説明】[Brief description of reference numerals]

11、21、31、41 マット状物 12、22、32、42 熱可塑性樹脂フィルム 13、23、33、43 多層フィルム 131、231、331、431 熱可塑性樹脂層 132、232、332、432 耐熱剛性樹脂層 133、233、333、433 熱活性樹脂層 11, 21, 31, 41 Mat-like material 12, 22, 32, 42 Thermoplastic resin film 13, 23, 33, 43 Multilayer film 131, 231, 331, 431 Thermoplastic resin layer 132, 232, 332, 432 Heat resistance Resin layer 133, 233, 333, 433 Thermally active resin layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B32B 5/08 B32B 17/02 B32B 27/12 B60R 13/02 D04H 1/58 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) B32B 5/08 B32B 17/02 B32B 27/12 B60R 13/02 D04H 1/58

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機繊維と熱可塑性樹脂繊維を主材料と
して形成されたマット状物の少なくとも一外方に、前記
熱可塑性樹脂繊維より溶融温度の高い耐熱剛性樹脂層
と、熱活性樹脂層とがこの順に積層されてなることを特
徴とする熱成形性芯材。
1. A heat-resistant stiff resin layer having a higher melting temperature than the thermoplastic resin fiber, a heat-active resin layer, and at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers. Are laminated in this order.
【請求項2】 耐熱剛性樹脂層と熱活性樹脂層とからシ
ート状物が形成され、該シート状物に微細貫通孔が設け
られていることを特徴とする請求項1に記載の熱成形性
芯材。
2. The thermoformability according to claim 1, wherein a sheet-like material is formed from the heat-resistant rigid resin layer and the heat-active resin layer, and the sheet-like material has fine through holes. Core material.
【請求項3】 請求項1又は請求項2の熱成形性芯材の
熱活性樹脂層面に表皮材が積層され、賦形されているこ
とを特徴とする内装材。
3. An interior material characterized in that a skin material is laminated and shaped on the surface of the thermoactive resin layer of the thermoformable core material according to claim 1 or 2.
【請求項4】 無機繊維と熱可塑性樹脂繊維を主材料と
して形成されたマット状物の少なくとも一外方に、熱可
塑性樹脂フィルムを積層して積層物を得る工程、該積層
物の少なくとも一外方に、熱可塑性樹脂層(a)と、前
記熱可塑性樹脂繊維及び熱可塑性樹脂フィルムより溶融
温度の高い耐熱剛性樹脂層(b)と、熱活性樹脂層
(c)からなる多層材料[(a)/(b)/(c)]
を、該熱活性樹脂層(c)が外側となるように積層して
積層シートを得る工程、積層シートを耐熱剛性樹脂の溶
融温度以下の温度にて加熱して熱可塑性樹脂繊維及び熱
可塑性樹脂を溶融させると共に圧縮して、耐熱剛性樹脂
及びマット状物に非接触の熱活性樹脂をマット状物内に
含浸させることなく、熱可塑性樹脂をマット状物内に含
浸させ、溶融状態の熱可塑性樹脂繊維及び熱可塑性樹脂
にて無機繊維相互を結着させた後、厚み方向に拡開し、
溶融状態の熱可塑性樹脂繊維及び熱可塑性樹脂を硬化せ
しめる工程からなることを特徴とする熱成形性芯材の製
造方法。
4. A step of laminating a thermoplastic resin film on at least one outer side of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers to obtain a laminate, wherein at least one outer side of the laminate is obtained. On the other hand, a multilayer material comprising a thermoplastic resin layer (a), a heat-resistant rigid resin layer (b) having a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin film, and a thermoactive resin layer (c) [(a ) / (B) / (c)]
To obtain a laminated sheet by laminating the thermoactive resin layer (c) to the outside, and heating the laminated sheet at a temperature equal to or lower than the melting temperature of the heat-resistant rigid resin to form a thermoplastic resin fiber and a thermoplastic resin. Is melted and compressed, and the thermoplastic resin is impregnated into the mat-like material without impregnating the heat-resistant rigid resin and the mat-like material with the non-contact thermo-active resin. After binding inorganic fibers to each other with resin fiber and thermoplastic resin, expand in the thickness direction,
A method for producing a thermoformable core material, comprising a step of curing a thermoplastic resin fiber and a thermoplastic resin in a molten state.
【請求項5】 無機繊維と熱可塑性樹脂繊維を主材料と
して形成されたマット状物の両外方に、熱可塑性樹脂フ
ィルムを積層してサンドイッチ積層物を得る工程、該サ
ンドイッチ積層物の少なくとも一外方に、前記熱可塑性
樹脂繊維及び熱可塑性樹脂フィルムより溶融温度の高い
耐熱剛性樹脂層(b)と、熱活性樹脂層(c)からなる
多層材料[(b)/(c)]を、該熱活性樹脂層(c)
が外側となるように積層して積層シートを得る工程、積
層シートを耐熱剛性樹脂の溶融温度以下の温度にて加熱
して熱可塑性樹脂繊維及び熱可塑性樹脂を溶融させると
共に圧縮して、耐熱剛性樹脂及びマット状物に非接触の
熱活性樹脂はマット状物内に含浸させることなく、熱可
塑性樹脂をマット状物内に含浸させ、溶融状態の熱可塑
性樹脂繊維及び熱可塑性樹脂にて無機繊維相互を結着さ
せた後、厚み方向に拡開し、溶融状態の熱可塑性樹脂繊
維及び熱可塑性樹脂を硬化せしめる工程からなることを
特徴とする熱成形性芯材の製造方法。
5. A step of laminating a thermoplastic resin film on both sides of a mat-like material formed mainly of inorganic fibers and thermoplastic resin fibers to obtain a sandwich laminate, wherein at least one of the sandwich laminates is used. On the outside, a multilayer material [(b) / (c)] composed of a heat-resistant rigid resin layer (b) having a higher melting temperature than the thermoplastic resin fiber and the thermoplastic resin film, and a thermoactive resin layer (c), The thermoactive resin layer (c)
The laminated sheet to obtain a laminated sheet, the laminated sheet is heated at a temperature equal to or lower than the melting temperature of the heat-resistant rigid resin to melt the thermoplastic resin fibers and the thermoplastic resin and to compress the laminated sheet. The thermoplastic resin is impregnated in the mat-shaped material without impregnating the resin and the mat-shaped material with the thermo-active resin without impregnating the mat-shaped material. A method for producing a thermoformable core material, comprising a step of bonding together, expanding in a thickness direction, and curing a thermoplastic resin fiber and a thermoplastic resin in a molten state.
【請求項6】 多層材料[(a)/(b)/(c)]に
微細貫通孔が設けられていることを特徴とする請求項4
に記載の熱成形性芯材の製造方法。
6. The multilayer material [(a) / (b) / (c)] is provided with fine through holes.
3. The method for producing a thermoformable core material according to item 1.
JP28475393A 1992-11-13 1993-11-15 Thermoformable core material, production method thereof and interior material Expired - Lifetime JP2872896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28475393A JP2872896B2 (en) 1992-11-13 1993-11-15 Thermoformable core material, production method thereof and interior material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30359092 1992-11-13
JP4-303590 1993-06-15
JP14397493 1993-06-15
JP5-143974 1993-06-15
JP28475393A JP2872896B2 (en) 1992-11-13 1993-11-15 Thermoformable core material, production method thereof and interior material

Publications (2)

Publication Number Publication Date
JPH0760883A JPH0760883A (en) 1995-03-07
JP2872896B2 true JP2872896B2 (en) 1999-03-24

Family

ID=27318744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28475393A Expired - Lifetime JP2872896B2 (en) 1992-11-13 1993-11-15 Thermoformable core material, production method thereof and interior material

Country Status (1)

Country Link
JP (1) JP2872896B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502733A (en) * 2003-06-11 2007-02-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Joining different thermoplastic polymers
JP4660318B2 (en) * 2005-08-22 2011-03-30 三和工業株式会社 Interior material for vehicle and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0760883A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
JPH0245135A (en) Interior trimming material for automobile and manufacture thereof
JP2002144976A (en) Molded ceiling for car and its manufacturing method
JP2882740B2 (en) Molded composite and method for producing the same
JP2004217829A (en) Stampable sheet, method for producing the same, mat and expansion molding
JP2872896B2 (en) Thermoformable core material, production method thereof and interior material
JPH08276446A (en) Manufacture of molding composite material
JP3654821B2 (en) Thermoformable core material and manufacturing method thereof
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JP2004122545A (en) Thermoformable core material and interior finish material for car using the core material
JP3409948B2 (en) Papermaking method stampable sheet, lightweight stampable sheet molded product and lightweight stampable sheet skin bonded product
JP3308466B2 (en) Automotive interior materials
JP3574209B2 (en) Lightweight stampable sheet skin bonded product
JP2831673B2 (en) Method for producing fiber molded body
JP3095503B2 (en) Thermoformable core material and method for producing the same
JP3853077B2 (en) Dispersion method stampable sheet expansion molded body and dispersion method stampable sheet
JP3004183B2 (en) Manufacturing method of molded composite
JPH08112816A (en) Thermoformable core meterial, its preparation and internal decorative material
JP2974581B2 (en) Manufacturing method of molded ceiling base material for automobile
JPH07102650B2 (en) Lightweight composite material manufacturing method
JP2776615B2 (en) Method for producing porous composite material
JPH0782645A (en) Hot melt nonwoven fabric, core material for formation of ceiling and ceiling material
JPH0476781B2 (en)
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JPH0785916B2 (en) Lightweight composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 15

EXPY Cancellation because of completion of term