JPH04340347A - Salient-pole type rotary electric apparatus - Google Patents

Salient-pole type rotary electric apparatus

Info

Publication number
JPH04340347A
JPH04340347A JP3107876A JP10787691A JPH04340347A JP H04340347 A JPH04340347 A JP H04340347A JP 3107876 A JP3107876 A JP 3107876A JP 10787691 A JP10787691 A JP 10787691A JP H04340347 A JPH04340347 A JP H04340347A
Authority
JP
Japan
Prior art keywords
stator
air
rotor
chamber
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107876A
Other languages
Japanese (ja)
Inventor
Akinori Mizuyama
水山 昭徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3107876A priority Critical patent/JPH04340347A/en
Publication of JPH04340347A publication Critical patent/JPH04340347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To provide a salient-pole type rotary electric apparatus equipped with separated ventilating systems which separate the cooling ventilating systems for a stator and a rotator. CONSTITUTION:A stator chamber 37 is provided to enclose a stator. An air cooler 14 is arranged to cool air when the air in this stator chamber 37 is exhausted outside the stator chamber by the fanning action of the rotator itself. An electric fan 1 is provided to discharge the air thus cooled by the air cooler 14 into the stator chamber 37 by sending it to the back of the stator core as a forced-cooling air. An interpole partition board 33 is arranged to guide to the stator chamber 37 the discharged flow of the cooling air which is sent to the rotator by the fanning action of the rotator itself so that this discharged flow does not collide against the exhausing flow from the stator.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、強制冷却通風用電動フ
ァンを備え、固定子と回転子の分離通風を行う突極形回
転電機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salient pole type rotating electric machine which is equipped with an electric fan for forced cooling and ventilation, and which performs separate ventilation between a stator and a rotor.

【0002】0002

【従来の技術】一般に、揚水発電所に設置される発電電
動機は、空気の循環によって冷却され、別置の強制冷却
通風用電動ファンによって冷却空気を循環させる通風方
式がとられている。
2. Description of the Related Art Generally, a generator motor installed in a pumped storage power plant is cooled by air circulation, and a ventilation system is adopted in which the cooling air is circulated by a separately installed electric fan for forced cooling ventilation.

【0003】この通風方式の場合、機内の冷却空気は、
図3に示すように強制冷却通風用電動ファン1により固
定子枠2内に流入し、磁極3の間の空間に導かれる。ま
た、一部の冷却空気は回転子スパイダー4に設けられ通
風穴5から回転子スパイダー4内に流入し、回転子リム
6に設けられた流路7を通って同じく磁極3の間の空間
へ導かれる。冷却空気が磁極間空間を流れる間に磁極3
を形成する界磁コイル8および磁極鉄心9を冷却し、次
いで、冷却空気はエアーギャップ10を越えて固定子鉄
心13の固定子ダクト11へ入り、固定子ダクト11を
通る間に固定子コイル12および固定子鉄心13を冷却
する。次いで固定子枠2の外周に設けた空気冷却器14
を通過する間に熱が取り去られ冷却空気は再循環される
[0003] In the case of this ventilation system, the cooling air inside the aircraft is
As shown in FIG. 3, the air flows into the stator frame 2 by the forced cooling ventilation electric fan 1 and is guided into the space between the magnetic poles 3. Also, a part of the cooling air flows into the rotor spider 4 from a ventilation hole 5 provided in the rotor spider 4, passes through a flow path 7 provided in the rotor rim 6, and enters the space between the magnetic poles 3. be guided. While the cooling air flows through the space between the magnetic poles,
The cooling air then crosses the air gap 10 into the stator duct 11 of the stator core 13 and, while passing through the stator duct 11, cools the field coil 8 and the pole core 9. and cools the stator core 13. Next, an air cooler 14 provided on the outer periphery of the stator frame 2
Heat is removed and the cooling air is recirculated.

【0004】このように、この通風方式では固定子を冷
却する空気が最初回転子内を流れ、次いでエアーギャッ
プ10を越えるので、それが固定子に達する以前に回転
子損によって加熱されることになる。したがって、固定
子で必要な冷却作用を得るには、大量の空気流が必要で
あった。さらに大量の空気流が流れ、かつさまざまの通
風回路から冷却空気が磁極間空間に流入するため相互干
渉等による風損が大きく主機の効率が悪くなるという欠
点があった。
[0004] In this way, in this ventilation system, the air that cools the stator first flows inside the rotor and then crosses the air gap 10, so that it is heated by rotor loss before it reaches the stator. Become. Therefore, a large amount of airflow was required to obtain the necessary cooling effect on the stator. Furthermore, since a large amount of airflow flows and cooling air flows into the space between the magnetic poles from various ventilation circuits, there is a drawback that wind loss due to mutual interference is large and the efficiency of the main engine is reduced.

【0005】この結果、回転子周速が130m/sを越
えるような超高速大容量発電電動機などでは、さらに大
風量が必要となるため、所要の通風面積が確保できない
。したがって、この通風方式では所要の冷却風量を流す
ことができなくなり、回転子コイルすなわち界磁コイル
8あるいは固定子コイル12に直接冷却液を流して冷却
する方式としていた。すなわち、構造が複雑でかつ高価
な直接冷却方式を採用せざるを得ないという結果になっ
ていた。
[0005] As a result, in ultra-high-speed, large-capacity generator motors with rotor circumferential speeds exceeding 130 m/s, even larger air volumes are required, making it impossible to secure the required ventilation area. Therefore, with this ventilation method, it is no longer possible to flow the required amount of cooling air, and a method has been adopted in which cooling fluid is flowed directly into the rotor coil, that is, the field coil 8 or the stator coil 12 for cooling. In other words, the direct cooling method, which has a complicated structure and is expensive, has to be adopted.

【0006】そこでこの問題を解決するために固定子と
回転子との分離通風を行うことにより、直接冷却方式を
採用することなく大容量化できるようにした突極形回転
電機もある。
[0006] To solve this problem, there is also a salient pole type rotating electrical machine that allows the stator and rotor to be ventilated separately, thereby increasing the capacity without employing a direct cooling system.

【0007】図4はそのような突極形回転電機を示す断
面図である。図に示すように固定子内径側に円筒状通風
仕切壁32を構成し、固定子鉄心13と鉄心内固定子コ
イル12と回転子の通風系から分離する。固定子枠2は
円周方向に複数の室に仕切られ、固定子枠2の外周面に
強制冷却用電動ファン1a、空気冷却器14aを仕切ら
れた室ごとに交互に配電するように構成されている。ま
た、固定子枠2の上側外周面に複数個の強制冷却用電動
ファン1b、固定子枠2の下側外周面に複数個の空気冷
却器14bを配置するように構成している。
FIG. 4 is a sectional view showing such a salient pole type rotating electric machine. As shown in the figure, a cylindrical ventilation partition wall 32 is formed on the inner diameter side of the stator to separate the stator core 13, the stator coils 12 within the core, and the rotor ventilation system. The stator frame 2 is circumferentially partitioned into a plurality of chambers, and a forced cooling electric fan 1a and an air cooler 14a are arranged on the outer peripheral surface of the stator frame 2 so as to alternately distribute power to each partitioned chamber. ing. Further, a plurality of forced cooling electric fans 1b are arranged on the upper outer peripheral surface of the stator frame 2, and a plurality of air coolers 14b are arranged on the lower outer peripheral surface of the stator frame 2.

【0008】また、回転子スパイダー4には通風穴5を
設けず、回転子リム6にも流路を設けないように構成さ
れる。
[0008] Furthermore, the rotor spider 4 is not provided with ventilation holes 5, and the rotor rim 6 is not provided with any flow passages.

【0009】この通風方式の場合、回転子を冷却するた
めの空気は、強制冷却用電動ファン1bにより固定子枠
2内へ流入し、上側固定子コイルエンド12aを冷却し
た後、磁極3の空間へ入り、この空間を軸方向上から下
へ吹き抜け、冷却空気がこの磁極間空間を流れる間に磁
極3の界磁コイル8および磁極鉄心9を冷却する。次い
で、下側固定子コイルエンド12bを冷却した冷却空気
は、空気冷却器14bを通過する間に熱を放出した後再
循環されていた。
In the case of this ventilation method, air for cooling the rotor flows into the stator frame 2 by a forced cooling electric fan 1b, cools the upper stator coil end 12a, and then flows into the space between the magnetic poles 3. The cooling air enters the space and blows through this space from top to bottom in the axial direction, cooling the field coil 8 and the magnetic pole iron core 9 of the magnetic pole 3 while flowing through the space between the magnetic poles. The cooling air that cooled the lower stator coil end 12b was then recirculated after releasing heat while passing through the air cooler 14b.

【0010】一方、固定子鉄心13および鉄心内固定子
コイル12を冷却するための空気は、図5に示すように
、強制冷却用電動ファン1aにより固定子枠内流入セク
ション22へ流入し、固定子ダクト11へはいり、半径
方向外から内へ向って流れる。この固定子ダクトを通る
間に流入セクション22内にある固定子コイル12およ
び固定子鉄心13を冷却する。次いで冷却空気は円筒状
通風仕切壁32により固定子内径側に形成された室23
へ入り、円周方向へ流れ、流出セクション24の固定子
ダクト11へ流入し、半径方向内から外へ向って流れる
。この固定子ダクト11を通る間に流出セクション内の
固定子コイル12および固定子鉄心13を冷却する。 次いで、冷却空気は固定子枠内流出セクション25へ流
出し、空気冷却器14aを通過する間に熱を放出した後
再循環される。
On the other hand, as shown in FIG. 5, air for cooling the stator core 13 and the stator coils 12 in the core flows into the stator frame inflow section 22 by the forced cooling electric fan 1a, and It enters the child duct 11 and flows from the outside to the inside in the radial direction. The stator coils 12 and stator core 13 in the inlet section 22 are cooled while passing through this stator duct. Next, the cooling air flows into a chamber 23 formed on the inner diameter side of the stator by a cylindrical ventilation partition wall 32.
It flows circumferentially into the stator duct 11 of the outflow section 24 and flows radially from the inside to the outside. While passing through this stator duct 11, the stator coil 12 and stator core 13 in the outflow section are cooled. The cooling air then flows out into the stator frame outflow section 25 and is recirculated after releasing heat while passing through the air cooler 14a.

【0011】[0011]

【発明が解決しようとする課題】ここで、この突極形回
転電機は固定子は固定子が円周方向に給気チャンバーと
排気チャンバーに分かれていることを特徴としているが
、ここに重大な問題点があることが、近年の研究により
明らかになった。
[Problems to be Solved by the Invention] Here, this salient pole type rotating electric machine is characterized in that the stator is divided into an air supply chamber and an exhaust chamber in the circumferential direction. Recent research has revealed that there are problems.

【0012】すなわち、固定子を円周方向あるいは軸方
向に仕切り、給気チャンバーと排気チャンバーとに分け
ると、円周方向あるいは軸方向に温度アンバランスが生
じる。特に排気チャンバー側の固定子コイル12の温度
が異常に上昇する不具合が発生するおそれがあることが
明らかになった。
That is, if the stator is partitioned circumferentially or axially into an air supply chamber and an exhaust chamber, a temperature imbalance occurs in the circumferential or axial direction. In particular, it has become clear that there is a risk that the temperature of the stator coil 12 on the exhaust chamber side may rise abnormally.

【0013】本発明は温度アンバランスがないように固
定子と回転子との冷却通風系を分離した分離通風方式を
備えた突極形回転電機を提供することを目的とする。 [発明の構成]
SUMMARY OF THE INVENTION An object of the present invention is to provide a salient pole rotating electric machine equipped with a separate ventilation system in which cooling ventilation systems for the stator and rotor are separated to prevent temperature imbalance. [Structure of the invention]

【0014】[0014]

【課題を解決するための手段】本発明の突極形回転機は
磁極を突出して形成した回転子とその回転子の外周側に
設けられ固定子枠で支持された固定子とを有した突極形
回転機において、固定子を固定子枠とともに包囲し固定
子室を形成する固定子仕切板と、固定子枠の上側外周面
および下側周面に設けられ固定子室の空気が回転子自身
のファン作用で固定子室外に排出する際にその空気を冷
却するための空気冷却器と、固定子枠の中央部外周面に
設けられ空気冷却器により冷却された空気を固定子の鉄
心背部に強制冷却風として通風し固定子室にその冷却風
を排出する電動ファンと、回転子自身のファン作用で回
転子に導かれた空気冷却器により冷却された空気の排流
を前記固定子からの排流と衝突しないように固定子室に
導く極間仕切板とからなる。
[Means for Solving the Problems] A salient pole rotating machine of the present invention has a rotor formed with protruding magnetic poles and a stator provided on the outer peripheral side of the rotor and supported by a stator frame. In a polar rotating machine, there is a stator partition plate that surrounds the stator together with the stator frame to form a stator chamber, and a stator partition plate that is provided on the upper outer circumferential surface and lower circumferential surface of the stator frame and that allows the air in the stator chamber to flow into the rotor. An air cooler that cools the air when it is discharged outside the stator room by its own fan action, and an air cooler that is installed on the outer peripheral surface of the center of the stator frame to cool the air that is cooled by the air cooler at the back of the stator core. An electric fan that blows forced cooling air to the stator chamber and discharges the cooling air to the stator chamber, and an air cooler guided to the rotor by the rotor's own fan action to discharge the cooled air from the stator. and a pole partition plate that guides the exhaust flow into the stator chamber so as not to collide with it.

【0015】[0015]

【作用】これにより突極形回転子を極間仕切板により円
筒状にして固定子と回転子の通風系を分離する。そして
、冷却空気をすべて外径側から内径側に向けて通風する
。冷却空気の通風源として、固定子は強制冷却用電動フ
ァンを用いるが回転子は回転子自身のファン作用を利用
する。
[Operation] As a result, the salient pole type rotor is made into a cylindrical shape by the pole partition plate, and the ventilation systems of the stator and rotor are separated. Then, all the cooling air is ventilated from the outer diameter side toward the inner diameter side. As a ventilation source for cooling air, the stator uses a forced cooling electric fan, while the rotor uses its own fan action.

【0016】したがって、固定子は円周方向あるいは軸
方向に温度アンバランスがなくなり、固定子鉄心および
固定子コイルは均一に冷却される。
Therefore, there is no temperature imbalance in the stator in the circumferential or axial direction, and the stator core and stator coils are uniformly cooled.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1および図2を
参照して説明する。図1は、本発明の一実施例を示す突
極形回転電機の断面図であり、図2は図1のA−A断面
図である。図に示すように、固定子枠2と固定子仕切板
36とで固定子を包囲し固定子室37を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of a salient pole type rotating electrical machine showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. As shown in the figure, the stator frame 2 and the stator partition plate 36 surround the stator to form a stator chamber 37.

【0018】一方、突極形回転子を突極形回転子を極間
仕切板33により円筒状に構成し、固定子と回転子との
通風系を分離する。そして、図2に示すように、固定子
鉄心13の背面(以下コアバック34と呼ぶ)の固定子
枠2内にチャンバー35を設ける。
On the other hand, the salient pole rotor is formed into a cylindrical shape by a pole partition plate 33, and the ventilation systems of the stator and rotor are separated. As shown in FIG. 2, a chamber 35 is provided within the stator frame 2 on the back surface of the stator core 13 (hereinafter referred to as core back 34).

【0019】このコアバックチャンバー35部分の固定
子枠2の外周面に複数個の強制冷却用電動ファン1を配
置し、冷却空気を外からチャンバー35に送り込むよう
に構成する。従って、チャンバー35はすべて給気チャ
ンバーとなる。
A plurality of forced cooling electric fans 1 are disposed on the outer peripheral surface of the stator frame 2 in the core back chamber 35 portion, and are configured to feed cooling air into the chamber 35 from the outside. Therefore, all chambers 35 become air supply chambers.

【0020】次に固定子枠2の上側外周面に複数個の空
気冷却器14aを配置する。かつ固定枠2の下側外周面
にも複数個の空気冷却器14bを配置する。
Next, a plurality of air coolers 14a are arranged on the upper outer peripheral surface of the stator frame 2. Also, a plurality of air coolers 14b are arranged on the lower outer peripheral surface of the fixed frame 2.

【0021】ここで、固定子の冷却空気の通風源は電動
ファン1とする。一方、回転子の冷却空気の通風源は回
転子自身のファン作用を利用する。まず、固定子の冷却
空気は、電動ファン1により固定子枠2のチャンバー3
5に流入する。
Here, the electric fan 1 is assumed to be the source of cooling air for the stator. On the other hand, the rotor's cooling air source uses the rotor's own fan action. First, cooling air for the stator is supplied to the chamber 3 of the stator frame 2 by an electric fan 1.
5.

【0022】次いで、固定子ダクト11へ入り、固定子
ダクト11を通る間に固定子コイル12および固定子鉄
心13を冷却する。そして、冷却空気はエアーギャップ
10へ流出し、極間仕切板33にあたって軸方向の上方
向と下方向へ別れて固定子室37のコイルエンド部分へ
入る。次いで固定子枠2の外周に設けた空気冷却器14
a,14bを通過する間に熱が取り去られ冷却空気は再
循環される。
Next, it enters the stator duct 11 and cools the stator coil 12 and stator core 13 while passing through the stator duct 11. Then, the cooling air flows out into the air gap 10, hits the pole partition plate 33, separates upward and downward in the axial direction, and enters the coil end portion of the stator chamber 37. Next, an air cooler 14 provided on the outer periphery of the stator frame 2
While passing through a, 14b, heat is removed and the cooling air is recirculated.

【0023】一方、回転子の冷却空気は、回転子スパイ
ダー4に設けた通風穴5から回転子スパイダー4内に流
入し、回転子リム6に設けられた流路7を通って磁極3
の間の空間に導かれる。
On the other hand, the rotor cooling air flows into the rotor spider 4 from the ventilation hole 5 provided in the rotor spider 4, passes through the flow path 7 provided in the rotor rim 6, and reaches the magnetic pole 3.
guided to the space between.

【0024】次いで、冷却空気は軸方向の上方向と下方
向へ別れて、磁極間空間を流れる間に界磁コイル8およ
び磁極鉄心9を冷却した後、極間仕切板33にあたって
固定子室37内の上下のコイルエンド部分へ入る。ここ
で、固定子の冷却空気と合流し、固定子枠2の外周に設
けた空気冷却器14a,14bを通過する間に熱が取り
去られ、冷却空気は再循環される。
Next, the cooling air is separated upward and downward in the axial direction, cools the field coil 8 and the magnetic pole core 9 while flowing through the space between the magnetic poles, and then hits the pole partition plate 33 and flows inside the stator chamber 37. into the upper and lower coil ends. Here, it merges with the cooling air of the stator, heat is removed while passing through air coolers 14a, 14b provided on the outer periphery of the stator frame 2, and the cooling air is recirculated.

【0025】いま、空気比熱をCγ、空気比重量をγ、
従来方式の全損失をL0 、風量をQ0 、空気の温度
上昇を△t0 とすると熱量のバランスから     
 L0 =Q0 ・△t0 ・Cγ・γ  ……………
…………………(1)という関係が成り立つ。一方、本
発明による回転子を冷却するのに必要な風量をQ1 、
この風量Q1 が受けもつ損失をL1 、その時の空気
の温度上昇を△t1 、また固定子を冷却するのに必要
な風量をQ2 、この風量Q2 が受けもつ損失をL2
 、そのときの空気の温度上昇を△t2 とすると、       L1 =Q1 ・△t1 ・Cγ・γ  
………………………………(2)      L2 =
Q2 ・△t2 ・Cγ・γ  …………………………
……(3)となる。また全損失は変らないので、       L0 =L1 +L2   ………………
………………………………(4)が成り立つ。従来方式
の空気の温度上昇△t0 は、固定子を冷却する空気が
最初回転子内を流れるため、回転子損による温度上昇と
固定子損とによる温度上昇の和であるが、本発明のよう
に固定子と回転子とを分離して通風すれば、それぞれ空
気の温度上昇を△t0 まで許せるので       △t0 =△t1 =△t2   ………
………………………………(5)とすることができる。 したがって(1)〜(5)式によりQ0 =Q1 +Q
2 という関係が成り立つ。 通常L1 =0.4・L0 ,L2 =0.6・L0 
なので、となり、回転子を冷却するのに必要な風量は、
従来方式に比較して40%でよいことになる。また固定
子を冷却するのに必要な風量も従来方式に比較して60
%でよいことになる。
Now, the air specific heat is Cγ, the air specific weight is γ,
If the total loss of the conventional method is L0, the air volume is Q0, and the air temperature rise is △t0, then from the balance of heat amount
L0 = Q0 ・△t0 ・Cγ・γ ……………
………………………(1) holds true. On the other hand, the air volume required to cool the rotor according to the present invention is Q1,
The loss incurred by this air volume Q1 is L1, the temperature rise of the air at that time is Δt1, the air volume required to cool the stator is Q2, and the loss incurred by this air volume Q2 is L2.
, if the temperature rise of the air at that time is △t2, then L1 = Q1 ・△t1 ・Cγ・γ
…………………………………(2) L2 =
Q2 ・△t2 ・Cγ・γ …………………………
...(3). Also, since the total loss does not change, L0 = L1 + L2 ………………
…………………………………(4) holds true. In the conventional system, the air temperature rise Δt0 is the sum of the temperature rise due to rotor loss and the temperature rise due to stator loss, because the air that cools the stator first flows inside the rotor. If the stator and rotor are separated and ventilated, the temperature rise of each air can be allowed up to △t0, so △t0 = △t1 = △t2 ......
…………………………………(5). Therefore, from equations (1) to (5), Q0 = Q1 + Q
2 holds true. Normal L1 =0.4・L0, L2 =0.6・L0
Therefore, the air volume required to cool the rotor is
This means that the reduction is only 40% compared to the conventional method. Also, the amount of air required to cool the stator is 60% lower than that of the conventional method.
% would be fine.

【0026】図6は、従来方式および本発明による通風
特性曲線であり、曲線26は従来方式の通風抵抗、曲線
27は本発明による回転子側通風回路の通風抵抗、曲線
28は固定子側通風回路の通風抵抗である。図6に示し
たように固定子と回転子とを分離して通風した場合、そ
れぞれの通風抵抗は従来方式に比較して小さくなる。こ
のとき前記各風量Q0 ,Q1 ,Q2 を発生するの
に必要な圧力発生側PQ 特性は従来方式では曲線29
、本発明による回転子側では曲線30、固定子側では曲
線31となる。この圧力発生側PQ特性曲線と前記通風
特性曲線の交点が作動点となり各風量Q0 ,Q1 ,
Q2 に対応した圧力はそれぞれ圧力P0,P1 ,P
2となる。通常、通風抵抗は風量のほぼ2乗に比例して
増加するので、である。
FIG. 6 shows ventilation characteristic curves according to the conventional method and the present invention, where curve 26 shows the ventilation resistance of the conventional method, curve 27 shows the ventilation resistance of the rotor side ventilation circuit according to the invention, and curve 28 shows the ventilation resistance of the stator side ventilation circuit. It is the ventilation resistance of the circuit. When the stator and rotor are ventilated separately as shown in FIG. 6, the ventilation resistance of each becomes smaller than in the conventional system. At this time, in the conventional system, the pressure generation side PQ characteristic required to generate each of the air volumes Q0, Q1, and Q2 is curve 29.
, a curve 30 on the rotor side and a curve 31 on the stator side according to the present invention. The intersection of this pressure generation side PQ characteristic curve and the ventilation characteristic curve becomes the operating point for each air volume Q0, Q1,
The pressures corresponding to Q2 are the pressures P0, P1, and P, respectively.
It becomes 2. Normally, ventilation resistance increases in proportion to approximately the square of the air volume.

【0027】図6より明らかな如く、通風抵抗曲線27
および28は従来の通風抵抗曲線26を下廻るので、所
要圧力P1 ,P2 は となる。これらの風量、圧力を発生するための動力Wは
、PとQとの積に比例するので、従来方式の動力をW0
 とすれば、(6)式および(8)式より本発明による
回転側での動力W1 、固定子側での動力W2 はそれ
ぞれW1 <0.43 ・W0     W2 <0.63 ・W0 となり、両者の合計は、 W1 +W2 <0.28・W0 である。以上の解析結果より本発明の実施例において、
必要な動力は従来方式に比較して30%以下となり大幅
な動力減少をはかることができる。
As is clear from FIG. 6, the ventilation resistance curve 27
and 28 are below the conventional ventilation resistance curve 26, so the required pressures P1 and P2 are as follows. The power W for generating these air volumes and pressures is proportional to the product of P and Q, so the power of the conventional method is
Then, from equations (6) and (8), the power W1 on the rotation side and the power W2 on the stator side according to the present invention are respectively W1 < 0.43 ・W0 W2 < 0.63 ・W0, and both The sum is W1 +W2 <0.28·W0. From the above analysis results, in the embodiment of the present invention,
The required power is less than 30% compared to the conventional method, which is a significant reduction in power.

【0028】[0028]

【発明の効果】本発明は、以上説明したように従来方式
では回転子を冷却する空気が最初回転子内を流れ固定子
に達する以前に回転子損によって加熱され、固定子で必
要な冷却作用を得るために大量の空気流が必要であった
ものが、回転子と固定子とを分離して通風することによ
り、冷たい空気が固定子内に入るので固定子を冷却する
ために要する空気量が大幅に少なくてすむように作用す
る。そのため固定子内を流れる冷却空気の流速が小さく
なり通風抵抗が小さくなるように作用する。さらに従来
方式では大動力の強制冷却用電動ファンが必要であった
ものが小動力のものですむという作用も生ずる。
Effects of the Invention As explained above, in the conventional system, the air for cooling the rotor first flows through the rotor and is heated by rotor loss before reaching the stator. However, by separating the rotor and stator and ventilating them, cold air enters the stator, reducing the amount of air required to cool the stator. This works so that the amount of energy required can be significantly reduced. Therefore, the flow velocity of the cooling air flowing inside the stator is reduced, which acts to reduce ventilation resistance. Furthermore, the conventional method requires a large-power forced cooling electric fan, but a small-power fan is required.

【0029】一方、回転子も固定子から分離して通風さ
れるため、回転子を冷却するのに要する空気量が大幅に
少なくてすむように作用する。
On the other hand, since the rotor is also ventilated separately from the stator, the amount of air required to cool the rotor can be significantly reduced.

【0030】すなわち固定子は、円周方向あるいは軸方
向に温度アンバランスがなくなり固定子鉄心および固定
子コイルは均一に冷却される。また、固定子と回転子と
の分離通風を効果的に行ったので、それぞれに流れる冷
却風量を少なくでき、風損も減少できる。
In other words, there is no temperature imbalance in the stator in the circumferential or axial direction, and the stator core and stator coils are uniformly cooled. Furthermore, since the stator and rotor are effectively ventilated separately, the amount of cooling air flowing through each can be reduced, and windage loss can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本体の一実施例を示す断面図。FIG. 1 is a sectional view showing one embodiment of a main body.

【図2】図1のA−A線における断面図。FIG. 2 is a sectional view taken along line AA in FIG. 1;

【図3】従来例を示す断面図。FIG. 3 is a sectional view showing a conventional example.

【図4】他の従来例を示す断面図。FIG. 4 is a sectional view showing another conventional example.

【図5】図4のB−B線における断面図。FIG. 5 is a sectional view taken along line BB in FIG. 4;

【図6】本発明および従来例における通風特性曲線図。FIG. 6 is a ventilation characteristic curve diagram of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1    電動ファン 2    固定子枠 3    磁極 4    回転子スパイダー 5    通風穴 6    回転リム 7    流路 8    界磁コイル 9    磁極鉄心 10    エアギャップ 11    固定子ダクト 12    固定子コイル 13    固定子鉄心 14    空気冷却器 22    固定子枠内流入セクション23    固
定子内径側室 24    流入セクション 25    固定子枠内流出セクション32    通
風仕切壁 33    極間仕切板 34    コアバック 35    コアバックチャンバー 36    固定子仕切板 37    固定子室
1 Electric fan 2 Stator frame 3 Magnetic pole 4 Rotor spider 5 Ventilation hole 6 Rotating rim 7 Channel 8 Field coil 9 Magnetic pole core 10 Air gap 11 Stator duct 12 Stator coil 13 Stator core 14 Air cooler 22 Fixed Child frame inflow section 23 Stator inner diameter side chamber 24 Inflow section 25 Stator frame outflow section 32 Ventilation partition wall 33 Pole partition plate 34 Core back 35 Core back chamber 36 Stator partition plate 37 Stator chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁極を突出して形成した回転子とその
回転子の外周側に設けられ固定子枠で支持された固定子
とを有した突極形回転機において、前記固定子を前記固
定子枠とともに包囲し固定子室を形成する固定子仕切板
と、前記固定子枠の上側外周面および下側周面に設けら
れ前記固定子室の空気が前記回転子自身のファン作用で
前記固定子室外に排出する際にその空気を冷却するため
の空気冷却器と、前記固定子枠の中央部外周面に設けら
れ前記空気冷却器により冷却された空気を前記固定子の
鉄心背部に強制冷却風として通風し前記固定子室にその
冷却風を排出する電動ファンと、前記回転子自身のファ
ン作用で前記回転子に導かれた前記空気冷却器により冷
却された空気の排流を前記固定子からの排流と衝突しな
いように前記固定子室に導く極間仕切板とからなる突極
形回転電機。
1. A salient pole type rotating machine having a rotor formed with protruding magnetic poles and a stator provided on the outer peripheral side of the rotor and supported by a stator frame, wherein the stator is connected to the stator. A stator partition plate surrounds the stator chamber together with the frame to form a stator chamber, and a stator partition plate is provided on the upper outer circumferential surface and lower circumferential surface of the stator frame, and air in the stator chamber is provided to the stator by the fan action of the rotor itself. An air cooler is provided to cool the air when it is discharged outdoors, and a forced cooling air is provided at the outer peripheral surface of the central part of the stator frame to direct the air cooled by the air cooler to the back of the iron core of the stator. an electric fan that ventilates the air and discharges the cooling air into the stator chamber; and an electric fan that discharges the cooling air into the stator chamber, and the air cooled by the air cooler guided to the rotor by the rotor's own fan action is discharged from the stator. a salient pole type rotating electrical machine, comprising a pole partition plate that guides the discharge flow into the stator chamber so as not to collide with the discharge flow from the stator chamber.
JP3107876A 1991-05-14 1991-05-14 Salient-pole type rotary electric apparatus Pending JPH04340347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107876A JPH04340347A (en) 1991-05-14 1991-05-14 Salient-pole type rotary electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107876A JPH04340347A (en) 1991-05-14 1991-05-14 Salient-pole type rotary electric apparatus

Publications (1)

Publication Number Publication Date
JPH04340347A true JPH04340347A (en) 1992-11-26

Family

ID=14470331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107876A Pending JPH04340347A (en) 1991-05-14 1991-05-14 Salient-pole type rotary electric apparatus

Country Status (1)

Country Link
JP (1) JPH04340347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147187A1 (en) * 2006-06-22 2007-12-27 Va Tech Hydro Gmbh Method and device for cooling an electric machine
CN110089012A (en) * 2016-12-21 2019-08-02 乌本产权有限公司 The stator load-bearing part of stator for wind energy plant generator and stator, generator and wind energy plant with the stator load-bearing part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357092U (en) * 1989-10-05 1991-05-31
JPH0370994U (en) * 1989-11-15 1991-07-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357092U (en) * 1989-10-05 1991-05-31
JPH0370994U (en) * 1989-11-15 1991-07-17

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147187A1 (en) * 2006-06-22 2007-12-27 Va Tech Hydro Gmbh Method and device for cooling an electric machine
US8035261B2 (en) 2006-06-22 2011-10-11 Va Tech Hydro Gmbh Method and device for cooling an electric machine
US8288901B2 (en) 2006-06-22 2012-10-16 Va Tech Hydro Gmbh Method and device for cooling an electric machine
CN110089012A (en) * 2016-12-21 2019-08-02 乌本产权有限公司 The stator load-bearing part of stator for wind energy plant generator and stator, generator and wind energy plant with the stator load-bearing part

Similar Documents

Publication Publication Date Title
JP3332039B2 (en) Rotating electric machine
US5633543A (en) Pressure equalizer and method for reverse flow ventilated armature in power generator
US3088042A (en) Electric motor with improved cooling means
WO2021027301A1 (en) Stator block, stator assembly, and cooling system for stator assembly
US6392320B1 (en) Gas-cooled electrical machine having an axial fan
JP2009542168A (en) Method and apparatus for cooling an electric machine
JP2004135499A (en) Forced air stator ventilation system and stator ventilating method of superconductive synchronous machine
JPS5952622B2 (en) gas cooled electric machine
US3588557A (en) Low loss ventilation for salient pole machines
CN110226279A (en) Cooling device
WO2018196003A1 (en) Motor ventilation structure and motor
US2970233A (en) Ventilating system for a dynamo-electric machine
JPH04340347A (en) Salient-pole type rotary electric apparatus
CN112072855B (en) Motor
JPH04133641A (en) Salient pole type electric rotary machine
JPS607894B2 (en) Salient pole rotating electric machine
US5065058A (en) Shroud for dynamoelectric machine
US2915656A (en) Heat exchanger for dynamoelectric machine
JP2009148140A (en) Rotating electric machine
US3075105A (en) Ventilating system for dynamoelectric machines
JP2511436Y2 (en) Rotating electric machine cooling device
JPH0787709A (en) Salient pole type rotary electric machine
JP4320950B2 (en) Cooling method for rotating electric machine
CA1238933A (en) Cooling system with reduced windage loss
CN112054617A (en) Method for improving temperature rise of motor by utilizing cross internal circulation ventilation