JPH0433969B2 - - Google Patents

Info

Publication number
JPH0433969B2
JPH0433969B2 JP1297628A JP29762889A JPH0433969B2 JP H0433969 B2 JPH0433969 B2 JP H0433969B2 JP 1297628 A JP1297628 A JP 1297628A JP 29762889 A JP29762889 A JP 29762889A JP H0433969 B2 JPH0433969 B2 JP H0433969B2
Authority
JP
Japan
Prior art keywords
intake
valves
valve
passages
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1297628A
Other languages
Japanese (ja)
Other versions
JPH02161125A (en
Inventor
Masaaki Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1297628A priority Critical patent/JPH02161125A/en
Publication of JPH02161125A publication Critical patent/JPH02161125A/en
Publication of JPH0433969B2 publication Critical patent/JPH0433969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1つの気筒に対して3個の吸気弁を
有する4サイクル内燃機関の吸気装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a four-stroke internal combustion engine having three intake valves for one cylinder.

(発明の背景) 1つの気筒に対して3個の互いに隣接する吸気
弁を設けた4サイクル内燃機関がある。この種の
機関で、各吸気弁に連通する吸気通路を連通室で
連通させ、この連通室から各吸気弁に吸気を導く
ものが考えられる。この場合には、連通室に入つ
た吸気は運転状態に応じて各吸気弁に適切に分配
されて導かれるのが望まし。例えば、高速運転時
には各吸気弁に吸気が導かれて吸入吸気量が増大
できることが必要である。
BACKGROUND OF THE INVENTION There are four-stroke internal combustion engines that have three adjacent intake valves for one cylinder. In this type of engine, it is conceivable that the intake passages communicating with each intake valve are communicated with each other through a communication chamber, and intake air is guided from the communication chamber to each intake valve. In this case, it is desirable that the intake air entering the communication chamber be appropriately distributed and guided to each intake valve according to the operating conditions. For example, during high-speed operation, it is necessary that intake air be introduced to each intake valve to increase the amount of intake air.

しかし吸気は連通室の内壁面に沿つて流れ易い
性質を持つから、連通室に流入した吸気は3つの
吸気通路のうち両側の吸気通路に流れ易く、中央
の吸気通路に入りにくくなる。この結果3つの吸
気通路に流れる吸気流量が不均一になり、特に高
速運転時の合計吸入吸気量が制限されるという問
題が生じる。
However, since the intake air tends to flow along the inner wall surface of the communication chamber, the intake air flowing into the communication chamber tends to flow to the intake passages on both sides of the three intake passages, and is difficult to enter the central intake passage. As a result, the flow rate of intake air flowing into the three intake passages becomes non-uniform, causing a problem in that the total amount of intake air flowing through the three intake passages is limited, particularly during high-speed operation.

(発明の目的) 本発明はこのような事情に鑑みなされたもので
あり、3つの吸気弁を有する4サイクル内燃機関
であつて、連通室から各吸気弁に吸気を導く場合
に、各吸気弁への吸気の流入が円滑に行われ、特
に高速運転時には各吸気弁への吸気流量を均一化
して合計吸気流量を増大させることが可能な4サ
イクル内燃機関の吸気装置を提供することを目的
とするものである。
(Object of the Invention) The present invention has been made in view of the above circumstances, and is a four-cycle internal combustion engine having three intake valves. The purpose of the present invention is to provide an intake system for a four-stroke internal combustion engine that allows intake air to smoothly flow into the engine, and that can increase the total intake flow rate by equalizing the intake flow rate to each intake valve, especially during high-speed operation. It is something to do.

(発明の構成) 本発明によればこの目的は、カム軸により駆動
される3つの吸気弁と複数の排気弁を各気筒毎に
備え、これら吸排気弁を燃焼室の中心付近を通り
カム軸に平行な直線の一側と他側に振り分け、か
つ中央の吸気弁を両側の吸気弁よりも前記直線に
対してシリンダ外側に位置させ、各吸気弁により
開閉される3つの吸気通路を前記燃焼室の中心付
近を通り前記カム軸に直交する平面に対してほぼ
対称にシリンダヘツドに設けた4サイクル内燃機
関において、前記3つの吸気通路をシリンダヘツ
ド側部に設けた連通室に連通させ、このの連通室
から両側の吸気弁に至る吸気通路を連通室から吸
気弁に向つて滑らかに拡開するように形成する一
方、前記3つの吸気通路を、燃焼室の中心付近を
通りカム軸にほぼ直交する平面上の点に向つてシ
リンダ中心線方向から見て各吸気弁からほぼ直線
状にのび、かつシリンダ中心線方向から見た幅が
略一定となるように形成し、各吸気通路間の仕切
り壁を十分短くしその上流縁を中央の吸気弁側に
後退させたことを特徴とする4サイクル内燃機関
の吸気装置により達成される。
(Structure of the Invention) According to the present invention, the object is to provide each cylinder with three intake valves and a plurality of exhaust valves driven by a camshaft, and to connect these intake and exhaust valves to the camshaft through the vicinity of the center of the combustion chamber. The central intake valve is located on the outer side of the cylinder with respect to the straight line than the intake valves on both sides, and the three intake passages opened and closed by each intake valve are connected to the combustion chamber. In a four-stroke internal combustion engine, which is provided in the cylinder head almost symmetrically with respect to a plane passing near the center of the chamber and orthogonal to the camshaft, the three intake passages are communicated with a communication chamber provided on the side of the cylinder head, and The intake passages from the communication chamber to the intake valves on both sides are formed so as to smoothly expand from the communication chamber toward the intake valves, while the three intake passages are formed to pass through the center of the combustion chamber and approximately to the camshaft. It is formed so that it extends almost linearly from each intake valve when viewed from the direction of the cylinder centerline toward a point on a perpendicular plane, and has a substantially constant width when viewed from the direction of the cylinder centerline. This is achieved by an intake system for a four-stroke internal combustion engine characterized in that the partition wall is sufficiently short and its upstream edge is set back toward the central intake valve.

ここに前記連通室から両側の吸気弁に至る吸気
通路をほぼ一定断面積とした場合には、この両側
の吸気通路にも吸気が一層流入し易くなる。さら
にカム軸方向から見て両側の吸気弁に至る吸気通
路の曲率半径を中央の吸気弁に至る吸気通路の曲
率半径よりも大きくすれば、吸気の流速を利用し
て両側の吸気通路に吸気は一層流入し易くなる。
このため各吸気弁へ導かれる吸気流量の合計が一
層増大する。
If the intake passages from the communication chamber to the intake valves on both sides have a substantially constant cross-sectional area, the intake air will more easily flow into the intake passages on both sides. Furthermore, if the radius of curvature of the intake passages leading to the intake valves on both sides when viewed from the camshaft direction is made larger than the radius of curvature of the intake passages leading to the central intake valve, the intake air will flow into the intake passages on both sides using the flow velocity of the intake air. It becomes easier to flow in.
Therefore, the total amount of intake air flow guided to each intake valve further increases.

(作用) カム軸に直交しかつシリンダ中心線を含む平面
にほぼ沿つて連通室に流入した吸気は、この連通
室で3つの吸気弁の吸気通路に分配される。この
吸気は、連通室の内壁面に導かれて両側の吸気通
路に多く流る傾向を持つが、中央の吸気通路を形
成する仕切壁は十分に短くその上流縁は中央の吸
気弁に十分接近しているから連通室からはこの中
央の吸気通路に良好に流入する。このため各吸気
通路間の吸気量が均一化される。特に各吸気通路
のシリンダ中心軸方向から見た幅は略同一にされ
ているから、各吸気通路には円滑に吸気が流入
し、吸気流入量の合計も増える。
(Operation) Intake air flowing into the communication chamber along a plane perpendicular to the camshaft and including the cylinder centerline is distributed to the intake passages of the three intake valves in the communication chamber. This intake air tends to be guided by the inner wall surface of the communication chamber and flow into the intake passages on both sides, but the partition wall that forms the central intake passage is sufficiently short and its upstream edge is sufficiently close to the central intake valve. Because of this, the air flows smoothly from the communication chamber into this central intake passage. Therefore, the amount of intake air between each intake passage is equalized. In particular, since the widths of each intake passage viewed from the cylinder center axis direction are substantially the same, intake air flows smoothly into each intake passage, and the total amount of intake air inflow increases.

また両側の吸気通路の断面積をほぼ一定とすれ
ば、この吸気通路への吸気の流入は一層円滑にな
る。さらに、カム軸方向から見て両側の吸気弁に
至る吸気通路の曲率半径を中央の吸気弁に至る吸
気通路の曲率半径よりも大きくすることにより、
吸気の速度を利用して曲率半径の大きい両側の吸
気通路へ吸気を流れ易くすることができ、この外
側の吸気通路へ流入する吸気量をさらに増大する
ことが可能である。
Furthermore, if the cross-sectional areas of the intake passages on both sides are made substantially constant, the intake air flows into the intake passages even more smoothly. Furthermore, by making the radius of curvature of the intake passage leading to the intake valves on both sides as viewed from the camshaft direction larger than the radius of curvature of the intake passage leading to the central intake valve,
By utilizing the speed of the intake air, it is possible to make it easier for the intake air to flow into the intake passages on both sides having a large radius of curvature, and it is possible to further increase the amount of intake air flowing into the outer intake passages.

(実施例) 第1図は本発明の第1実施例を一部断面した平
面図、第2図はその−線断面図、第3図はト
ルク特性図である。第1、2図において符号10
はシリンダボデー、12はシリンダヘツド、14
はピストンであり、これらにより燃焼室16が形
成される。シリンダヘツド12には1気筒につき
2個の排気弁18,18a,18bと、3個の互
いに隣接する吸気弁20,20a,20b,20
cが設けられている。排気弁18は、燃焼室の中
心付近を通り後記カム軸22,24に平行な直線
の一側に、また吸気弁20はこの直線の他側に位
置する。ここに中央の吸気弁20bは両側の吸気
弁20a,20cよりもこの直線に対してシリン
ダ外側に位置する。またこれら排・吸気弁18,
20は燃焼室中央を通りカム軸22,24に直交
する平面(後記すする平面Z)に対して対称に位
置する。これらの排・吸気弁18,20は、それ
ぞれ頭上カム軸22,24、スイングアーム2
6,28などからなる公知のスイングアーム方式
の2頭上カム軸式動弁機構により開閉される。3
0はシリンダヘツドカバー、32は排気弁18に
連通する排気通路、また第1図で34は点火栓で
ある。点火栓34はその着火部が燃焼室16の中
央付近に臨んでいる。
(Embodiment) FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line 2, and FIG. 3 is a torque characteristic diagram. Number 10 in Figures 1 and 2
is the cylinder body, 12 is the cylinder head, 14
is a piston, and a combustion chamber 16 is formed by these pistons. The cylinder head 12 has two exhaust valves 18, 18a, 18b per cylinder and three mutually adjacent intake valves 20, 20a, 20b, 20.
c is provided. The exhaust valve 18 is located on one side of a straight line passing near the center of the combustion chamber and parallel to camshafts 22 and 24, which will be described later, and the intake valve 20 is located on the other side of this straight line. Here, the central intake valve 20b is located on the outer side of the cylinder with respect to this straight line than the intake valves 20a, 20c on both sides. In addition, these exhaust/intake valves 18,
20 is located symmetrically with respect to a plane (plane Z to be described later) that passes through the center of the combustion chamber and is orthogonal to the camshafts 22 and 24. These exhaust/intake valves 18, 20 are connected to overhead camshafts 22, 24 and swing arm 2, respectively.
It is opened and closed by a known swing arm type double overhead camshaft type valve mechanism consisting of 6, 28, etc. 3
0 is a cylinder head cover, 32 is an exhaust passage communicating with the exhaust valve 18, and 34 in FIG. 1 is a spark plug. The ignition part of the ignition plug 34 faces near the center of the combustion chamber 16.

36はサージタンク、38は各気筒ごとサにサ
ージタンク36とシリンダヘツド12とをつなぐ
吸気管である。吸気管38内には、第1吸気通路
40a、第2吸気通路40bが形成されている。
第1吸気通路40aと第2吸気通路40bとは略
同径で、またこれらの通路40a,40bを貫通
する弁軸42には、第2吸気通路40bを開閉す
る蝶型の制御弁44が取付けられている。この制
御弁44は運転条件、例えば運転負荷や機関回転
速度の増減に対応して開閉するように制御され
る。
36 is a surge tank, and 38 is an intake pipe that connects the surge tank 36 and the cylinder head 12 for each cylinder. A first intake passage 40a and a second intake passage 40b are formed within the intake pipe 38.
The first intake passage 40a and the second intake passage 40b have approximately the same diameter, and a butterfly-shaped control valve 44 that opens and closes the second intake passage 40b is attached to a valve shaft 42 that passes through these passages 40a and 40b. It is being This control valve 44 is controlled to open and close in response to operating conditions, such as increases and decreases in operating load and engine speed.

吸気通路40の下流側はシリンダヘツド12に
設けた連通室46に接続され、この連通室46は
3つの吸気弁20にそれぞれ吸気通路47a,4
7b,47cによつて連通している。ここに前記
した3つの吸気弁20a,b,cは、カム軸2
2,24に直交しかつシリンダ中心線α(第2図)
を含む平面z(第1図)に対して対称に配設され、
両側の吸気通路47a,47cはほぼ連通室から
吸気弁20a,20cまでほぼ直線形状で、かつ
その断面積はほぼ一定となつている。
The downstream side of the intake passage 40 is connected to a communication chamber 46 provided in the cylinder head 12, and this communication chamber 46 connects the three intake valves 20 with intake passages 47a and 47a, respectively.
7b and 47c. The three intake valves 20a, b, c mentioned above are connected to the camshaft 2
2, 24 and the cylinder center line α (Fig. 2)
arranged symmetrically with respect to the plane z (Fig. 1) containing
The intake passages 47a, 47c on both sides have a substantially straight shape from the communication chamber to the intake valves 20a, 20c, and have a substantially constant cross-sectional area.

すなわち各吸気通路47a,47b,47c
は、各吸気弁20a,20b,20cから平面Z
上の1点に向つてほぼ直線状にのび、かつシリン
ダ中心線α方向から見た幅が一定となつている。
このためこれら吸気通路47間の仕切壁は必然的
に非常に短くなり、この仕切壁の上流縁は中央の
吸気弁20bに十分に接近することになる。この
結果連通室46が中央の吸気弁20bに接近す
る。またこれらの吸気通路47は、カム軸22,
24方向から見た第2図に示す状態で、両側の吸
気通路47a,47cの曲率半径が中央の吸気通
路47bの曲率半径よりも大きく設定されてい
る。
That is, each intake passage 47a, 47b, 47c
is a plane Z from each intake valve 20a, 20b, 20c
It extends almost linearly toward one point on the top, and has a constant width when viewed from the direction of the cylinder center line α.
Therefore, the partition wall between these intake passages 47 will necessarily be very short, and the upstream edge of this partition wall will be sufficiently close to the central intake valve 20b. As a result, the communication chamber 46 approaches the central intake valve 20b. Further, these intake passages 47 are connected to the camshaft 22,
In the state shown in FIG. 2 when viewed from the 24 direction, the radius of curvature of the intake passages 47a, 47c on both sides is set larger than the radius of curvature of the central intake passage 47b.

48は電磁式燃料噴射弁である。この噴射弁4
8は第2図に示すよう、吸気管38の上部に配設
した分配管50と、シリンンダヘツド12の連通
室46上部との間に位置する。この噴射弁48の
噴射口は、第2図に示すように、カム軸22,2
4に直交しかつシリンダ中心線αを含む平面zに
ほぼ沿つて燃料を噴射するように指向している。
なお前記中央の吸気弁20bはこの噴射弁48と
点火栓34との間に位置する。またこの実施例で
は、噴射弁48の燃料噴射口は、両側の2つの吸
気弁20a,20cの傘部側端面の中心を結ぶ直
線xと、この直線xと平行でかつ中央の吸気弁2
0bの傘部側端面の中心を含む直線yとの間を指
向している。
48 is an electromagnetic fuel injection valve. This injection valve 4
8 is located between a distribution pipe 50 disposed above the intake pipe 38 and the upper part of the communication chamber 46 of the cylinder head 12, as shown in FIG. As shown in FIG. 2, the injection port of this injection valve 48 is
4 and includes the cylinder centerline α.
Note that the central intake valve 20b is located between the injection valve 48 and the spark plug 34. Further, in this embodiment, the fuel injection port of the injection valve 48 is connected to a straight line x connecting the centers of the umbrella side end surfaces of the two intake valves 20a and 20c on both sides, and a line parallel to this straight line
It is oriented between the straight line y that includes the center of the umbrella side end surface of 0b.

この噴射弁48は制御器(図示せず)が出力す
る電気信号により所定のタイミングで開弁し、所
定圧に加圧された分配管50内の燃料を連通室4
6内へ間欠的に噴射する。
The injection valve 48 opens at a predetermined timing in response to an electric signal output from a controller (not shown), and injects the fuel in the distribution pipe 50 pressurized to a predetermined pressure into the communication chamber 48.
Inject intermittently into 6.

この第1実施例の動作は次の通りである。低負
荷・低速運転時には、制御弁44は閉じ第1吸気
通路40aから吸気は連通室46へ導かれる。連
通室46に間欠的に噴射された燃料は、或る程度
の広がりを持つているるばかりでなく比較的広い
連通室46内を長い距離の間内壁に当たることな
く拡散する。このため内壁に付着する燃料が減
り、燃料の霧化が促進される。この燃料は中央の
吸気弁20bを指向して噴射されているから、こ
の中央の吸気弁20bから濃い混合気が燃焼室1
6に流入する。点火栓にはこの濃い混合気が導か
れるので層状燃焼に近い燃焼状態が得られ、着火
性が良好になり、燃焼安定化も図れる。
The operation of this first embodiment is as follows. During low load/low speed operation, the control valve 44 is closed and intake air is guided from the first intake passage 40a to the communication chamber 46. The fuel injected intermittently into the communication chamber 46 not only has a certain degree of spread, but also spreads within the relatively wide communication chamber 46 for a long distance without hitting the inner wall. This reduces the amount of fuel adhering to the inner wall and promotes atomization of the fuel. Since this fuel is injected toward the central intake valve 20b, a rich air-fuel mixture flows into the combustion chamber 1 from the central intake valve 20b.
6. Since this rich air-fuel mixture is guided to the spark plug, a combustion state similar to stratified combustion is obtained, which improves ignition performance and stabilizes combustion.

高負荷・高速運転時には制御弁44が開き、吸
気は第1、第2吸気通路40a,40bから連通
室46に入る。この時吸気通路47は、連通室4
6からほぼ直線的に各吸気弁20に分岐し、かつ
分岐した各吸気通路47a〜cは第1図上で略同
一の幅を持つから、吸気は各吸気通路47に分配
されて円滑に流れる。ここに両側の吸気通路47
a,47cは断面積がほぼ一定であり、またその
曲率半径は中央の吸気通路47bよりも大きくな
つているので、両側の吸気通路47a,47cに
流入する吸気の流路抵抗が中央の吸気通路47b
おける流路抵抗よりも小さくなる。このため連通
室46に近い中央の吸気通路47bだけでなく、
両側の吸気通路47a,47cにも良好に吸気が
流れ込み、十分な吸気流量を確保することが可能
になる。
During high load/high speed operation, the control valve 44 opens and intake air enters the communication chamber 46 from the first and second intake passages 40a, 40b. At this time, the intake passage 47 is connected to the communication chamber 4.
6 to each intake valve 20, and each of the branched intake passages 47a to 47c has approximately the same width in FIG. 1, the intake air is distributed to each intake passage 47 and flows smoothly. . Here are the intake passages 47 on both sides.
a, 47c have a substantially constant cross-sectional area, and their radius of curvature is larger than that of the central intake passage 47b, so the flow resistance of the intake air flowing into the intake passages 47a, 47c on both sides is greater than that of the central intake passage. 47b
flow path resistance. Therefore, not only the central intake passage 47b near the communication chamber 46,
Intake air flows well into the intake passages 47a and 47c on both sides, making it possible to ensure a sufficient intake flow rate.

なおこの実施例では、中央の吸気通路47bは
両側の吸気通路47b,47cよりも曲率が大き
いから(第2図)、特に高速時には吸気と共に燃
料も外側の吸気弁20a,cに良好に導かれ、予
混合燃焼に近い均質な混合気になつて良好に燃料
される。
In this embodiment, since the central intake passage 47b has a larger curvature than the intake passages 47b and 47c on both sides (Fig. 2), both intake air and fuel are well guided to the outer intake valves 20a and 20c, especially at high speeds. This results in a homogeneous air-fuel mixture close to premixed combustion, resulting in good fuel consumption.

第3図で実線Aは制御弁44を開き続けた場合
のトルク特性であり、中低速での吸気慣性効果の
減少によりトルク低下が著しいことを示してい
る。同図鎖Bは制御弁44を閉じた場合のトルク
特性である。制御弁44を中速域で開閉させるこ
とによりこれらの2つの特性A,Bを組合せ、ト
ルク特性の改善を図ることができる。
In FIG. 3, the solid line A represents the torque characteristic when the control valve 44 is kept open, and shows that the torque decreases significantly due to the decrease in the intake inertia effect at medium and low speeds. Chain B in the figure shows the torque characteristic when the control valve 44 is closed. By opening and closing the control valve 44 in the medium speed range, these two characteristics A and B can be combined to improve the torque characteristics.

第4図は第2実施例を一部断面した平面図であ
る。この実施例は、前記第1実施例における第1
吸気通路40aを第2吸気通路40bより小径に
形成したものである。この実施例によれば噴射弁
48の噴射口が第1、第2吸気通路40a,40
b間の壁より第2吸気通路40b側に偏位してい
る。この結果高負荷・高速時に制御弁44が開く
と第2吸気通路40bから連通室46に流入した
吸気は、第1実施例に比べ、噴射弁48から噴射
された燃料に一層よく当たり、燃料の霧化がさら
に促進される。また第2吸気通路40bが小径な
ので、第1実施例に比べて一層低速から吸気慣性
によるトルク増加を図ることができる。さらに第
1吸気通路40aの連通室46に対する偏位量
は、第1実施例に比べて大きくなるから、制御弁
44が閉じている低速時には連通室46に生成さ
れる渦流が一層強くなり、吸気弁20の開弁時に
はこの渦流により燃焼室16内に一層強いスワー
ル(吸入渦流)が発生する。このため低速時の燃
焼が安定化され、低速運転が円滑になる効果が一
層顕著になる。
FIG. 4 is a partially sectional plan view of the second embodiment. This embodiment is based on the first embodiment in the first embodiment.
The intake passage 40a is formed to have a smaller diameter than the second intake passage 40b. According to this embodiment, the injection port of the injection valve 48 is connected to the first and second intake passages 40a, 40.
It is deviated toward the second intake passage 40b from the wall between b. As a result, when the control valve 44 opens under high load and high speed, the intake air flowing into the communication chamber 46 from the second intake passage 40b hits the fuel injected from the injection valve 48 more effectively than in the first embodiment. Atomization is further promoted. Furthermore, since the second intake passage 40b has a small diameter, it is possible to increase the torque due to intake inertia from a lower speed than in the first embodiment. Furthermore, since the amount of deviation of the first intake passage 40a with respect to the communication chamber 46 is larger than that in the first embodiment, the vortex generated in the communication chamber 46 becomes even stronger at low speeds when the control valve 44 is closed, and the intake air When the valve 20 is opened, an even stronger swirl (suction vortex) is generated within the combustion chamber 16 due to this vortex. Therefore, combustion at low speeds is stabilized, and the effect of smoothing low speed operation becomes even more pronounced.

第5図は第3実施例の一部断面した平面図であ
り、この実施例は第1吸気通路40aを中央に配
置する一方第2吸気通路40bを2つに分割し、
それぞれに制御弁44,44を設けたものであ
る。
FIG. 5 is a partially sectional plan view of the third embodiment, in which the first intake passage 40a is arranged in the center, while the second intake passage 40b is divided into two.
Control valves 44, 44 are provided respectively.

この実施例によれば、制御弁44が閉じる低負
荷・低速時に第1吸気通路を通る吸気は、噴射弁
48から噴射された燃料に良好に当たり、特に低
負荷・低速時の霧化が前記第1、第2実施例に比
べて一層改善される。
According to this embodiment, the intake air passing through the first intake passage when the control valve 44 is closed at low load and low speed hits the fuel injected from the injection valve 48 well, and the atomization is particularly good at low load and low speed. 1. It is further improved compared to the second embodiment.

第6図は第4実施例の一部断面した平面図であ
り、この実施例は第1、第2、第3吸気通路40
a,40b,40cを備え、第1吸気通路40a
を挟む第2、第3吸気通路40b,40cには、
開閉時期が互いに異なる制御弁44a,44bを
配設した。
FIG. 6 is a partially sectional plan view of the fourth embodiment, which shows the first, second, and third intake passages 40.
a, 40b, 40c, the first intake passage 40a
The second and third intake passages 40b and 40c sandwiching the
Control valves 44a and 44b whose opening and closing timings differ from each other are provided.

この実施例によれば第3実施例(第5図)と同
様に低速時の霧化が促進されるだけでなく、トル
ク特性の改善も同時に図れる。すなわち第7図は
この第4実施例のトルク特性図であり、この図の
実線Aは制御弁44a,44bを開き続けた場合
の特性、破線Bは低速域で制御弁44a,44b
の両方を閉じた場合の特性、また鎖線Cは中速域
で制御弁44bのみを開いた場合の特性である。
制御弁44a,44bを異なる運転速度で開閉さ
せてこれら特性A,B,Cを組み合わせることに
より、前記第1〜3実施例に比べ中速域でのトル
ク改善を図ることができる。
According to this embodiment, like the third embodiment (FIG. 5), not only atomization at low speeds is promoted, but also torque characteristics can be improved at the same time. That is, FIG. 7 is a torque characteristic diagram of this fourth embodiment. In this figure, the solid line A indicates the characteristic when the control valves 44a, 44b are kept open, and the broken line B indicates the characteristic when the control valves 44a, 44b are kept open in the low speed range.
The chain line C shows the characteristic when only the control valve 44b is opened in the medium speed range.
By opening and closing the control valves 44a and 44b at different operating speeds and combining these characteristics A, B, and C, it is possible to improve the torque in the medium speed range compared to the first to third embodiments.

第8図は第5実施例の一部断面した平面図であ
り、この実施例は第4実施例(第6図)における
第1吸気通路40aと第2吸気通路40bとの位
置を入れ換えたものである。
FIG. 8 is a partially sectional plan view of the fifth embodiment, and this embodiment is obtained by swapping the positions of the first intake passage 40a and the second intake passage 40b in the fourth embodiment (FIG. 6). It is.

この実施例よれば前記第4実施例(第6図)と
同様に、中速域でのトルクを増加できるだけでな
く、前記第2実施例(第4図)と同様に低速域で
スワールが強化されるので、低速運転時の回転が
一層円滑になる。
According to this embodiment, as in the fourth embodiment (Fig. 6), not only can torque be increased in the medium speed range, but also swirl can be enhanced in the low speed range as in the second embodiment (Fig. 4). This makes rotation even smoother during low-speed operation.

なお、第4,5,6,8図では第1図と同一部
分に同一符号を付したので、その説明は繰り返さ
ない。
In addition, in FIGS. 4, 5, 6, and 8, the same parts as in FIG. 1 are given the same reference numerals, so the description thereof will not be repeated.

(発明の効果) 本発明は以上のように、3つの吸気弁及び吸気
通路を、カム軸に直交しかつシリンダ中心線を含
む平面に対してほぼ対称に配設し、燃焼室中央付
近を通りカム軸に平行な直線に対して、中央の吸
気弁を両側の吸気弁よりもシリンダ外側に配置
し、各吸気通路を対称面上の点に向つて各吸気弁
からほぼ直線状にのび、かつシリンダ中心線方向
から見て幅が略一定になるようにしたから、各吸
気通路間の仕切壁は十分に短くなり、中央の吸気
弁は連通室に十分接近することになる。このため
中央の吸気弁にも良好に吸気が流入し、両側の吸
気弁にも良好に流入することになる。すなわち吸
気が滑らかに3つの吸気通路に分配され、吸気を
円滑に各吸気弁に導くことができる。従つて特に
高速時には3つの吸気弁に流れる吸気量を均一化
して全体の吸気量を増大しエンジン性能を向上さ
せることができる。
(Effects of the Invention) As described above, the present invention arranges the three intake valves and the intake passage almost symmetrically with respect to a plane perpendicular to the camshaft and including the cylinder centerline, and passes through the vicinity of the center of the combustion chamber. With respect to a straight line parallel to the camshaft, the central intake valve is located outside the cylinder from the intake valves on both sides, and each intake passage extends approximately straight from each intake valve toward a point on the plane of symmetry, and Since the width is made substantially constant when viewed from the direction of the cylinder centerline, the partition walls between the intake passages are sufficiently short, and the central intake valve is sufficiently close to the communication chamber. Therefore, intake air flows well into the central intake valve, and also flows well into the intake valves on both sides. That is, the intake air is smoothly distributed to the three intake passages, and the intake air can be smoothly guided to each intake valve. Therefore, especially at high speeds, the amount of intake air flowing into the three intake valves can be equalized, increasing the overall amount of intake air and improving engine performance.

また両側の吸気通路を断面積がほぼ一定になる
ようにすれば、この両側の吸気通路への吸気の流
入が一層円滑になる。さらに両側の吸気通路の曲
率半径を中央の吸気通路の曲率半径よりも大きく
すれば、外側の吸気通路の流入抵抗が小さくな
り、両側の吸気通路への吸気の分配は一層円滑に
なる。
Furthermore, if the cross-sectional areas of the intake passages on both sides are made substantially constant, the intake air can flow into the intake passages on both sides even more smoothly. Furthermore, by making the radius of curvature of the intake passages on both sides larger than the radius of curvature of the central intake passage, the inflow resistance of the outer intake passages becomes smaller, and the distribution of intake air to the intake passages on both sides becomes smoother.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を一部断面した平
面図、第2図はその−線断面図、第3図はト
ルク特性図である。また第4,5,6,8図は他
の実施例の一部断面した平面図、第7図は第6図
の実施例のトルク特性図である。 16……燃焼室、20a,20b,20c……
吸気弁、22,24……カム軸、46……連通
室、47……吸気通路、α……シリンダ中心線、
z……平面。
FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line 2, and FIG. 3 is a torque characteristic diagram. 4, 5, 6, and 8 are partially sectional plan views of other embodiments, and FIG. 7 is a torque characteristic diagram of the embodiment of FIG. 6. 16... Combustion chamber, 20a, 20b, 20c...
Intake valve, 22, 24...camshaft, 46...communication chamber, 47...intake passage, α...cylinder center line,
z...plane.

Claims (1)

【特許請求の範囲】 1 カム軸により駆動される3つの吸気弁と複数
の排気弁を各気筒毎に備え、これら吸排気弁を燃
焼室の中心付近を通りカム軸に平行な直線の一側
と他側に振り分け、かつ中央の吸気弁を両側の吸
気弁よりも前記直線に対してシリンダ外側に位置
させ、各吸気弁により開閉される3つの吸気通路
を前記燃焼室の中心付近を通り前記カム軸に直交
する平面に対してほぼ対称にシリンダヘツドに設
けた4サイクル内燃機関において、 前記3つの吸気通路をシリンダヘツド側部に設
けた連通室に連通させ、この連通室から両側の吸
気弁に至る吸気通路を連通室から吸気弁に向つて
滑らかに拡開するように形成する一方、前記3つ
の吸気通路を、燃焼室の中心付近を通りカム軸に
ほぼ直交する平面上の点に向つてシリンダ中心線
方向から見て各吸気弁からほぼ直線状にのび、か
つシリンダ中心線方向から見た幅が略一定となる
ように形成し、各吸気通路間の仕切り壁を十分短
くしその上流縁を中央の吸気弁側に後退させたこ
とを特徴とする4サイクル内燃機関の吸気装置。 2 前記連通室から両側の吸気弁に至る吸気通路
をほぼ一定断面積としたことを特徴とする特許請
求の範囲第1項記載の4サイクル内燃機関の吸気
装置。 3 カム軸方向から見て両側の吸気弁に至る吸気
通路の曲率半径を中央の吸気弁に至る吸気通路の
曲率半径よりも大きくしたことを特徴とする特許
請求の範囲第1項または第2項に記載の4サイク
ル内燃機関の吸気装置。
[Claims] 1. Each cylinder is provided with three intake valves and a plurality of exhaust valves driven by a camshaft, and these intake and exhaust valves are connected to one side of a straight line passing near the center of the combustion chamber and parallel to the camshaft. and the other side, and the central intake valve is located further outside the cylinder with respect to the straight line than the intake valves on both sides, and the three intake passages opened and closed by each intake valve pass through the center of the combustion chamber. In a four-stroke internal combustion engine that is provided in the cylinder head almost symmetrically with respect to a plane perpendicular to the camshaft, the three intake passages are communicated with a communication chamber provided on the side of the cylinder head, and from this communication chamber both intake valves are connected. The three intake passages are formed so as to smoothly expand from the communication chamber toward the intake valve, while the three intake passages are formed toward a point on a plane that passes near the center of the combustion chamber and is approximately perpendicular to the camshaft. The pipe is formed so that it extends almost linearly from each intake valve when viewed from the direction of the cylinder centerline, and has a substantially constant width when viewed from the direction of the cylinder centerline, and the partition wall between each intake passage is sufficiently short and the upstream side thereof An intake system for a four-stroke internal combustion engine, characterized in that the edge is set back toward the central intake valve. 2. The intake system for a four-stroke internal combustion engine according to claim 1, wherein the intake passage from the communication chamber to the intake valves on both sides has a substantially constant cross-sectional area. 3. Claims 1 or 2, characterized in that the radius of curvature of the intake passage leading to the intake valves on both sides as viewed from the camshaft direction is larger than the radius of curvature of the intake passage leading to the central intake valve. An intake system for a four-stroke internal combustion engine according to.
JP1297628A 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine Granted JPH02161125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297628A JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297628A JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57200367A Division JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Publications (2)

Publication Number Publication Date
JPH02161125A JPH02161125A (en) 1990-06-21
JPH0433969B2 true JPH0433969B2 (en) 1992-06-04

Family

ID=17849033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297628A Granted JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02161125A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687528A (en) * 1950-09-09 1953-02-18 Karl Maybach Improvements in the liquid cooling of cylinder heads for internal combustion engines
JPS54129206A (en) * 1978-03-28 1979-10-06 Honda Motor Co Ltd Internal combustion engine
JPS6011205A (en) * 1983-06-24 1985-01-21 Nippon Furnace Kogyo Kaisha Ltd Apparatus for regulating volume of oxygen enriched air

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431035A (en) * 1987-07-28 1989-02-01 Nok Corp Method for testing abrasion of rubber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687528A (en) * 1950-09-09 1953-02-18 Karl Maybach Improvements in the liquid cooling of cylinder heads for internal combustion engines
JPS54129206A (en) * 1978-03-28 1979-10-06 Honda Motor Co Ltd Internal combustion engine
JPS6011205A (en) * 1983-06-24 1985-01-21 Nippon Furnace Kogyo Kaisha Ltd Apparatus for regulating volume of oxygen enriched air

Also Published As

Publication number Publication date
JPH02161125A (en) 1990-06-21

Similar Documents

Publication Publication Date Title
US6148794A (en) Induction control system for multi-valve engine
JPH057555B2 (en)
US5060616A (en) Intake system for multiple-valve engine
JP2663723B2 (en) Intake device for double intake valve type internal combustion engine
JPH0415938Y2 (en)
JPH0433969B2 (en)
JP2576905B2 (en) Intake device for 4-cycle internal combustion engine
JPH0433970B2 (en)
JPH0781544B2 (en) Intake device for 4-cycle internal combustion engine
JPH0555691B2 (en)
JP3506769B2 (en) Engine intake control device
JPH052804B2 (en)
JP2556419B2 (en) Intake device for 4-cycle internal combustion engine
JP2756157B2 (en) 4 cycle engine
JPH0148379B2 (en)
JPH02161169A (en) Intake device for four-cycle internal combustion engine
JPH0759922B2 (en) Intake device for 4-cycle internal combustion engine
JPH0481522A (en) Intake device of engine
JP2976601B2 (en) Intake system for fuel injection type internal combustion engine
JP3447810B2 (en) 4-cycle engine intake system
JPH0415945Y2 (en)
JPH03160114A (en) Intake device of multi-valve engine
JPH02161168A (en) Intake device for four-cycle internal combustion engine
JPH036858Y2 (en)
JP2717960B2 (en) Engine combustion chamber