JPH04339548A - Strip caster - Google Patents

Strip caster

Info

Publication number
JPH04339548A
JPH04339548A JP3135702A JP13570291A JPH04339548A JP H04339548 A JPH04339548 A JP H04339548A JP 3135702 A JP3135702 A JP 3135702A JP 13570291 A JP13570291 A JP 13570291A JP H04339548 A JPH04339548 A JP H04339548A
Authority
JP
Japan
Prior art keywords
ceramic
strip caster
ceramics
ceramic pieces
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135702A
Other languages
Japanese (ja)
Inventor
Masumi Nakajima
真澄 中島
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP3135702A priority Critical patent/JPH04339548A/en
Publication of JPH04339548A publication Critical patent/JPH04339548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To allow the operation to produce sheets free from surface flaws and cracks stably over a long period of time by installing ceramic pieces on the surfaces of a dynamic water cooling bodies in strip casting of a molten metal. CONSTITUTION:The ceramic pieces to be installed on the surfaces of the dynamic water cooling bodies are ceramics having 4X10-61/ deg.C coefft. of thermal expansion. The h-BN component content in the case of the ceramic pieces contg. h-BN is 50 to 97wt.% and a compd. consisting of elements Si, Al, O, N, B, C, Ca, and Zr as the components exclusive of the h-BN is used to constitute the direct rolling which is excellent in the peelability from solidified shells and the slow cooling of the solidified shells and prevents the thermal deformation of the cooling bodies by heating. The excellent sheets free from the surface flaws and defects are easily and continuously produced at a high yield simply by providing the ceramics in the existing strip caster.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融金属から表面の湯
ジワおよびオシュレーションマーク等の傷がない薄板を
、直接製造するストリップキャスターに係わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strip caster for directly manufacturing a thin plate from molten metal that is free from surface scratches such as wrinkles and oscillation marks.

【0002】0002

【従来の技術】連続鋳造機は、鋳片の引き抜き方向によ
り竪型と水平型に大別される。鋳片の形状は、溶融金属
が注湯される型(モールド)の形状で決定される。竪型
連鋳機の場合、モールドは上下に振動、横型の場合、モ
ールドは振動しない。一般的にモールドとは形を作るも
のであり、上記連続鋳造の場合には、水冷された銅製で
ある。引き抜かれた鋳片は後工程で熱間あるいは冷間で
圧延され、例えば薄板状に加工される。
2. Description of the Related Art Continuous casting machines are broadly classified into vertical and horizontal types depending on the direction in which the slab is drawn. The shape of the slab is determined by the shape of the mold into which the molten metal is poured. In the case of a vertical continuous casting machine, the mold vibrates up and down, and in the case of a horizontal type, the mold does not vibrate. Generally, a mold is used to create a shape, and in the case of continuous casting, it is made of water-cooled copper. The drawn slab is hot or cold rolled in a post-process, and processed into a thin plate shape, for example.

【0003】ストリップキャスティング(直送圧延)は
、上述の様な固定モールドや熱間、冷間の圧延機がなく
、加熱溶融体から直接薄板を製造するものである。加熱
溶融体は動的水冷体に注入されるが、この動的水冷体の
形状、種類、数等により、直送圧延は単ロール法、双ロ
ール法、内部リング法、ロールベルト法および双ベルト
法、振動鋳型法に大別される。いずれの方法の場合にも
、加熱溶融体は水冷された金属製回転ロールまたベルト
等の動的水冷体に注湯され、水冷体表面上から凝固が始
まる。動的水冷体は常に連続的に回転しており、このた
め、凝固シェルはこの回転速度に従って同期的に引き抜
かれる。引き抜かれた分だけの溶融体が自動的に注湯し
、再び凝固シェルを形成する。この繰り返しが連続的に
行われ、結果として連続した凝固シェルが形成される。 動的水冷体の幅が製品板の幅を与え、動的水冷体間距離
がその厚みを与えることになる。
[0003] Strip casting (direct rolling) is a process in which a thin plate is manufactured directly from a heated melt without using a fixed mold or a hot or cold rolling mill as described above. The heated molten material is injected into a dynamic water-cooled body, and depending on the shape, type, number, etc. of this dynamic water-cooled body, direct rolling can be performed using the single-roll method, twin-roll method, internal ring method, roll-belt method, or twin-belt method. , vibration molding method. In either method, the heated molten material is poured into a dynamic water-cooled body such as a water-cooled metal rotating roll or belt, and solidification begins on the surface of the water-cooled body. The dynamic water cooling body is always rotating continuously, so that the solidified shell is withdrawn synchronously according to this rotational speed. The amount of melt that has been drawn out is automatically poured in to form a solidified shell again. This repetition is performed continuously, resulting in the formation of a continuous solidified shell. The width of the dynamic water cooling body gives the width of the product board, and the distance between the dynamic water cooling bodies gives its thickness.

【0004】動的水冷体と凝固シェルとは同期的に変位
し、即ち、双方間の相対的速度が零であるために、摺動
による摩擦が無く、従って凝固シェルは引きちぎれるこ
とは少なく、薄板形状でも製造出来る。しかしながら動
的水冷体は、銅やステンレス等の金属が用いられている
ため、注入直後に凝固シェルとの焼き付きや急激な冷却
が行われるために凝固シェルが凝固収縮し、またシェル
同士の融着が不十分となり、結果として製品薄板表面に
湯ジワや傷が入る。また、操業中には金属製の動的冷却
体の温度が上昇し、これに伴う表面の変形で板厚が不均
一となる。一方、薄板短辺面(厚み面)の部材は固定型
の金属板および耐火物が用いられているために、シェル
の短辺面は摺動し、オシュレーションマークが入る。こ
れを回避する手段として短辺面部材をブロック状とし、
これをシェルと同期的に動かす手法がとられているが、
全体が非常に煩雑化する。ドラムあるいはベルトと短辺
面部材間には溶融金属が入り凝固し、シェルが引き抜け
なくなることがあり、またこの結果薄板コーナー部には
バリができる。この様な薄板表面、短辺面およびコーナ
ーの欠陥は冷却過程でcrackとなることが多く、製
品不良となりがちである。この技術は古くから知られて
折り、実用化には至っていないのが現状である。
[0004] Since the dynamic water cooling body and the solidified shell are synchronously displaced, that is, the relative speed between them is zero, there is no friction due to sliding, and therefore the solidified shell is less likely to be torn off. It can also be manufactured in the form of a thin plate. However, since dynamic water cooling bodies use metals such as copper and stainless steel, they may seize with the solidified shell immediately after injection or undergo rapid cooling, causing the solidified shell to solidify and shrink, and the shells to fuse together. As a result, water wrinkles and scratches appear on the surface of the product thin plate. Furthermore, during operation, the temperature of the metal dynamic cooling body increases, and the resulting surface deformation causes the plate thickness to become non-uniform. On the other hand, since fixed metal plates and refractories are used for the members on the short side (thickness side) of the thin plate, the short side of the shell slides and oscillation marks are formed. As a means to avoid this, the short side member is made into a block shape,
A method is used to run this synchronously with the shell, but
The whole thing becomes very complicated. Molten metal may enter and solidify between the drum or belt and the short side member, making it impossible to pull out the shell, and as a result, burrs form at the corners of the thin plate. Such defects on the thin plate surface, short side surfaces, and corners often become cracks during the cooling process, and tend to result in product defects. This technology has been known for a long time and has not yet been put into practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みて行われたものであり、その目的とするところは
[Problems to be Solved by the Invention] The present invention has been made in view of the above problems, and its purpose is to:

【0006】(1)溶融金属の直送圧延を可能にし、し
かも
(1) Direct rolling of molten metal is possible, and

【0007】(2)表面傷の無い薄板を安定的に製造す
るストリップキャスターを提供するにある。
(2) To provide a strip caster that can stably produce thin plates without surface scratches.

【0008】[0008]

【課題を解決するための手段】本発明は、上記問題点に
関し鋭意研究を行った結果、次の様な新しい知見を得る
に至った。即ち、
[Means for Solving the Problems] As a result of extensive research into the above-mentioned problems, the present invention has resulted in the following new findings. That is,

【0009】(1)ストリップキャスターの動的冷却体
の表面にセラミックスを設置すると、凝固したシェルは
抜熱速度が低下し、緩冷却され、シェルとシェルの融着
状態が極めてよくなり、表面の湯ジワやそれに伴う割れ
等の傷がない良好な薄板が製造できる。また、
(1) When ceramics are installed on the surface of the dynamic cooling body of a strip caster, the heat removal rate of the solidified shell is reduced and the shell is slowly cooled, and the state of fusion between the shells is extremely good, and the surface It is possible to produce a thin plate with good quality, free from hot water wrinkles and accompanying scratches such as cracks. Also,

【001
0】(2)動的冷却体は、設置されたセラミックスによ
り保護され、熱的変形がなく、ひずみのない均一な薄板
が製造できる。
001
[0] (2) The dynamic cooling body is protected by the installed ceramics, and there is no thermal deformation, and a uniform thin plate without distortion can be manufactured.

【0011】(3)熱膨張係数が4×10−61/℃以
下のセラミックスを設置すると、熱衝撃や熱応力に伴う
割れやカケがなく、安定的な直圧延が可能となる。
(3) When ceramics having a coefficient of thermal expansion of 4×10 −61 /° C. or less is installed, stable direct rolling is possible without cracking or chipping due to thermal shock or thermal stress.

【0012】(4)設置するセラミックスにh−BNを
含むセラミックスを選択すると、セラミックスにh−B
Nの本来もつ耐熱性、耐蝕性、難濡れ性、耐熱衝撃性、
自己潤滑性が発揮され、直送圧延が可能となる。
(4) If ceramics containing h-BN are selected as the ceramics to be installed, h-B will be added to the ceramics.
N has inherent heat resistance, corrosion resistance, wettability, thermal shock resistance,
It exhibits self-lubricating properties and enables direct rolling.

【0013】(5)表面にセラミックスを設置した動的
水冷体を加熱することで、表面の温度を上げ、抜熱性を
低減し、凝固シェルの融着性および緩冷却を良好とし、
表面性状の良い薄板の直送圧延が可能となる。
(5) By heating the dynamic water cooling body with ceramics installed on the surface, the temperature of the surface is raised, the heat extraction property is reduced, and the fusion property and slow cooling of the solidified shell are improved,
Direct rolling of thin plates with good surface quality is possible.

【0014】[0014]

【作用】セラミックス片が動的冷却体表面に貼着または
接合により一体化されるが、貼着の場合、金属とセラミ
ックスの貼着材としては有機、無機接着材を基本成分と
した接着材が適宜選択できる。接着材の基本成分として
有機系を用いた場合には、その耐熱性が400℃以下と
低い為にセラミックスの断熱性を考慮し、厚みを増すか
、熱伝導率の低いセラミックスを選択する必要がある。 無機系を用いる場合には、耐熱性は問題ないが、セラミ
ックスと金属との熱膨張差を緩和する様な接着材を選択
せねばならない。
[Operation] Ceramic pieces are integrated by adhering or bonding to the surface of the dynamic cooling body. In the case of adhering, adhesives containing organic or inorganic adhesives as the basic ingredients are used as the adhesive between metal and ceramics. You can choose as appropriate. When using an organic adhesive as a basic component, its heat resistance is low at 400°C or less, so it is necessary to consider the heat insulation properties of the ceramic and either increase the thickness or select a ceramic with low thermal conductivity. be. When an inorganic material is used, there is no problem with heat resistance, but it is necessary to select an adhesive that alleviates the difference in thermal expansion between the ceramic and the metal.

【0015】セラミックスを貼着する金属は、接着材が
有機系の場合には冷却能の高い銅が好ましく、無機系の
場合には凝固シェルの緩冷却から冷却能の低いステンレ
ス鋼等の熱伝導性の低い金属が好ましい。接合する場合
、ロウ付け等の一般的な接合方法が用いられる。
[0015] The metal to which the ceramic is bonded is preferably copper, which has a high cooling ability, when the adhesive is organic, and when it is an inorganic adhesive, it is preferable to use heat conductive materials such as stainless steel, which has a low cooling ability due to slow cooling of the solidified shell. Metals with low properties are preferred. When joining, a general joining method such as brazing is used.

【0016】セラミックスには熱衝撃や熱応力が発生す
るので、その熱膨張を小さくすることが好ましい。熱膨
張係数が4×10−61/℃以下ならば、セラミックス
を小さく分割して金属と貼着あるいは接合すれば、セラ
ミックス片の熱衝撃や熱応力による剥離が防止できる。 セラミックスの熱膨張係数が4.0×10−61/℃よ
り大きくなると、使用する際のセラミックスの大きさ、
厚み、形状を変化させても上記の様な問題は回避できな
い。
Since thermal shock and thermal stress occur in ceramics, it is preferable to reduce their thermal expansion. If the coefficient of thermal expansion is 4×10 −61 /° C. or less, separating the ceramic pieces into small pieces and adhering or joining them to metal can prevent the ceramic pieces from peeling off due to thermal shock or thermal stress. When the coefficient of thermal expansion of ceramics is larger than 4.0 × 10-61/℃, the size of ceramics when used,
Even if the thickness and shape are changed, the above problems cannot be avoided.

【0017】セラミックスとしてh−BNを含むセラミ
ックスを用いるのは、h−BNがもつ本来の特性、耐熱
衝撃性、耐蝕性、難濡れ性、潤滑性を発揮させる為であ
る。また、その好ましい量は50〜95重量%である。 h−BN量が50重量%以下となると、h−BNの本来
の特性が、特に耐熱衝撃性、濡れ特性が発揮されなくな
る。また、h−BN量が95重量%を超えると、凝固シ
ェルによる損耗が激しくなる。h−BN以外の成分とし
てSi、Al、O、N、C、B、Ca、Zrからなる化
合物を選択するのは、耐蝕性等の特性が更に向上するか
らである。焼結体中のSi、Al、O、N、C、B、C
a、Zrからなる化合物の出発原料としてはSiO2 
、Si3 N4 、SiC、Al2 O3 、AlN、
B4 C、ZrO2 、ZrB2 、CaO−B2 O
3 化合物、CaO−SiO2 化合物、CaO−B2
 O3 −Al2 O3 化合物、CaB6 を用いる
ことができる。また、焼結体中のh−BN成分の出発原
料をそのまま用いてもよいし、また焼結過程でh−BN
に変化するものならば全て用いられる。焼結は温度15
00℃以上であれば十分であり、焼結方法は従来の全て
の方法が用いられる。特に、還元窒化雰囲気常圧下で焼
結する場合は、例えばB(ボロン)を用い、焼結中に窒
素と反応させてh−BNとしてもよいし、B2 O3 
(ホウ酸)を焼結過程で還元窒化させてh−BNとして
もよい。更に、アモルファス化したBNも出発原料とし
ては好ましい。ここでいうアモルファス化BNは、Cu
Kα線を用いたときのX線回折の六方晶系h−BNの(
002)に相当するピークの半価幅が0.3°を超える
ものがよい。勿論これらを配合したものも全て用いられ
る。焼結体中のh−BN以外の成分としてSi3 N4
 、SiO2 、SiC、AlN、Al2 O3 、A
l6 Si2 O13、Si2 Al3 O7 N、S
i3 Al2.67O4 N4 、Si3 Al3 O
3 N5 、Al3 O3 N、Si6 Al0 O2
1N4 、B4 C、ZrB2 、ZrO2 、CaO
−B2 O3系化合物、CaO−SiO2 化合物を含
ませるのは、h−BNの本来からもつ特性、特に耐熱衝
撃性、耐蝕性、難濡れ性を損なわず焼結体が得られるか
らである。例えば3Al2 O3 2SiO2 (Al
6 Si2 O13)が焼結体中に含まれると耐熱衝撃
性が発揮され、また、AlN、Si3 Al3 O3 
Nがふくまれると耐熱衝撃性が劣り、耐熱性が良好にな
る。また、ZrO2 が含まれると熱伝導性は悪くなり
、AlNが含まれると熱伝導性は良好となる。この様に
h−BN以外の成分を変化させることによりh−BNを
含むセラミックスの特性を変化させることが可能となる
。金属表面に貼着または接合されるセラミックスを適所
に設置した直送圧延が可能となる。
The reason why a ceramic containing h-BN is used as the ceramic is to exhibit the original characteristics of h-BN, such as thermal shock resistance, corrosion resistance, difficult wettability, and lubricity. Moreover, its preferable amount is 50 to 95% by weight. When the amount of h-BN is less than 50% by weight, the original properties of h-BN, especially thermal shock resistance and wetting properties, are no longer exhibited. Moreover, when the amount of h-BN exceeds 95% by weight, wear due to the solidified shell becomes severe. The reason why compounds consisting of Si, Al, O, N, C, B, Ca, and Zr are selected as components other than h-BN is that properties such as corrosion resistance are further improved. Si, Al, O, N, C, B, C in the sintered body
As a starting material for a compound consisting of a, Zr, SiO2
, Si3 N4 , SiC, Al2 O3 , AlN,
B4C, ZrO2, ZrB2, CaO-B2O
3 Compound, CaO-SiO2 Compound, CaO-B2
O3-Al2O3 compounds, CaB6 can be used. In addition, the starting material for the h-BN component in the sintered body may be used as is, or the h-BN component may be used in the sintering process.
Anything that changes can be used. Sintering at temperature 15
A temperature of 00° C. or higher is sufficient, and all conventional sintering methods can be used. In particular, when sintering is carried out under normal pressure in a reducing nitriding atmosphere, for example, B (boron) may be used and reacted with nitrogen during sintering to form h-BN, or B2 O3
(boric acid) may be reduced and nitrided during the sintering process to form h-BN. Furthermore, amorphous BN is also preferred as a starting material. The amorphous BN mentioned here is Cu
X-ray diffraction of hexagonal h-BN using Kα rays (
It is preferable that the half width of the peak corresponding to 002) exceeds 0.3°. Of course, any combination of these may also be used. Si3 N4 as a component other than h-BN in the sintered body
, SiO2, SiC, AlN, Al2O3, A
l6 Si2 O13, Si2 Al3 O7 N, S
i3 Al2.67O4 N4, Si3 Al3 O
3 N5 , Al3 O3 N, Si6 Al0 O2
1N4, B4C, ZrB2, ZrO2, CaO
The reason why the -B2 O3 type compound and the CaO--SiO2 compound are included is that a sintered body can be obtained without impairing the inherent properties of h-BN, especially thermal shock resistance, corrosion resistance, and wettability. For example, 3Al2 O3 2SiO2 (Al
6 Si2 O13) is included in the sintered body, thermal shock resistance is exhibited, and AlN, Si3 Al3 O3
If N is included, the thermal shock resistance will be poor and the heat resistance will be good. Further, if ZrO2 is included, the thermal conductivity will be poor, and if AlN is included, the thermal conductivity will be good. By changing components other than h-BN in this way, it is possible to change the characteristics of ceramics containing h-BN. Direct rolling is possible with the ceramics attached or bonded to the metal surface placed in the right place.

【0018】動的冷却体表面温度を上げ、更に凝固シェ
ルの高温化あるいは緩冷却を行うために表面を加熱する
場合、加熱源は既存の装置が全て用いられる。動的冷却
体表面にセラミックスを設置すると、加熱による酸化が
極めて少なくなり、また耐熱性があるために変形が少な
い。従来の金属性の動的冷却体のみの場合は、加熱酸化
により金属表面肌が荒れ、あるいは変形し好ましくない
[0018] When heating the surface of the dynamic cooling body in order to raise the surface temperature and further increase the temperature or slowly cool the solidified shell, any existing equipment can be used as a heating source. When ceramics are placed on the surface of the dynamic cooling body, oxidation due to heating is extremely reduced, and due to its heat resistance, there is little deformation. In the case of only a conventional metallic dynamic cooling body, the metal surface becomes rough or deformed due to heating and oxidation, which is undesirable.

【0019】[0019]

【実施例】1例として単ロール方式による薄板の直送圧
延の実機操業の結果について説明する。
[Example] As an example, the results of an actual machine operation of direct rolling of a thin plate using a single roll method will be explained.

【0020】図1の様に水冷された銅製ドラム■表面に
小片に分割された二種のセラミックス1、2が貼着され
ている。セラミックス1の厚みは5mmであり、接着材
は無機系接着材である。セラミックス2の厚みは10m
mで、緩冷却化および断熱効果を発揮し、シェルの高温
化および接着材層の低温化を計っている。従って、接着
材は有機系接着材である。回転ドラム■と相対し、且つ
凝固シェルと接する部にセラミックス3、凝固シェルお
よび溶融体と接する部にセラミックス4が無機系接着材
により貼着されている。ここでセラミックス3はセラミ
ックス1と硬度を同等にし、摺動摩耗を防止できる様に
同材質となっている。また、少なくとも凝固シェルと接
するセラミックス4はセラミックス2と同材質で、凝固
シェルとの特に剥離性を良好にしたものが使用される。 湯溜5に注湯された溶融金属は冷却され、セラミックス
2表面と厚み方向でセラミックス4と接する様に凝固シ
ェルが形成する。生成した凝固シェルは水冷銅ドラムの
回転方向7に引き抜かれる。引き抜かれたシェルの後に
は溶融金属が再び凝固し、結果として連続的な薄板が製
造される。表1にセラミックスの材質を、表2に操業条
件と結果を示す。また、表3に同一条件で加熱装置で表
面を加熱した時の結果を示す。
As shown in FIG. 1, two types of ceramics 1 and 2 divided into small pieces are adhered to the surface of a water-cooled copper drum. The thickness of the ceramic 1 is 5 mm, and the adhesive is an inorganic adhesive. The thickness of ceramics 2 is 10m
m, exhibits slow cooling and heat insulation effects, increasing the temperature of the shell and lowering the temperature of the adhesive layer. Therefore, the adhesive is an organic adhesive. A ceramic 3 is attached to a portion facing the rotating drum (2) and in contact with the solidified shell, and a ceramic 4 is adhered to a portion in contact with the solidified shell and the molten body using an inorganic adhesive. Here, the ceramic 3 has the same hardness as the ceramic 1 and is made of the same material so as to prevent sliding wear. Further, the ceramic 4 which is in contact with at least the solidified shell is made of the same material as the ceramic 2 and has particularly good peelability from the solidified shell. The molten metal poured into the tundish 5 is cooled, and a solidified shell is formed so as to contact the surface of the ceramic 2 and the ceramic 4 in the thickness direction. The solidified shell produced is drawn out in the direction of rotation 7 of the water-cooled copper drum. After the drawn shell, the molten metal solidifies again, resulting in the production of a continuous sheet. Table 1 shows the ceramic materials, and Table 2 shows the operating conditions and results. Further, Table 3 shows the results when the surface was heated with a heating device under the same conditions.

【0021】[0021]

【表1】[Table 1]

【0022】[0022]

【表2】[Table 2]

【0023】[0023]

【表3】[Table 3]

【0024】[0024]

【発明の効果】本発明により以下の効果を奏することが
できる。
[Effects of the Invention] The following effects can be achieved by the present invention.

【0025】動的水冷体表面にセラミックスを設置する
ことで、
[0025] By installing ceramics on the surface of the dynamic water cooling body,

【0026】(1)直送圧延が長時間安定して行える様
になる。
(1) Direct rolling can be performed stably for a long time.

【0027】(2)直送圧延された薄板は表面傷が全く
なく、しかも均一な厚みとなる。
(2) Directly rolled thin plates have no surface flaws and have a uniform thickness.

【0028】(3)セラミックスを分割するため、適所
に材質特性、厚みをかえたセラミックス片が設置できる
(3) Since the ceramic is divided, ceramic pieces with different material properties and thickness can be placed at appropriate locations.

【0029】[0029]

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例の直送圧延の概略図を示す図であ
る。
FIG. 1 is a diagram showing a schematic diagram of direct rolling according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1〜4・・・設置されたそれぞれのセラミックス5・・
・・・湯溜 6・・・・・水冷銅ロール 7・・・・・回転方向
1 to 4...Each of the installed ceramics 5...
... Water reservoir 6 ... Water-cooled copper roll 7 ... Rotation direction

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  ストリップキャスター(直送圧延機)
の動的冷却体の表面に、分割されたセラミックス片が貼
着または接合により一体化されてなるストリップキャス
ター。
[Claim 1] Strip caster (direct rolling mill)
A strip caster in which divided ceramic pieces are integrated on the surface of a dynamic cooling body by pasting or bonding.
【請求項2】  上記セラミックスは熱膨張係数が4×
10−61/℃以下のセラミックスである請求項1に記
載のストリップキャスター。
Claim 2: The ceramic has a coefficient of thermal expansion of 4×
The strip caster according to claim 1, which is made of ceramic having a temperature of 10-61/C or less.
【請求項3】  上記セラミックスが六方晶系窒化硼素
(h−BN)を含むセラミックスである請求項1に記載
のストリップキャスター。
3. The strip caster according to claim 1, wherein the ceramic is a ceramic containing hexagonal boron nitride (h-BN).
【請求項4】  上記h−BNを含むセラミックスのh
−BN成分量が50〜97重量%であることを特徴とす
る請求項1〜3に記載のストリップキャスター。
4. h of the ceramics containing the h-BN.
- The strip caster according to any one of claims 1 to 3, characterized in that the amount of the BN component is 50 to 97% by weight.
【請求項5】  上記h−BNを含むセラミックスのh
−BN以外の成分元素がSi、Al、O、N、C、B、
Ca、Zrからなることを特徴とする請求項1〜4に記
載のストリップキャスター。
5. h of the ceramics containing the h-BN.
- Component elements other than BN are Si, Al, O, N, C, B,
The strip caster according to claim 1, characterized in that it is made of Ca and Zr.
【請求項6】  上記h−BNを含むセラミックスのh
−BN以外の成分が少なくともSi3 N4 、SiO
2 、SiC、AlN、Al2 O3 、Al6 Si
2 O13、Si2 Al3 O7 N、Si3 Al
2.67O4 N4 、Si3Al3 O3 N5 、
Al3 O3 N、Si6 Al10O21N4 、B
4 C、ZrO2 、ZrB2 、CaO−B2 O3
 化合物、CaO−SiO2 化合物、CaO−SiO
2 −Al2 O3 化合物を含むことを特徴とする請
求項1〜5に記載のストリップキャスター。
6. h of the ceramics containing the h-BN.
- Components other than BN are at least Si3 N4, SiO
2, SiC, AlN, Al2O3, Al6Si
2 O13, Si2 Al3 O7 N, Si3 Al
2.67O4N4, Si3Al3O3N5,
Al3 O3 N, Si6 Al10O21N4, B
4C, ZrO2, ZrB2, CaO-B2O3
Compound, CaO-SiO2 Compound, CaO-SiO
The strip caster according to any one of claims 1 to 5, characterized in that it contains a 2-Al2O3 compound.
【請求項7】  ストリップキャスターの動的冷却体表
面が加熱されることを特徴とする請求項1〜6に記載の
ストリップキャスター。
7. The strip caster according to claim 1, wherein the surface of the dynamic cooling body of the strip caster is heated.
JP3135702A 1991-05-11 1991-05-11 Strip caster Pending JPH04339548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135702A JPH04339548A (en) 1991-05-11 1991-05-11 Strip caster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135702A JPH04339548A (en) 1991-05-11 1991-05-11 Strip caster

Publications (1)

Publication Number Publication Date
JPH04339548A true JPH04339548A (en) 1992-11-26

Family

ID=15157899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135702A Pending JPH04339548A (en) 1991-05-11 1991-05-11 Strip caster

Country Status (1)

Country Link
JP (1) JPH04339548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070197A (en) * 2005-09-09 2007-03-22 National Institute Of Advanced Industrial & Technology Boron nitride burned substance and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070197A (en) * 2005-09-09 2007-03-22 National Institute Of Advanced Industrial & Technology Boron nitride burned substance and method for producing the same

Similar Documents

Publication Publication Date Title
JP2884427B2 (en) Sinter for dam material used in thin sheet continuous casting apparatus and dam material using the same
US6513573B1 (en) Refractory plates for continuous casting machines of thin flat products
JPH04339548A (en) Strip caster
JP4418749B2 (en) Side face of a plant used for twin-roll continuous casting of metal strips
JPH0399757A (en) Twin roll type strip continuous casting method
JPS626737A (en) Continuous casting mold for steel
JP6801467B2 (en) Side weir, double roll type continuous casting equipment, and thin-walled slab manufacturing method
JP4267214B2 (en) Master alloy for iron-based amorphous alloys
JP2000102846A (en) Mold powder for continuous casting
Kashitani et al. Twin Roll Casting of Aluminium Alloy ADC12, A3003, A7075
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JPS62118948A (en) Continuous casting mold with high-temperature head
KR100593680B1 (en) Manufacturing method of gold-tin eutectic strip for solder
JP4135835B2 (en) Mold for continuous casting overlay welding
JP2001316782A (en) Amorphous soft magnetic alloy
JPH09155523A (en) Sleeve of die casting machine and production thereof
JPH07290206A (en) Moving casting mold type continuous casting machine for casting aluminum of can material
JPS61209750A (en) Heated casting mold
JP2501796B2 (en) Cylinder for die casting
JPH08267183A (en) Casting mold for continuous casting
JPS62212041A (en) Short side mold for continuous casting of thin casting slab
SU1696129A1 (en) Method of manufacture of cast-in slabs
JPH01162545A (en) Short side plate for strip continuous casting machine
JPH03294047A (en) Ceramic mold for continuous casting
JP2941525B2 (en) Belt for twin belt type continuous casting equipment