JPH02161125A - Intake device for four-cycle internal combustion engine - Google Patents

Intake device for four-cycle internal combustion engine

Info

Publication number
JPH02161125A
JPH02161125A JP1297628A JP29762889A JPH02161125A JP H02161125 A JPH02161125 A JP H02161125A JP 1297628 A JP1297628 A JP 1297628A JP 29762889 A JP29762889 A JP 29762889A JP H02161125 A JPH02161125 A JP H02161125A
Authority
JP
Japan
Prior art keywords
intake
valves
passages
sides
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1297628A
Other languages
Japanese (ja)
Other versions
JPH0433969B2 (en
Inventor
Masaaki Yoshikawa
雅明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1297628A priority Critical patent/JPH02161125A/en
Publication of JPH02161125A publication Critical patent/JPH02161125A/en
Publication of JPH0433969B2 publication Critical patent/JPH0433969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To unify intake quantities flowing through intake valves and improve the output by providing three intake valves for each cylinder, providing a communicating chamber communicating intake passages connected to intake valves, and forming intake passages on both sides in a nearly linear shape. CONSTITUTION:Two exhaust valves 18 and three intake valves 20 (20a-20c) are arranged on a cylinder head 12 for each cylinder, they are opened or closed by two overhead cam shaft type valves system mechanisms, the first and second intake passages 40a and 40b are formed in an intake pipe 38 for each cylinder, the downstream side is connected to a communicating chamber 46 provided on the cylinder head 12, and the communicating chamber 46 is communicated to intake valves 20 via intake passages 47 (47a-47c). Three intake valves 20 and intake passages 47 are arranged perpendicularly to the cylinder train direction, and the intake passages 47a and 47c on both sides are formed in a nearly linear shape from the communicating chamber 46 to the intake valves 20a and 20c so th the cross section area are made nearly constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1つの気筒に対して3個の吸気弁を有する4
サイクル内燃機関の吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a four-cylinder engine having three intake valves for one cylinder.
This invention relates to an intake system for a cycle internal combustion engine.

(発明の背景) 1つの気筒に対して3個の互いに隣接する吸気弁を設け
た4サイクル内燃機関がある。この種の機関で、各吸気
弁に連通ずる吸気通路を連通室で連通させ、この連通室
から各吸気弁に吸気を導くものが考えられる。この場合
には、連通室に入った吸気は運転状態に応じて各吸気弁
に適切に分配されて導かれるのが望ましい。例えば、高
速運転時には各吸気弁に吸気が導かれて吸入吸気量が増
大できることが必要である。
BACKGROUND OF THE INVENTION There are four-stroke internal combustion engines that have three adjacent intake valves for one cylinder. In this type of engine, an intake passage communicating with each intake valve may be communicated with a communication chamber, and intake air may be guided from the communication chamber to each intake valve. In this case, it is desirable that the intake air entering the communication chamber be appropriately distributed and guided to each intake valve depending on the operating state. For example, during high-speed operation, it is necessary that intake air be introduced to each intake valve to increase the amount of intake air.

(発明の目的) 本発明はこのような事情に鑑みなされたものであり、3
つの吸気弁を有する4サイクル内燃磯関であって、連通
室から各吸気弁に吸気を導く場合に、各吸気弁への吸気
の流入が円滑に行われ、特に高速運転時には各吸気弁l
\の吸気流量を均一化して合計吸気流量を増大させるこ
とが可能な4サイクル内燃機関の吸気装置を提供するこ
とを目的とするものである。
(Object of the invention) The present invention was made in view of the above circumstances, and
This is a 4-cycle internal combustion engine with two intake valves, and when the intake air is guided from the communication chamber to each intake valve, the intake air flows smoothly into each intake valve, and especially during high-speed operation, each intake valve l
An object of the present invention is to provide an intake system for a four-stroke internal combustion engine that can increase the total intake flow rate by making the intake flow rate uniform.

(発明の構成) 本発明によればこの目的は、燃焼室の上方を横断する頭
上カム軸により開閉される3個の吸気弁を有する4サイ
クル内燃機関において、前言2各吸気弁に連なる各吸気
通路を互いに連通室に連通し、前記各吸気弁および吸気
通路を前記カム軸に直交しかつシリンダ中心線を含む平
面に対してほぼ対称に配設して、前記連通室から両側の
吸気弁に至る吸気通路をほぼ直線形状に形成したことを
特徴とする4サイクル内燃機関の吸気装置により達成さ
れる。
(Structure of the Invention) According to the present invention, this object is achieved in a four-stroke internal combustion engine having three intake valves that are opened and closed by an overhead camshaft that crosses above the combustion chamber. The passages communicate with each other to a communication chamber, and each of the intake valves and the intake passage are disposed substantially symmetrically with respect to a plane that is orthogonal to the camshaft and includes the cylinder center line, and the intake valves on both sides are connected from the communication chamber to the intake valves on both sides. This is achieved by an intake system for a four-stroke internal combustion engine, which is characterized in that the intake passage leading to the engine is formed in a substantially straight shape.

ここに前記連通室から両側の吸気弁に至る吸気通路をほ
ぼ一定断面積とした場合には、この両側の吸気通路に吸
気が一層流入し易(なる。さらにカム軸方向から見て両
側の吸気弁に至る吸気通路の曲率半径を中央の吸気弁に
至る吸気通路の曲率半径よりも大きくすれば、吸気の流
速を利用して両側の吸気通路に吸気は一層流入し易くな
る。このため各吸気弁へ導かれる吸気流量の均一化が一
層促進され得る。
If the intake passages from the communication chamber to the intake valves on both sides have a substantially constant cross-sectional area, the intake air will more easily flow into the intake passages on both sides. If the radius of curvature of the intake passage leading to the valve is made larger than the radius of curvature of the intake passage leading to the central intake valve, intake air will more easily flow into the intake passages on both sides using the flow velocity of intake air. The uniformity of the intake air flow rate guided to the valve can be further promoted.

(作用) カム軸に直交しかつシリンダ中心線を含む平面にほぼ沿
って連通室に流入した吸気は、この連通室で3つの吸気
弁の吸気通路に分配される。この吸気は、この平面上に
位置する中央の吸気弁に連通ずる吸気通路に多く流入す
る傾向を有する。しかし両側の吸気通路は、連通室と吸
気弁とをほぼ直線形状でつなぐから、この両側の吸気通
路にも吸気は流入し易くなる。このため特に吸気流量が
増大する高速運転時にはこの両側の吸気通路にも良好に
吸気が流れる。
(Operation) Intake air flowing into the communication chamber along a plane perpendicular to the camshaft and including the cylinder centerline is distributed to the intake passages of the three intake valves in the communication chamber. A large amount of this intake air tends to flow into the intake passage communicating with the central intake valve located on this plane. However, since the intake passages on both sides connect the communication chamber and the intake valve in a substantially straight line, intake air easily flows into the intake passages on both sides. Therefore, especially during high-speed operation where the intake air flow rate increases, intake air flows well into the intake passages on both sides.

また両側の吸気通路の断面積をほぼ一定とすれば、この
吸気通路への吸気の流入は一層円滑になる。さらに、カ
ム軸方向から見て両側の吸気弁に至る吸気通路の曲率半
径を中央の吸気弁に至る吸気通路の曲率半径よりも大き
くすることにより、吸気の速度を利用して曲率半径の大
きい両側の吸気通路へ吸気を流れ易くすることができ、
この外側の吸気通路へ流入する吸気量をさらに増大する
ことが可能である。
Furthermore, if the cross-sectional areas of the intake passages on both sides are made substantially constant, the intake air flows into the intake passages even more smoothly. Furthermore, by making the radius of curvature of the intake passage leading to the intake valves on both sides as viewed from the camshaft direction larger than the radius of curvature of the intake passage leading to the central intake valve, the speed of the intake air is utilized to It is possible to make it easier for intake air to flow into the intake passage of
It is possible to further increase the amount of intake air flowing into this outer intake passage.

(実施例) 第1図は本発明の第1実施例を一部断面した平面図、第
2図はそのII −II線断面図、第3図はトルク特性
図である。第1.2図において符号10はシリンダボデ
ー、12はシリンダヘッド、14はピストンであり、こ
れらにより燃焼室16が形成される。シリンダヘッドI
2には1気筒に−〕き2個の排気弁18 (18a、1
8b)と、3個の互いに隣接する吸気弁20 (20a
、20b、20c)が設しづられている。これらの掛・
吸気弁18.20は、それぞれ頭上カム軸22.24、
スイ′ングアーム26.28などからなる公知のスイン
グアーム方式の2頭上カム軸式動弁磯構により開閉され
る。30はシリンダヘッドカバー、32は排気弁18に
連通ずる排気通路、また第1図で34は点火栓である。
(Embodiment) FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line II--II, and FIG. 3 is a torque characteristic diagram. In FIG. 1.2, reference numeral 10 is a cylinder body, 12 is a cylinder head, and 14 is a piston, and a combustion chamber 16 is formed by these. cylinder head I
2 has two exhaust valves 18 (18a, 1
8b) and three mutually adjacent intake valves 20 (20a
, 20b, 20c) are provided. These hangings/
The intake valves 18.20 each have an overhead camshaft 22.24,
It is opened and closed by a known swing arm double overhead camshaft valve mechanism comprising swing arms 26 and 28. 30 is a cylinder head cover, 32 is an exhaust passage communicating with the exhaust valve 18, and 34 in FIG. 1 is an ignition plug.

点火栓34はその着火部が燃焼室16の中央付近に臨ん
でいる。
The ignition part of the ignition plug 34 faces near the center of the combustion chamber 16.

36はサージタンク、38は各気筒ごとにサージタンク
36とシリンダへラド12とをつなぐ吸気管である。吸
気管38内には、第1吸気通路40a、第2吸気通路4
0bが形成されている。
36 is a surge tank, and 38 is an intake pipe that connects the surge tank 36 and the cylinder rad 12 for each cylinder. Inside the intake pipe 38, there are a first intake passage 40a and a second intake passage 4.
0b is formed.

第1吸気通路40 aと第2吸気通路40bとは略同径
で、またこれらの通路40a、40bを貫通ずる弁軸4
2には、第2吸気通路40bを開閉する蝶型の制御弁4
4が取付けられている。この制御弁44は運転条件、例
えば運転負荷や機関回転速度の増減に対応して開閉する
ように制御される。
The first intake passage 40a and the second intake passage 40b have approximately the same diameter, and the valve shaft 4 passes through these passages 40a and 40b.
2 includes a butterfly-shaped control valve 4 that opens and closes the second intake passage 40b.
4 is installed. This control valve 44 is controlled to open and close in response to operating conditions, such as increases and decreases in operating load and engine speed.

吸気通路40の下流側はシリンダヘッド】2に設けた連
通室46に接続され、この連通室46は3一つの吸気弁
20にそれぞれ吸気通路47 a、47b、47cによ
って連通している。ここに前記した3つの吸気弁20a
、b、cは、カム軸22.24に直交しかつシリンダ中
心線α(第2図)を含む平面Z(第1図)に対して対称
に配設され、両側の吸気通路47a、47cはほぼ連通
室から吸気弁20a、20cまでほぼ直線形状で、かつ
その断面積はほぼ一定となっている。またこれらの吸気
通路47は、カム軸22.24方向から見た第2図に示
す状態で、両側の吸気通路47a、47cの曲率半径が
中央の吸気通路47bの曲率半径よりも大きく設定され
ている。
The downstream side of the intake passage 40 is connected to a communication chamber 46 provided in the cylinder head 2, and this communication chamber 46 communicates with three intake valves 20 through intake passages 47a, 47b, and 47c, respectively. The three intake valves 20a described above
, b, and c are arranged symmetrically with respect to a plane Z (Fig. 1) that is perpendicular to the camshaft 22, 24 and includes the cylinder center line α (Fig. 2), and the intake passages 47a, 47c on both sides are It has a substantially linear shape from the communication chamber to the intake valves 20a, 20c, and its cross-sectional area is substantially constant. Furthermore, when these intake passages 47 are viewed from the direction of the camshafts 22 and 24 as shown in FIG. 2, the radius of curvature of the intake passages 47a and 47c on both sides is set to be larger than the radius of curvature of the central intake passage 47b. There is.

48は電磁式燃料噴射弁である。この噴射弁48は第2
図に示すように、吸気管38の上部に配設した分配管5
0と、シリンダヘッド12の連通室46上部との間に位
置する。この噴射弁48の噴射口は、第2図に示すよう
に、カム軸22.24に直交しかつシリンダ中心線αを
含む平面Zにほぼ沿って燃料を噴射するように指向して
いる。なお前記中央の吸気弁20bはこの噴射弁48と
点火栓34との間に位置する。またこの実施例では、噴
射弁48の燃料噴射口は、両側の2つの吸気弁20a、
20cの傘部側端面の中心を結ぶ直線Xと、この直線X
と平行でかつ中央の吸気弁20bの傘部側端面の中心を
含む直線yとの間を指向している。
48 is an electromagnetic fuel injection valve. This injection valve 48 is the second
As shown in the figure, the distribution pipe 5 disposed at the upper part of the intake pipe 38
0 and the upper part of the communication chamber 46 of the cylinder head 12. The injection port of the injection valve 48 is oriented to inject fuel substantially along a plane Z that is perpendicular to the camshaft 22.24 and includes the cylinder centerline α, as shown in FIG. Note that the central intake valve 20b is located between the injection valve 48 and the spark plug 34. Further, in this embodiment, the fuel injection ports of the injection valve 48 are connected to the two intake valves 20a on both sides,
A straight line X connecting the centers of the side end surfaces of the umbrella part of 20c and this straight line
and a straight line y that is parallel to and includes the center of the umbrella side end surface of the central intake valve 20b.

この噴射弁48は制御器(図示せず)が出力する電気信
号により所定のタイミングで開弁し、所定圧に加圧され
た分配管50内の燃料を連通室46内へ間欠的に噴射す
る。
The injection valve 48 opens at a predetermined timing in response to an electric signal output by a controller (not shown), and intermittently injects fuel in the distribution pipe 50 pressurized to a predetermined pressure into the communication chamber 46. .

この第1実施例の動作は次の通りである。低負荷・低速
運転時には、制御弁44は閉じ第1吸気通路40aから
吸気は連通室46へ導かれる。連通室46に間欠的に噴
射された燃料は、成る程度の広がりを持っているるばか
りでなく比較的広い連通室46内を長い距離の間内壁に
当たることなく拡散する。このため内壁に付着する燃料
が減り、燃料の霧化が促進される。この燃料は中央の吸
気弁20bを指向して噴射されているから、この中央の
吸気弁20bから濃い混合気が燃焼室16に流入する1
点火栓にはこの濃い混合気が導かれるので層状燃焼に近
い燃焼状態が得られ、着火性が良好になり、燃焼安定化
も図れる。
The operation of this first embodiment is as follows. During low load/low speed operation, the control valve 44 is closed and intake air is guided from the first intake passage 40a to the communication chamber 46. The fuel injected intermittently into the communication chamber 46 not only has a certain degree of spread, but also spreads over a long distance within the communication chamber 46, which is relatively wide, without hitting the inner wall. This reduces the amount of fuel adhering to the inner wall and promotes atomization of the fuel. Since this fuel is injected toward the central intake valve 20b, a rich air-fuel mixture flows into the combustion chamber 16 from the central intake valve 20b.
Since this rich air-fuel mixture is guided to the spark plug, a combustion state similar to stratified combustion is obtained, which improves ignition performance and stabilizes combustion.

高負荷・高速運転時には制御弁44が開き、吸気は第1
.第2吸気通路40a、40bから連通室46に入る。
During high-load/high-speed operation, the control valve 44 opens and the intake air flows into the first
.. It enters the communication chamber 46 from the second intake passages 40a, 40b.

この時吸気通路47は、連通室46からほぼ直線的に各
吸気弁20に分岐しているので、吸気は各吸気通路47
に分配されて円滑に流れる。ここに両側の吸気通路47
a、47cは断面積がほぼ一定であり、またその曲率半
径は中央の吸気通路47bよりも大きくなっているので
1両側の吸気通路47a、47cに流入する吸気の流路
抵抗が中央の吸気通路47bにおける流路抵抗よりも小
さ(なる。このため両側の吸気通路47a、47cにも
良好に吸気が流れ込み、十分な吸気流量を確保すること
が可能になる。
At this time, the intake passage 47 branches almost linearly from the communication chamber 46 to each intake valve 20, so that the intake air flows through each intake passage 47.
is distributed and flows smoothly. Here are the intake passages 47 on both sides.
a, 47c have a nearly constant cross-sectional area, and their radius of curvature is larger than that of the central intake passage 47b. 47b. Therefore, the intake air flows well into the intake passages 47a and 47c on both sides, making it possible to ensure a sufficient intake flow rate.

なおこの実施例では、中央の吸気通路47bは両側の吸
気通路47a、47cよりも曲率が大きいから(第2図
)、特に高速時には吸気と共に燃料も外側の吸気弁20
a、cに良好に導かれ、予混合燃焼に近い均質な混合気
になって良好に燃料される。
In this embodiment, since the central intake passage 47b has a larger curvature than the intake passages 47a and 47c on both sides (FIG. 2), especially at high speeds, both the intake air and the fuel flow through the outer intake valves 20.
The fuel is well guided to the fuels a and c, resulting in a homogeneous air-fuel mixture close to premixed combustion, which provides good fuel.

第3図で実線Aは制御弁44を開き続けた場合のトルク
特性であり、中低速での吸気慣性効果の減少によりトル
ク低下が著しいことを示している。同図鎖線Bは制御弁
44を閉じた場合のトルク特性である。制御弁44を中
速域で開閉させることによりこれらの2つの特性A、B
を組合せ、トルク特性の改善を図ることができる。
In FIG. 3, the solid line A represents the torque characteristic when the control valve 44 is kept open, and shows that the torque decreases significantly due to the decrease in the intake inertia effect at medium and low speeds. The dashed line B in the figure is the torque characteristic when the control valve 44 is closed. These two characteristics A and B can be adjusted by opening and closing the control valve 44 in the medium speed range.
By combining these, it is possible to improve the torque characteristics.

第4図は第2実施例を一部断面した平面図である。この
実施例は、前記第1実施例における第1吸気通路40a
を第2吸気通路40bより小径に形成したものである。
FIG. 4 is a partially sectional plan view of the second embodiment. This embodiment is similar to the first intake passage 40a in the first embodiment.
is formed to have a smaller diameter than the second intake passage 40b.

この実施例によれば噴射弁48の噴射口が第1、第2吸
気通路40a、40b間の壁より第2吸気通路40b側
に偏位している。この結果高負荷・高速時に制御弁44
が開くと第2吸気通路40bから連通室46に流入した
吸気は、第1実施例に比べ、噴射弁48から噴射された
燃料に一層よ(当たり、燃料の霧化がさらに促進される
。また第2吸気通路40bが小径なので、第1実施例に
比べて一層低速から吸気慣性によるトルク増加を図るこ
とができる。さらに第1吸気通路40aの連通室46に
対する偏位置は、第1実施例に比べて大きくなるから、
制御弁44が閉じている低速時には連通室46に生成さ
れる渦流が一層強(なり、吸気弁20の開弁時にはこの
渦流により燃焼室16内に一層強いスワール(吸入渦流
)が発生する。このため低速時の燃焼が安定化され、低
速運転が円滑になる効果が一層顕著になる。
According to this embodiment, the injection port of the injection valve 48 is offset toward the second intake passage 40b from the wall between the first and second intake passages 40a and 40b. As a result, the control valve 44
When the second intake passage 40b is opened, the intake air flowing into the communication chamber 46 from the second intake passage 40b hits the fuel injected from the injection valve 48 even more than in the first embodiment, and the atomization of the fuel is further promoted. Since the second intake passage 40b has a small diameter, it is possible to increase the torque due to intake inertia from a lower speed than in the first embodiment.Furthermore, the offset position of the first intake passage 40a with respect to the communication chamber 46 is different from that in the first embodiment. Because it is larger compared to
At low speeds when the control valve 44 is closed, the vortex generated in the communication chamber 46 is even stronger, and when the intake valve 20 is open, this vortex generates an even stronger swirl (intake vortex) in the combustion chamber 16. This stabilizes combustion at low speeds, making the effect of smoother low-speed operation even more pronounced.

第5図は第3実施例の一部断面した平面図であり、この
実施例は第1吸気通路40aを中央に配置する一方第2
吸気通路40bを2つに分割し、それぞれに制御弁44
.44を設けたものである。
FIG. 5 is a partially sectional plan view of the third embodiment, in which the first intake passage 40a is arranged in the center, while the second
The intake passage 40b is divided into two parts, each with a control valve 44.
.. 44.

この実施例によれば、制御弁44が閉じる低負荷・低速
時に第1吸気通路を通る吸気は、噴射弁48から噴射さ
れた燃料に良好に当たり、特に低負荷・低速時の霧化が
前記第1.2実施例に比べて一層改善される。
According to this embodiment, the intake air passing through the first intake passage when the control valve 44 is closed at low load and low speed hits the fuel injected from the injection valve 48 well, and the atomization is particularly good at low load and low speed. 1. This is further improved compared to the second embodiment.

第6図は第4実施例の一部断面した平面図であり、この
実施例は第1、第2、第3吸気通路4゜a、40b、4
0cを備え、第1吸気通路40aを挟む第2、第3吸気
通路40b、40cには、開閉時期が互いに異なる制御
弁44a、44bを配設した。
FIG. 6 is a partially sectional plan view of the fourth embodiment, which shows the first, second, and third intake passages 4°a, 40b, 4°.
Control valves 44a and 44b having different opening and closing timings are disposed in second and third intake passages 40b and 40c sandwiching the first intake passage 40a.

この実施例によれば第3実施例(第5図)と同様に低速
時の霧化が促進されるだけでなく、トルク特性の改善も
同時に図れる。すなわち第7図はこの第4実施例のトル
ク性図であり、この図の実線Aは制御弁44a、44b
を開き続けた場合の特性、破線Bは低速域で制御弁44
a、44bの両方を閉じた場合の特性、また鎖線Cは中
速域で制御弁44bのみを開いた場合の特性である。
According to this embodiment, like the third embodiment (FIG. 5), not only atomization at low speeds is promoted, but also torque characteristics can be improved at the same time. That is, FIG. 7 is a torque characteristic diagram of this fourth embodiment, and the solid line A in this diagram indicates the control valves 44a and 44b.
The broken line B shows the characteristics when the control valve 44 is kept open in the low speed range.
The characteristic when both control valves a and 44b are closed, and the chain line C is the characteristic when only the control valve 44b is opened in the medium speed range.

制御弁44a、44bを異なる運転速度で開閉させてこ
れら特性A、B、Cを組み合わせることにより、前記第
1〜3実施例に比べ中速域でのトルク改善を図ることが
できる。
By opening and closing the control valves 44a and 44b at different operating speeds and combining these characteristics A, B, and C, it is possible to improve the torque in the medium speed range compared to the first to third embodiments.

第8図は第5実施例の一部断面した平面図であり、この
実施例は第4実施例(第6図)における第1吸気通路4
0aと第2吸気通路40bとの位置を入れ換えたもので
ある。
FIG. 8 is a partially sectional plan view of the fifth embodiment, and this embodiment shows the first intake passage 4 in the fourth embodiment (FIG. 6).
0a and the second intake passage 40b are interchanged in position.

この実施例によれば前記第4実施例(第6図)と同様に
、中速域でのトルクを増加できるだけでなく、前記第2
実施例(第4図)と同様に低速域でスワールが強化され
るので、低速運転時の回転が一層円滑になる。
According to this embodiment, as in the fourth embodiment (FIG. 6), not only the torque in the medium speed range can be increased, but also the torque in the second
As in the embodiment (FIG. 4), the swirl is strengthened in the low speed range, so rotation during low speed operation becomes even smoother.

なお、第4.5.6.8図では第1図と同一部分に同一
符号を付したので、その説明は繰り返さ /ない。
In addition, in FIG. 4.5.6.8, the same parts as in FIG. 1 are given the same reference numerals, so the explanation thereof will not be repeated.

(発明の効果) 本発明は以上のように、3つの吸気弁及び吸気通路を、
カム軸に直交しかつシリンダ中心線を含む平面に対して
ほぼ対称に配設し、各吸気通路を互いに連通ずる連通室
から両側の吸気通路をほぼ直線形状に形成したものであ
るから、吸気が滑らかに3つの吸気通路に分配され、吸
気を円滑に各吸気弁に導くことができる。従って特に高
速時には3つの吸気弁に流れる吸気量を均一化して全体
の吸気量を増大しエンジン性能を向上させることができ
る。
(Effects of the Invention) As described above, the present invention provides three intake valves and intake passages.
It is arranged almost symmetrically with respect to a plane that is perpendicular to the camshaft and includes the cylinder center line, and the intake passages on both sides are formed in an almost linear shape from the communication chamber that communicates each intake passage with each other. The air is smoothly distributed into three intake passages, allowing the intake air to be smoothly guided to each intake valve. Therefore, especially at high speeds, the amount of intake air flowing into the three intake valves can be equalized, increasing the overall amount of intake air and improving engine performance.

また両側の吸気通路を断面積がほぼ一定になるようにす
れば、この両側の吸気通路への吸気の流人が一層円滑に
なる。さらに両側の吸気通路の曲率半径を中央の吸気通
路の曲率半径よりも大きくすれば、外側の吸気通路の流
入抵抗が小さくなり、両側の吸気通路への吸気の分配は
一層円滑になる。
Further, by making the cross-sectional areas of the intake passages on both sides substantially constant, the flow of intake air into the intake passages on both sides becomes even smoother. Furthermore, by making the radius of curvature of the intake passages on both sides larger than the radius of curvature of the central intake passage, the inflow resistance of the outer intake passages becomes smaller, and the distribution of intake air to the intake passages on both sides becomes smoother.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を一部断面した平面図、第
2図はそのII −TI線断面図、第3図はトルク特性
図である。また第4.5.6.8図は他の実施例の一部
断面した平面図、第7図は第6図の実施例のトルク特性
図である。 16・・・燃焼室、 20a、20b、20 c −・・吸気弁、22.24
・・・カム軸、 46・・・連通室、47・・・吸気通
路、 a・・・シリンダ中心線、 Z・・・平面。 特許出願人 ヤマハ発動機株式会社
FIG. 1 is a partially sectional plan view of a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-TI, and FIG. 3 is a torque characteristic diagram. 4.5.6.8 is a partially sectional plan view of another embodiment, and FIG. 7 is a torque characteristic diagram of the embodiment of FIG. 6. 16... Combustion chamber, 20a, 20b, 20c -... Intake valve, 22.24
...Camshaft, 46...Communication chamber, 47...Intake passage, a...Cylinder center line, Z...Plane. Patent applicant Yamaha Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)燃焼室の上方を横断する頭上カム軸により開閉さ
れる3個の吸気弁を有する4サイクル内燃機関において
、 前記各吸気弁に連なる各吸気通路を互いに連通室に連通
し、前記各吸気弁および吸気通路を前記カム軸に直交し
かつシリンダ中心線を含む平面に対してほぼ対称に配設
して、前記連通室から両側の吸気弁に至る吸気通路をほ
ぼ直線形状に形成したことを特徴とする4サイクル内燃
機関の吸気装置。
(1) In a four-stroke internal combustion engine having three intake valves that are opened and closed by an overhead camshaft that crosses above the combustion chamber, each intake passage connected to each intake valve is connected to a communication chamber, and each intake passage is connected to a communication chamber. The valves and the intake passages are arranged substantially symmetrically with respect to a plane that is perpendicular to the camshaft and includes the cylinder center line, so that the intake passages from the communication chamber to the intake valves on both sides are formed in a substantially linear shape. Intake system for a 4-stroke internal combustion engine.
(2)前記連通室から両側の吸気弁に至る吸気通路をほ
ぼ一定断面積としたことを特徴とする特許請求の範囲第
1項記載の4サイクル内燃機関の吸気装置。
(2) The intake system for a four-stroke internal combustion engine according to claim 1, wherein the intake passages from the communication chamber to the intake valves on both sides have a substantially constant cross-sectional area.
(3)カム軸方向から見て両側の吸気弁に至る吸気通路
の曲率半径を中央の吸気弁に至る吸気通路の曲率半径よ
りも大きくしたことを特徴とする特許請求の範囲第1項
または第2項に記載の4サイクル内燃機関の吸気装置。
(3) The radius of curvature of the intake passage leading to the intake valves on both sides as viewed from the camshaft direction is made larger than the radius of curvature of the intake passage leading to the central intake valve. An intake system for a four-stroke internal combustion engine according to item 2.
JP1297628A 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine Granted JPH02161125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297628A JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297628A JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57200367A Division JPS5990717A (en) 1982-11-17 1982-11-17 Intake device for 4-cycle internal-combustion engine

Publications (2)

Publication Number Publication Date
JPH02161125A true JPH02161125A (en) 1990-06-21
JPH0433969B2 JPH0433969B2 (en) 1992-06-04

Family

ID=17849033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297628A Granted JPH02161125A (en) 1989-11-17 1989-11-17 Intake device for four-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH02161125A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687528A (en) * 1950-09-09 1953-02-18 Karl Maybach Improvements in the liquid cooling of cylinder heads for internal combustion engines
JPS54129206A (en) * 1978-03-28 1979-10-06 Honda Motor Co Ltd Internal combustion engine
JPS6011205A (en) * 1983-06-24 1985-01-21 Nippon Furnace Kogyo Kaisha Ltd Apparatus for regulating volume of oxygen enriched air
JPS6431035A (en) * 1987-07-28 1989-02-01 Nok Corp Method for testing abrasion of rubber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687528A (en) * 1950-09-09 1953-02-18 Karl Maybach Improvements in the liquid cooling of cylinder heads for internal combustion engines
JPS54129206A (en) * 1978-03-28 1979-10-06 Honda Motor Co Ltd Internal combustion engine
JPS6011205A (en) * 1983-06-24 1985-01-21 Nippon Furnace Kogyo Kaisha Ltd Apparatus for regulating volume of oxygen enriched air
JPS6431035A (en) * 1987-07-28 1989-02-01 Nok Corp Method for testing abrasion of rubber

Also Published As

Publication number Publication date
JPH0433969B2 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
US6148794A (en) Induction control system for multi-valve engine
CA1067771A (en) Exhaust gas recirculation system of a multi-cylinder internal combustion engine
US5477823A (en) Control valve for engine intake control system
US4877004A (en) Internal combustion engine for a vehicle
US5799638A (en) Direction injection system for multi-valve engine
US7273032B2 (en) Engine induction system
JPH057555B2 (en)
US5529038A (en) Direct injected engine
US4660530A (en) Intake system for internal combustion engine
US5806484A (en) Induction control system for engine
US5060616A (en) Intake system for multiple-valve engine
US5720259A (en) Fuel injected multi-valve engine
JP2012036757A (en) Control device for internal combustion engine
JPH02161125A (en) Intake device for four-cycle internal combustion engine
JPH02161124A (en) Intake device for four-cycle internal combustion engine
JP2576905B2 (en) Intake device for 4-cycle internal combustion engine
JPH0781544B2 (en) Intake device for 4-cycle internal combustion engine
JP3506769B2 (en) Engine intake control device
JPH02161111A (en) Suction system of four-cycle internal combustion engine
JPH02161169A (en) Intake device for four-cycle internal combustion engine
JPS59136515A (en) Three-valve type internal-combustion engine
JP2756157B2 (en) 4 cycle engine
JPH02161170A (en) Intake device for four-cycle internal combustion engine
JP2556419B2 (en) Intake device for 4-cycle internal combustion engine
JP3447810B2 (en) 4-cycle engine intake system