JPH04340088A - Plate fin type heat exchanger - Google Patents

Plate fin type heat exchanger

Info

Publication number
JPH04340088A
JPH04340088A JP3570591A JP3570591A JPH04340088A JP H04340088 A JPH04340088 A JP H04340088A JP 3570591 A JP3570591 A JP 3570591A JP 3570591 A JP3570591 A JP 3570591A JP H04340088 A JPH04340088 A JP H04340088A
Authority
JP
Japan
Prior art keywords
heat exchanger
plate
fins
expansion
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3570591A
Other languages
Japanese (ja)
Inventor
Yuzo Nakamura
雄三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAZUMI SEISAKUSHO KK
Original Assignee
KAZUMI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12449285&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04340088(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KAZUMI SEISAKUSHO KK filed Critical KAZUMI SEISAKUSHO KK
Priority to JP3570591A priority Critical patent/JPH04340088A/en
Publication of JPH04340088A publication Critical patent/JPH04340088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To allow fluid passages to be freely movable for thermal elongation and contraction by perpendicularly crossing one or more fluid passage group to one fluid passage, and providing an elongating/contracting mechanism in a plate fin type heat exchanger in which a secondary heat transfer surface is secured only to one side of a primary heat transfer surface. CONSTITUTION:A plate fin type heat exchanger is formed of a fluid passage A and a fluid passage B perpendicular to the passage A. The passage B is sealed after an end of a plate 1 of a primary heat transfer surface is formed, and laminated to form a heat exchanger core K. The core K is contained in a casing, and the passage A is formed out of the core K. Fins 3 are respectively mounted as secondary heat transfer surfaces on the respective plates 1, and slits 9 are provided at an equal interval in the fins 3. Since the temperatures of fluids in contact with the fins 3 are different, the fins 3 are not uniformly elongated and contracted, but the elongation and contraction are absorbed by the slits 9, and a thermal stress of the contact of a slide bar which is affected by influence of the fins 3 and the atmosphere, is removed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、熱交換される流体温度
が、高温側は650℃〜800℃、低温側が室温程度の
、高温度であって且つ高温度差で作動するプレートフィ
ン式熱交換器に関する。
[Industrial Application Field] The present invention is a plate-fin heat exchanger that operates at a high temperature and a high temperature difference, such that the temperature of the fluid to be heat exchanged is 650°C to 800°C on the high temperature side and about room temperature on the low temperature side. Regarding exchangers.

【0002】0002

【従来の技術】従来、高性能で且つコンパクトタイプの
プレートフィン式熱交換器Fは、図4に示すように、プ
レート1にフィン3をはさみ、さらに、その両側をサイ
ドバー2でシールしたもので、このような層を多数積み
重ねてロー付けしたものを熱交換コアKとし、その熱交
換コアKに、各流路に流体を分配するヘッダータンク5
を溶接したものであり、非常に高剛性なものであった。 従って、熱交換される流体温度は主として200℃〜3
50℃の比較的低温度で、しかも、一次側、二次側流体
の温度差が小さい流体に対して使用され、或いは低温工
業用熱交換器として使用されてきた。
[Prior Art] Conventionally, a high-performance and compact type plate-fin heat exchanger F has a plate 1 with fins 3 sandwiched between them, and both sides of the fins are sealed with side bars 2, as shown in FIG. A heat exchange core K is formed by stacking and brazing a large number of such layers, and a header tank 5 that distributes fluid to each flow path is provided in the heat exchange core K.
It was welded together and had extremely high rigidity. Therefore, the temperature of the fluid to be heat exchanged is mainly between 200℃ and 3℃.
It has been used for fluids with a relatively low temperature of 50° C. and a small temperature difference between the primary and secondary fluids, or as a low-temperature industrial heat exchanger.

【0003】一方、オンサイト型燃料電池が、小規模分
散型エネルギー供給源として、その発電効率の高さ、低
公害型で且つ高効率なコージェネレーション・システム
として重要な位置を占めるが、このオンサイト型燃料電
池に要求される基本的な条件は、 1)コンパクトであること 2)コストが安いこと 3)信頼性が高いこと が特に重要であるとされている。従って、総合効率に大
きな影響を与え、システムの中でも大きな比重を占める
熱交換器において、コンパクト、高性能、高信頼性のも
のであることが強く要求されている。また、リン酸型燃
料電池においては、燃料改質装置(リフォーマー)の燃
焼廃ガス(約650℃)と、空気,改質ガス,燃料ガス
との高温且つ高温度差での熱交換が必要であった。
On the other hand, on-site fuel cells occupy an important position as a small-scale distributed energy supply source due to their high power generation efficiency and as a low-pollution and highly efficient cogeneration system. It is said that the basic conditions required for site-type fuel cells are: 1) compactness 2) low cost 3) high reliability. Therefore, there is a strong demand for heat exchangers that have a large impact on overall efficiency and occupy a large proportion of the system to be compact, high-performance, and highly reliable. In addition, in phosphoric acid fuel cells, heat exchange is required between the combustion waste gas (approximately 650°C) from the fuel reformer and air, reformed gas, and fuel gas at high temperatures and high temperature differences. there were.

【0004】そして、一般的に、作動温度が高温で且つ
高温度差で使用される熱交換器は、伸縮機構(例えば遊
動頭)を備えたシェルアンドチューブ式熱交換器に限定
されていた。
[0004] Generally, heat exchangers used at high operating temperatures and large temperature differences have been limited to shell-and-tube heat exchangers equipped with an expansion/contraction mechanism (eg, a floating head).

【0005】[0005]

【発明が解決しようとする課題】しかし、燃料電池にお
ける熱交換システムにおいて、上記したように、作動温
度が高温で且つ高温度差で使用される伸縮機構(例えば
遊動頭)を備えたシェルアンドチューブ式熱交換器を使
用した場合には、次の様な欠点があった。
[Problems to be Solved by the Invention] However, as mentioned above, in the heat exchange system of a fuel cell, a shell-and-tube system equipped with an expansion/contraction mechanism (such as a floating head) is used at a high operating temperature and with a large temperature difference. When using a type heat exchanger, there were the following drawbacks.

【0006】1)熱交換器自身の容積が5倍〜7倍程度
大きくなる。従って、システム全体として非常に大きく
ならざるを得ない 2)それぞれの流体流路に対する配管経路が長くなり、
配管系としても容積が大きくなる 3)配管経路が長くなるため、システムとして圧力損失
の増大、放熱による熱効率の低下が避けられず、結果的
には、エネルギー総合効率を落とす結果となる4)シス
テムとしてその重量が重くなるため、比例して熱容量が
大きくなる。このため、起動時間が長くなり、負荷追随
性が低下する。ことなど、分散型小規模エネルギー源と
しては、不適格なものとならざるを得ない状況であった
1) The volume of the heat exchanger itself becomes about 5 to 7 times larger. Therefore, the system as a whole has to become very large. 2) The piping route for each fluid flow path becomes long.
The volume of the piping system will also be large. 3) As the piping route becomes long, the system will inevitably experience an increase in pressure loss and a decrease in thermal efficiency due to heat radiation, resulting in a decrease in overall energy efficiency. 4) System As the weight increases, the heat capacity increases proportionally. As a result, startup time becomes longer and load followability is reduced. As a result, it had no choice but to be unsuitable as a distributed small-scale energy source.

【0007】即ち、上記のシェルアンドチューブ式熱交
換器は、伸縮機構(例えば遊動頭)付とすることでシェ
ルとチューブの温度差による伸縮を自由にし、全体とし
て熱応力を低減して許容応力以下にすることができるが
、その占める容積に対し、交換熱量がプレートフィン式
熱交換器と比較し、約1/5〜1/7程度と低いことが
欠点であった。
In other words, the above-mentioned shell-and-tube heat exchanger is equipped with an expansion mechanism (for example, a floating head) to allow expansion and contraction due to the temperature difference between the shell and the tube, thereby reducing thermal stress as a whole and reducing the allowable stress. However, the disadvantage is that the amount of heat exchanged is about 1/5 to 1/7 of that of a plate-fin heat exchanger, relative to the volume occupied by the heat exchanger.

【0008】このため、図4に示したような高性能コン
パクトタイプのプレートフィン式熱交換器Fの適用が考
えられる。しかしこれは、流路を構成する一次、二次伝
熱面、各流路をシールするサイドバーが、ロー付により
一体的に高密度、高剛性に固着積層されているので、起
動停止時のような過渡的状態においては、初期状態から
の温度変化が短時間内に急激に変化するため、熱交換器
を構成する各部分は、高剛性が故に伸縮することができ
ず、ついには破壊に至る大きな熱応力が発生するという
欠点があった。
[0008] For this reason, it is conceivable to apply a high-performance compact type plate-fin type heat exchanger F as shown in FIG. However, this is because the primary and secondary heat transfer surfaces that make up the flow path and the side bars that seal each flow path are laminated together with high density and high rigidity by brazing. In such a transient state, the temperature changes rapidly from the initial state within a short period of time, so the parts that make up the heat exchanger cannot expand or contract due to their high rigidity, and eventually break. The disadvantage was that large thermal stress was generated.

【0009】即ち、起動時においては、650℃〜80
0℃の高温側流体が、室温状態の熱交換器流路に瞬間的
に突入し、低温側流体と熱交換を開始するが、この時の
温度勾配は最高に大きくなる。そして、その時、サイド
バーと称される角棒、高温側及び低温側の流体出入口を
形成するヘッダー等の比較的熱容量の大きい部材と、熱
容量の比較的小さい一次伝熱面のプレート及び二次伝熱
面のフィンとの間に、熱容量の差に起因する温度差が発
生し、且つ各部材が自由な伸縮を相互に牽制し合う構造
となっているため、破壊に至る大きな熱応力が発生する
のである(なお、停止時についても、同様の温度勾配と
なる)。
[0009] That is, at the time of startup, the
The high-temperature fluid at 0° C. instantaneously enters the heat exchanger flow path at room temperature and starts exchanging heat with the low-temperature fluid, but the temperature gradient at this time becomes the largest. At that time, members with relatively large heat capacity such as square bars called side bars, headers that form fluid inlets and outlets on the high temperature side and low temperature side, and plates with relatively small heat capacity as the primary heat transfer surface and secondary transfer A temperature difference occurs between the fins on the hot surface due to the difference in heat capacity, and each member has a structure that mutually restrains free expansion and contraction, resulting in large thermal stress that can lead to destruction. (The same temperature gradient occurs when the engine is stopped).

【0010】更に実験によれば、熱交換される流体の温
度差が300〜400℃の場合でも、数百回の繰返しサ
イクルで破壊することが確認されている。また、熱交換
される複数の流体間で、その温度が平衡し、各流路温度
が定常状態になった場合でも、基本的には、隣接する各
流路は、高温度差で且つそれぞれが複雑な温度分布曲面
で成り立っており、大きな熱応力が発生している(図5
参照)。
Further, according to experiments, it has been confirmed that even when the temperature difference between the fluids being heat exchanged is 300 to 400° C., destruction occurs after several hundred cycles. Furthermore, even if the temperatures of multiple fluids being heat exchanged are balanced and the temperature of each flow path is in a steady state, basically each adjacent flow path has a high temperature difference and each It consists of a complex temperature distribution curved surface, and large thermal stress is generated (Fig. 5
reference).

【0011】また、流路外側部を構成するサイドバーは
、流体に接する内側部と、外気若しくは熱交換する他の
流体に接する外側部とでは、当然に温度差があり、また
、一次伝熱面のプレート及び二次伝熱面のフィンとの間
にも、温度差が生じる。この温度差による伸縮の差は、
各部材が完全に固着されているため、その全てが熱応力
となり、長時間作動させた場合に、構造上最も弱点とな
るサイドバーとプレートの付け根に応力が集中し、つい
には疲労破壊を引起こすこととなる。
[0011] Furthermore, of the side bars constituting the outer part of the flow path, there is naturally a temperature difference between the inner part that is in contact with the fluid and the outer part that is in contact with the outside air or other fluid that exchanges heat, and there is A temperature difference also occurs between the plate of the surface and the fin of the secondary heat transfer surface. The difference in expansion and contraction due to this temperature difference is
Since each member is completely fixed, all of them become thermal stress, and when operated for a long time, stress concentrates at the bases of the side bars and plates, which are the weakest points in the structure, and eventually leads to fatigue failure. It will happen.

【0012】即ち、図4に示した高性能コンパクトタイ
プのプレートフィン式熱交換器Fは、高剛性であるがゆ
えに、高温度において且つ高温度差で作動させた場合、
熱応力により数百回のヒートサイクル(作動―停止)で
、サイドバーとプレートの境界や、コアとヘッダータン
クの取付け部において、簡単に破壊してしまう欠点があ
った。
That is, since the high-performance compact type plate-fin heat exchanger F shown in FIG. 4 has high rigidity, when operated at high temperature and with a high temperature difference,
It had the disadvantage that it could easily break at the boundary between the sidebar and the plate and at the attachment point between the core and header tank after several hundred heat cycles (starting and stopping) due to thermal stress.

【0013】また、熱交換器の構造に関しては、各法令
(電事法、圧力容器構造規格 etc.)により、使用
部材において、材料の許容応力値を満足する必要がある
。上記のシェルアンドチューブ式熱交換器の場合は、例
えば遊動頭付とすることでシェルとチューブの温度差に
よる伸縮を自由にすることで熱応力を低減できるが、従
来のプレートフィン式熱交換器においては、ロー付けに
よる一体構造のため、伸縮機構を設けることができなか
った。
[0013] Regarding the structure of the heat exchanger, various laws and regulations (Electrical Industry Law, Pressure Vessel Structural Standards, etc.) require that the members used satisfy the allowable stress value of the material. In the case of the above-mentioned shell-and-tube heat exchanger, thermal stress can be reduced by, for example, having a floating head, which allows the shell and tube to expand and contract due to the temperature difference, but the conventional plate-fin heat exchanger Because of the integral structure made by brazing, it was not possible to provide an expansion and contraction mechanism.

【0014】更に熱応力の計算においても、構造が簡単
なシェルアンドチューブ式熱交換器の場合は容易である
が、プレートフィン式熱交換器の場合、例えば、直交流
タイプにおいては、流体流路の温度分布は図5のごとく
三次元の曲面となり更にシステムの起動・停止時には過
渡的に変化するので各部材に生じる熱応力値の算出は不
可能であった。
Furthermore, calculation of thermal stress is easy in the case of a shell-and-tube heat exchanger with a simple structure, but in the case of a plate-fin heat exchanger, for example, a cross-flow type, the fluid flow path is The temperature distribution is a three-dimensional curved surface as shown in Fig. 5, and it changes transiently when the system starts and stops, so it was impossible to calculate the thermal stress value generated in each member.

【0015】本発明は、熱応力は外部的な拘束が無い場
合は、直線的な温度分布があっても任意形状の弾性体に
は生じないという性質と、熱交換器本体に生じる不均一
な温度分布(流体の温度差及び部材の熱容量の差に起因
する)を出来るだけ減少させるという考えの基に、コア
自体を柔軟な構造とすると共に、コアをケーシング内に
納め、伸縮機構を設けることにより、熱応力を防止し、
高温度で且つ高温度差でも信頼性の高いプレートフィン
式熱交換器を提供することを目的とする。
[0015] The present invention is based on the property that thermal stress does not occur in an elastic body of any shape even if there is a linear temperature distribution in the absence of external restraints, and the non-uniformity that occurs in the heat exchanger body. Based on the idea of reducing temperature distribution (due to differences in fluid temperature and heat capacity of members) as much as possible, the core itself has a flexible structure, the core is housed in a casing, and an expansion and contraction mechanism is provided. prevents thermal stress,
It is an object of the present invention to provide a plate-fin type heat exchanger that is highly reliable even at high temperatures and high temperature differences.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、二次伝熱面が一次伝熱面の片側のみ
に固着されているプレートフィン式熱交換器において、
一つの流体流路に一以上の流体流路群を直交あるいは向
流方向に設置し、そのそれぞれの流路が熱による伸縮に
対してXYZ方向に互いに自由に移動できるよう伸縮機
構を設けたことをその要旨としている。
[Means for Solving the Problems] In order to achieve the above object, the first invention provides a plate-fin type heat exchanger in which a secondary heat transfer surface is fixed to only one side of a primary heat transfer surface.
One or more fluid flow channels are installed in one fluid flow channel in orthogonal or countercurrent directions, and an expansion/contraction mechanism is provided so that each of the flow channels can move freely in the X, Y, and Z directions against expansion and contraction due to heat. Its gist is:

【0017】第2の発明は、上記構成において、フィン
に等間隔にスリットを設けて伸縮機構を構成したことを
その要旨としている。
[0017] The gist of the second invention is that, in the above structure, slits are provided in the fins at equal intervals to constitute a telescoping mechanism.

【0018】また、第3の発明は、外部側流体流路を覆
うケーシング内に他流体流路となる熱交換コアの流体出
入口パイプを伸縮継手を介在させて連結し、フローティ
ング状態になるようにすることにより伸縮機構を構成し
たことをその要旨としている。
[0018] Furthermore, the third invention is such that the fluid inlet and outlet pipes of the heat exchange core, which serve as other fluid flow passages, are connected to the casing that covers the external fluid flow passages through expansion joints, so that they are in a floating state. The gist is that a telescoping mechanism was constructed by doing this.

【0019】[0019]

【作用】プレートフィン式熱交換器を上記のように構成
したので、温度差を有する流体流路に生じる熱応力が伸
縮機構により三次元において排除されるため、熱応力に
よる破壊を完全に防止できる。
[Operation] Since the plate-fin type heat exchanger is configured as described above, the thermal stress generated in the fluid flow path having a temperature difference is eliminated in three dimensions by the expansion and contraction mechanism, so destruction due to thermal stress can be completely prevented. .

【0020】[0020]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1および図2は本発明の一実施例を示したもの
で、そのプレートフィン式熱交換器は、流体流路Aと、
それと直交する流体流路Bからなる直交流型コア構造で
あって、流体流路Bは、一次伝熱面となるプレート1の
端部を成形後シールし、袋状にしたものをエレメントと
し、このエレメントを積層し熱交換コアKを形成させる
。流体流路Aは、上記熱交換コアKをケーシングに納め
ることによりコアKの外部側に形成される。各プレート
1には流体流路A,Bへ突出するフィン3を取り付け、
フィン3に伸縮機構が構成される。つまり、フィン3の
伸縮を自在とする伸縮機構Pが構成される。
Embodiments Next, embodiments of the present invention will be described based on the drawings. FIGS. 1 and 2 show an embodiment of the present invention, and the plate-fin heat exchanger has a fluid flow path A,
It is a cross-flow type core structure consisting of a fluid flow path B orthogonal to the fluid flow path B, and the fluid flow path B is formed by sealing the end of the plate 1, which becomes the primary heat transfer surface, after molding, and making it into a bag shape as an element. These elements are stacked to form a heat exchange core K. The fluid flow path A is formed on the outside of the heat exchange core K by housing the heat exchange core K in a casing. Each plate 1 is equipped with fins 3 that protrude into fluid channels A and B,
A telescoping mechanism is configured in the fin 3. In other words, a telescopic mechanism P that allows the fins 3 to freely expand and contract is configured.

【0021】先ず、予め、フィン3はコ字形を交互に繰
り返す波板4をプレート1に融着して形成され、反転部
が先端となる断面コ字形ないしU字形であって、相対向
するフィン3とフィン3との間に突入されて、上下交互
となっており、また、相手の波板4の間に空間7を設け
、隣接するプレート1と断絶させることによって、自由
に伸縮することができるようになっている。
First, the fins 3 are formed in advance by fusing corrugated plates 4 that alternately repeat U-shapes to the plate 1, and have a U-shaped or U-shaped cross section with the inverted portion as the tip. 3 and the fins 3, alternating up and down, and by providing a space 7 between the opposing corrugated plates 4 and disconnecting them from the adjacent plate 1, they can freely expand and contract. It is now possible to do so.

【0022】本願の第2の発明に係る伸縮機構Pは、フ
ィン3に等間隔にスリット9を設けることにより構成さ
れる。つまり、プレート1から突出するフィン3は、そ
のそれぞれ接触する流体温度が異なり、且つ、フィン3
の高さ方向にも温度差が発生し、一様に伸縮しないが、
この温度差による伸縮はスリット9によって吸収される
。その結果、従来のプレートフィン式熱交換器の様な一
次伝熱面としてのプレート1、二次伝熱面としてのフィ
ン3及び外気の影響を受けるサイドバー又はヘッダータ
ンクとの接続部に生じる温度差に基づく熱応力が排除さ
れ、疲労破壊が防止される。
The telescopic mechanism P according to the second invention of the present application is constructed by providing slits 9 in the fins 3 at equal intervals. In other words, the fins 3 protruding from the plate 1 have different fluid temperatures in contact with each other, and the fins 3 have different temperatures.
There is also a temperature difference in the height direction, and the material does not expand and contract uniformly.
The expansion and contraction due to this temperature difference is absorbed by the slits 9. As a result, the temperature generated at the plate 1 as the primary heat transfer surface, the fins 3 as the secondary heat transfer surface, and the connection with the side bar or header tank that is affected by the outside air, as in a conventional plate-fin heat exchanger. Thermal stress due to the difference is eliminated and fatigue failure is prevented.

【0023】以上のフィン3の構造は、流体流路が平行
に向かい合う向流型のプレートフィン式熱交換器におい
ても同様に実施し、同様の作用効果を得ることができた
The structure of the fins 3 described above was similarly applied to a counterflow type plate-fin type heat exchanger in which the fluid channels face each other in parallel, and similar effects could be obtained.

【0024】図3は、第3の発明についての伸縮機構P
を示したもので、前記の様に積層されたコアは、全体が
流体流路Cとなるように外部側出入口(図示省略)を設
け、且つ全体を包囲するケーシング17には、内部側の
流体出入口パイプ13の直径よりも大きい開口部15を
設け、流体出入口パイプ13をケーシング17の外部へ
貫通させると共に、このケーシング17と流体出入口パ
イプ13との間に、伸縮継手19を介して接続させた伸
縮機構Pが構成されている。つまり熱交換コアは、ケー
シング17の内部にフローティング状態になるように伸
縮機構Pを設けたものである。
FIG. 3 shows the telescopic mechanism P according to the third invention.
The cores laminated as described above are provided with an external inlet/outlet (not shown) so that the entire core forms a fluid flow path C, and a casing 17 surrounding the entire core is provided with an internal fluid inlet/outlet (not shown). An opening 15 larger than the diameter of the inlet/outlet pipe 13 is provided, the fluid inlet/outlet pipe 13 is passed through to the outside of the casing 17, and the casing 17 and the fluid inlet/outlet pipe 13 are connected via an expansion joint 19. A telescoping mechanism P is configured. In other words, the heat exchange core is provided with a telescoping mechanism P inside the casing 17 so as to be in a floating state.

【0025】流体出入口パイプ13にはリング20を嵌
めて固着され、伸縮継手19は、その基端が前記開口部
15においてケーシング17に、先端がリング20にそ
れぞれ溶接される。
A ring 20 is fitted and fixed to the fluid inlet/outlet pipe 13, and the expansion joint 19 has its proximal end welded to the casing 17 at the opening 15, and its distal end welded to the ring 20, respectively.

【0026】伸縮機構Pをこのように構成した場合には
、熱交換コアがケーシング内にフロートした状態となり
、ケーシング17内の外部側流体流路Cと流体出入口パ
イプ13内の内部側流体流路Dとの間の温度差に基づく
部材の伸縮差は、伸縮継手19により吸収される結果、
その間の熱応力が排除され、従来のように熱交換コアと
ヘッダータンクの接続部に亀裂を発生するような不都合
を防止できる。
When the expansion/contraction mechanism P is configured in this way, the heat exchange core is in a floating state within the casing, and the external fluid flow path C in the casing 17 and the internal fluid flow path in the fluid inlet/outlet pipe 13 are connected to each other. The difference in expansion and contraction of the member due to the temperature difference between D and D is absorbed by the expansion joint 19, and as a result,
Thermal stress between them is eliminated, and problems such as cracks occurring at the connection between the heat exchange core and the header tank, which are conventional, can be prevented.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
プレートフィン式熱交換器において、各流体流路に大き
な温度差あるいは、温度勾配が発生しても、温度差を有
する流体流路間の部材間の伸縮差が伸縮機構により三次
元方向に自在に吸収されるため、伸縮を相互に拘束し合
うことがなく、熱応力が排除され、熱応力による破壊を
完全に防止できるという優れた効果がある。
[Effects of the Invention] As explained above, according to the present invention,
In a plate-fin heat exchanger, even if a large temperature difference or temperature gradient occurs in each fluid flow path, the expansion and contraction mechanism allows the expansion and contraction difference between the members between the fluid flow paths with the temperature difference to be freely adjusted in three dimensions. Since it is absorbed, expansion and contraction are not mutually constrained, thermal stress is eliminated, and there is an excellent effect that destruction due to thermal stress can be completely prevented.

【0028】また、流体流路間の温度差を高くすること
が可能であるから、高温および高温度差において有効に
使用可能な高性能で且つコンパクトタイプのプレートフ
ィン式熱交換器を提供することができたものである。
Furthermore, since it is possible to increase the temperature difference between the fluid flow paths, it is possible to provide a high-performance and compact plate-fin type heat exchanger that can be effectively used at high temperatures and high temperature differences. It was made.

【0029】[0029]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第2の発明の実施例を示すプレートフィン式熱
交換器のコア構造を示す一部分解斜視図である。
FIG. 1 is a partially exploded perspective view showing the core structure of a plate-fin heat exchanger showing an embodiment of the second invention.

【図2】同組立て断面図である。FIG. 2 is an assembled sectional view of the same.

【図3】第3の発明の実施例を示すプレートフィン式熱
交換器の一部切欠した平面図である。
FIG. 3 is a partially cutaway plan view of a plate-fin heat exchanger showing an embodiment of the third invention.

【図4】従来のロー付けによるプレートフィン式熱交換
器の構成図である。
FIG. 4 is a configuration diagram of a conventional brazed plate-fin heat exchanger.

【図5】直交流型プレートフィン式熱交換器における流
体温度分布を示す立体グラフである。
FIG. 5 is a three-dimensional graph showing fluid temperature distribution in a cross-flow plate-fin heat exchanger.

【符号の説明】[Explanation of symbols]

F  プレートフィン式熱交換器 K  熱交換コア A,B,C,D  流体流路 P  伸縮機構 1  一次伝熱面としてのプレート 3  二次伝熱面としてのフィン 7  空間 9  スリット 13  流体出入口パイプ 15  開口部 17  ケーシング 19  伸縮継手 F Plate fin heat exchanger K Heat exchange core A, B, C, D Fluid flow path P Expansion mechanism 1 Plate as primary heat transfer surface 3. Fins as secondary heat transfer surfaces 7 Space 9 Slit 13 Fluid inlet/outlet pipe 15 Opening 17 Casing 19 Expansion joint

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  二次伝熱面が一次伝熱面の片側のみに
固着されているプレートフィン式熱交換器において、一
つの流体流路に一以上の流体流路群を直交あるいは向流
方向に設置し、それぞれの流路が熱による伸縮に対して
XYZ方向に互いに自由に移動できるよう伸縮機構を設
けたことを特徴とするプレートフィン式熱交換器。
Claim 1: In a plate-fin heat exchanger in which the secondary heat transfer surface is fixed to only one side of the primary heat transfer surface, one or more fluid flow path groups are arranged in one fluid flow path in orthogonal or countercurrent directions. 1. A plate-fin type heat exchanger, characterized in that the plate-fin heat exchanger is equipped with an expansion and contraction mechanism so that each flow path can move freely in the XYZ directions against expansion and contraction due to heat.
【請求項2】  フィンに等間隔にスリットを設けて伸
縮機構を構成したことを特徴とする請求項1記載のプレ
ートフィン式熱交換器。
2. The plate-fin heat exchanger according to claim 1, wherein the fins are provided with slits at equal intervals to constitute an expansion and contraction mechanism.
【請求項3】  外部側流体流路を覆うケーシング内に
他流体流路となる熱交換コアの流体出入口パイプを伸縮
継手を介在させて連結し、フローティング状態になるよ
うにすることにより伸縮機構を構成したことを特徴とす
る請求項1記載のプレートフィン式熱交換器。
[Claim 3] The expansion and contraction mechanism is achieved by connecting the fluid inlet and outlet pipes of the heat exchange core, which serve as other fluid flow paths, with an expansion joint interposed in the casing that covers the external fluid flow path so that the pipes are in a floating state. The plate-fin type heat exchanger according to claim 1, characterized in that the plate-fin type heat exchanger comprises:
JP3570591A 1991-02-04 1991-02-04 Plate fin type heat exchanger Pending JPH04340088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3570591A JPH04340088A (en) 1991-02-04 1991-02-04 Plate fin type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3570591A JPH04340088A (en) 1991-02-04 1991-02-04 Plate fin type heat exchanger

Publications (1)

Publication Number Publication Date
JPH04340088A true JPH04340088A (en) 1992-11-26

Family

ID=12449285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3570591A Pending JPH04340088A (en) 1991-02-04 1991-02-04 Plate fin type heat exchanger

Country Status (1)

Country Link
JP (1) JPH04340088A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189008A1 (en) * 2000-09-15 2002-03-20 Toyo Radiator Co., Ltd. Heat exchanger
JP2007247950A (en) * 2006-03-15 2007-09-27 Tokyo Roki Co Ltd Tube type heat exchanger
JP2008202846A (en) * 2007-02-20 2008-09-04 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger and egr gas cooling device using the same
WO2009148505A3 (en) * 2008-05-30 2010-02-18 Corning Incorporated Solid oxide fuel cell systems
JP2013517448A (en) * 2010-01-14 2013-05-16 ウンジン コーウェイ カンパニー リミテッド Heat exchanger, garbage processing machine including heat exchanger, and method of manufacturing heat exchanger
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189008A1 (en) * 2000-09-15 2002-03-20 Toyo Radiator Co., Ltd. Heat exchanger
JP2007247950A (en) * 2006-03-15 2007-09-27 Tokyo Roki Co Ltd Tube type heat exchanger
JP2008202846A (en) * 2007-02-20 2008-09-04 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger and egr gas cooling device using the same
WO2009148505A3 (en) * 2008-05-30 2010-02-18 Corning Incorporated Solid oxide fuel cell systems
JP2013517448A (en) * 2010-01-14 2013-05-16 ウンジン コーウェイ カンパニー リミテッド Heat exchanger, garbage processing machine including heat exchanger, and method of manufacturing heat exchanger
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method

Similar Documents

Publication Publication Date Title
US6840313B2 (en) Plate fin type heat exchanger for high temperature
US4073340A (en) Formed plate type heat exchanger
US8028410B2 (en) Gas turbine regenerator apparatus and method of manufacture
US4229868A (en) Apparatus for reinforcement of thin plate, high pressure fluid heat exchangers
US4310960A (en) Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
US6089313A (en) Apparatus for exchanging heat between at least three fluids
JP6693690B2 (en) Heat exchanger
US3424240A (en) Corrugated stacked-plate heat exchanger
US3894581A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
EP0530181A1 (en) Circular heat exchanger.
US3741293A (en) Plate type heat exchanger
JPH04340088A (en) Plate fin type heat exchanger
US3451474A (en) Corrugated plate type heat exchanger
US20140090804A1 (en) Heat Exchanger
US4869317A (en) Heat exchanger
JPS61180892A (en) Plate type heat exchanger
JP2518234B2 (en) Method for producing plate fin type heat exchanger
US20200103178A1 (en) Counter-flow heat exchanger
JP3810728B2 (en) Laminate heat exchanger
JPS5928218Y2 (en) Heat exchanger for high pressure fluid
JPH0729412Y2 (en) Plate fin type heat exchanger
JPH0612364Y2 (en) Plate fin heat exchanger
RU2709241C1 (en) Plate-type heat exchanger
JP2583630Y2 (en) Plate fin heat exchanger
JPH0539326Y2 (en)