JPH0433951A - Solid electrolyte composition - Google Patents

Solid electrolyte composition

Info

Publication number
JPH0433951A
JPH0433951A JP2140936A JP14093690A JPH0433951A JP H0433951 A JPH0433951 A JP H0433951A JP 2140936 A JP2140936 A JP 2140936A JP 14093690 A JP14093690 A JP 14093690A JP H0433951 A JPH0433951 A JP H0433951A
Authority
JP
Japan
Prior art keywords
solid electrolyte
compound
ion
electrolyte composition
polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140936A
Other languages
Japanese (ja)
Other versions
JP2870988B2 (en
Inventor
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2140936A priority Critical patent/JP2870988B2/en
Priority to US07/706,988 priority patent/US5188768A/en
Publication of JPH0433951A publication Critical patent/JPH0433951A/en
Application granted granted Critical
Publication of JP2870988B2 publication Critical patent/JP2870988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a solid electrolyte composition having excellent moldability, ionic conductivity and mechanical strength, comprising a polyether compound containing ethylene oxide chain and/or butylene oxide chain, an ion exchange layered compound and an ionic substance. CONSTITUTION:(A) A polyether compound having 1,000-5,000,000 average molecular weight obtained by adding ethylene oxide and butylene oxide to a polyamine compound (e.g. polyethyleneimine) in the presence of an alkali catalyst at 100-180 deg.C under 1-10 atmospheric pressure is blended with (B) an ion exchange layered compound (e.g. montmorillonite or zirconium phosphate) and (C) an ionic substance (preferably alkali metal salt) shown by the formula MX (M is metal ion, proton or ammonium ion; X is anion of strong acid) as essential components and ionic conductive powder in an amount not to damage chemical stability to give a solid electrolyte composition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(友 電池 キャパシター、センサー 表示素子
、記録素子等の電気化学素子に用いられる固形電解質組
成物に関すム 従来の技術 固体の電解質を用いることで液漏れがなく、小形薄形化
の電池 電気二重層キャパシタ等の固体の電気化学デバ
イスを得ることができもしかしなか社 弾性に欠ける固
体物質で素子が構成されることか収 機械的衝撃に対し
てはきわめて脆く、破損しやすい欠点があム この様な問題を解決するた数 特開昭63−24587
1号公報にあるようにイオン伝導性の無機化合物に可塑
性樹脂を複合化することで可撓性を付与し 機械的衝撃
に対しても破損しにくい固体電解質とする試みや、ポリ
エチレンオキシド(PEO)とアルカリ金属塩とからな
る高分子固体電解質が提案されている(”Fast J
on Transportin 5olid” PJa
nishstaet、al、、 Eds、 P、 13
1(1979) North Ho1and Publ
ishing Co、 )。しかしなか収イオン伝導性
の無機化合物には耐湿性をはじめとする化学的安定性に
欠けるものが多く、特にアルカリ金属イオンの伝導体で
は化学的安定性に乏しく、可塑性樹脂と複合化を行う際
の製造プロセス中で可塑性樹脂中の活性水素等の未反応
基あるいは雰囲気の微量水分・酸素により変質をきたす
ことが多く取扱が困難であるという欠点を有していも 
−人 高分子固体電解質は無機系固体電解質に較べ 軽
量で、柔軟性に優れ 化学的に安定あるという特徴があ
ム 発明が解決しようとする課題 しかし一般の可塑性樹脂に較べると、均質なフィルム形
成が困難となることが多く、また均質性・成形性(フィ
ルム形成能)を高めようとするとイオン伝導性が低下す
るという欠点があった課題を解決するための手段 本発明を達成したもので、本発明の固形の電解質(友 
ポリアミン化合物にエチレンオキサイド(EO)及びブ
チレンオキサイド(BO)を付加して得られるポリエー
テル化合塩 イオン交換性の層状化合物と、式MXで表
されるイオン性物質(ただし、Mは電界の作用で固形電
解質組成物内を移動する金属イオン、プロトン、アンモ
ニウムイオンであり、Xは強酸のアニオンである)を少
なくとも含有する組成物であム 作用 このようにして得られる固形電解質組成物内にあっては
 イオン性の化合物MXはポリエーテル化合物とイオン
交換性の層状化合物とで複合体を形成し 層状化合物の
結晶の層間あるいは表面に高濃度に保持されイオン伝導
に有利な経路を形成すも 該固形電解質の製造に際し 
ポリエーテル化合物は溶媒とイオン交換性の層状化合物
との混和を容易にし均一なイオン伝導経路の形成を促進
するとともく さらに イオン伝導性粉末の添加混合に
際しては該粉末の凝集を防止し 溶媒とイオン交換性の
層状化合物との均一な混合分散を可能にすも このよう
にして、高いイオン伝導性と均質性が発現される。さら
に ポリエーテル化合物のエチレンオキサイド鎖および
ブチレンオキサイド鎖とイオン交換性の層状化合物のマ
イクロポーラス構造とが絡まって良好な成形性と十分な
機械強度が付与されも 実施例 以下、本発明を実施例によりさらに詳細に説明する力(
本発明は以下の実施例に限定されるものではなt〜 ま
た 以下の実施例においてa %比は特に断わらない限
り重量訊 重量麹 重量比を表わす。
[Detailed Description of the Invention] Industrial Fields of Application The present invention relates to solid electrolyte compositions used in electrochemical elements such as batteries, capacitors, sensors, display elements, and recording elements. Smaller and thinner batteries with no leakage It is possible to obtain solid electrochemical devices such as electric double layer capacitors. However, it is extremely brittle and easy to break, so there is no way to solve this problem.
As stated in Publication No. 1, an attempt was made to create a solid electrolyte that was made flexible by combining an ion-conducting inorganic compound with a plastic resin, making it less likely to be damaged by mechanical shock, and using polyethylene oxide (PEO). A polymer solid electrolyte consisting of alkali metal salt and alkali metal salt has been proposed ("Fast J
on Transportin 5solid” PJa
Nishstaet, al., Eds, P., 13
1 (1979) North Ho1 and Publ.
Ishing Co, ). However, many of the inorganic compounds with low ion conductivity lack chemical stability including moisture resistance.In particular, conductors of alkali metal ions have poor chemical stability, and when combined with plastic resins, Although it has the disadvantage that it is difficult to handle because it is often deteriorated by unreacted groups such as active hydrogen in the plastic resin or by trace amounts of moisture and oxygen in the atmosphere during the manufacturing process.
-People Polymer solid electrolytes are lighter, more flexible, and more chemically stable than inorganic solid electrolytes, which is the problem that the invention aims to solve.However, compared to general plastic resins, they are less able to form a homogeneous film. The present invention has been achieved as a means to solve the problems in which it is often difficult to improve homogeneity and formability (film-forming ability), and the ionic conductivity decreases when trying to improve homogeneity and formability (film-forming ability). The solid electrolyte (friend) of the present invention
A polyether compound salt obtained by adding ethylene oxide (EO) and butylene oxide (BO) to a polyamine compound. An ion-exchangeable layered compound and an ionic substance represented by the formula MX (where M is the result of the action of an electric field. metal ions, protons, ammonium ions that move within the solid electrolyte composition, where X is an anion of a strong acid. The ionic compound MX forms a complex with a polyether compound and an ion-exchange layered compound, and is held at a high concentration between the layers or on the surface of the layered compound's crystals, forming an advantageous path for ion conduction. When manufacturing electrolytes
The polyether compound not only facilitates the miscibility of the solvent and the ion-exchange layered compound and promotes the formation of a uniform ion-conducting path, but also prevents the aggregation of the ion-conductive powder when it is added and mixed, thereby preventing the solvent and ions from agglomerating. This enables uniform mixing and dispersion with the exchangeable layered compound.In this way, high ionic conductivity and homogeneity are achieved. Furthermore, the ethylene oxide chain and butylene oxide chain of the polyether compound are entangled with the microporous structure of the ion-exchange layered compound to provide good moldability and sufficient mechanical strength. Ability to explain in more detail (
The present invention is not limited to the following examples. Furthermore, in the following examples, a% ratio represents a weight ratio of koji to weight unless otherwise specified.

ポリアミン化合物にエチレンオキサイドとブチレンオキ
サイドを付加して得られるポリエーテル化合物(よ ポ
リアミン化合物をアルカリ触媒下で100−180\ 
1〜10気圧でエチレンオキサイドおよびブチレンオキ
サイドを付加反応することにより得ることができも ポ
リアミン化合物としてGL  ポリエチレンイミン、ポ
リアルキレンポリアミンあるいはそれらの誘導体を用い
ることができも ポリアルキレンポリアミンとして、 
ジエチレントリアミン、 トリエチレンテトラミスヘキ
サメチレンテトラミン、ジプロピレントリアミン等を挙
げることがができも エチレンオキサイドとブチレンオ
キサイドの付加モル数はポリアミン化合物の活性水素1
個当り2〜150モルであも 付加するエチレンオキサ
イド(EO)とブチレンオキサイド(BO)との比+&
80/20〜10/90  (EO/BO)であム ポ
リエーテルの平均分子量は1000〜500万であム イオン性物質MXとして8表  特に制限はない力(L
iI、 LiCl0a、 LiCFsSOs、 LiP
Fa、 LiBFa、 Li5CN。
A polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound.
GL can be obtained by addition reaction of ethylene oxide and butylene oxide at 1 to 10 atm. Polyethyleneimine, polyalkylene polyamine or derivatives thereof can be used as the polyamine compound.
Examples include diethylene triamine, triethylenetetramishexamethylenetetramine, dipropylenetriamine, etc.The number of moles of ethylene oxide and butylene oxide added is 1 active hydrogen of the polyamine compound.
Ratio of ethylene oxide (EO) to butylene oxide (BO) to be added +&
80/20 to 10/90 (EO/BO) The average molecular weight of polyether is 10 to 5 million, and Table 8 is used as an ionic substance MX.
iI, LiCl0a, LiCFsSOs, LiP
Fa, LiBFa, Li5CN.

LiAsF5. NaI、 Na5CN、 NaBr、
 KI、 AgNOs、 CuC13Mg(CIOz)
*、 AlCl5等の可溶性の塩が用いられも特に M
Xが一価のアルカリ金属塩である場合はアルカリ金属イ
オンがポリエーテルとイオン交換性の層状化合物とで複
合体を形成することで化学的に安定化されるので、アル
カリ金属イオン伝導性の無機化合物に較べると取扱が簡
単であるという利点があa イオン交換性の層状化合物として(よ モンモリロナイ
ト、ヘクトライト、サポナイト、スメクタイト等のけい
酸塩を含む粘土鉱物 りん酸ジルコニラ収 りん酸チタ
ニウム等のりん酸エステ/lz。
LiAsF5. NaI, Na5CN, NaBr,
KI, AgNOs, CuC13Mg (CIOz)
*Soluble salts such as AlCl5 may also be used, especially M
When X is a monovalent alkali metal salt, the alkali metal ion is chemically stabilized by forming a complex with polyether and an ion-exchangeable layered compound. It has the advantage of being easier to handle compared to other compounds.As an ion-exchange layered compound, clay minerals containing silicates such as montmorillonite, hectorite, saponite, and smectite, zirconyl phosphate, and phosphorus such as titanium phosphate Acid beauty salon/lz.

バナジン限 アンチモン阪 タングステン阪 あるいは
 それらを第4級アンモニウム塩等の有機カチオンある
いはエチレンオキサイド、プロピレンオキサイド等の有
機の極性化合物で変性したものが挙げられも さらに固形電解質には 化学的安定性が損なわれない限
りイオン伝導性の粉末を添加混合することができも こ
のようなイオン伝導性の粉末としては例えi4  Me
Cu4Ip−xc1s*x (x−0,25−1,0,
Me−Rb、 K、 NHaあるいはそれらを混合した
もの)やCuI−CueO−MoOsガラス等の銅イオ
ン伝導性固体電解IL  RbAgals、Ag*S3
=  AgI−Ag2d−MoonガラA  Ag5I
aW04等の銀イオン伝導性固体電解質、LiI、Li
I ・I(aQ、  Li−β−A120s、  Li
l−Li25−Bass等のリチウムイオン伝導性固体
電解質、 H*Mo+tPO4s ・29HeQ、 HsW+aP
O4s ・29HaO等のプロトン導性固体電解質を用
いることができも 平均粒径が1μm以下の超微粒子か
ら数10μmの粒子のものまで何れも用いることができ
も 本発明の固体電解質組成物は次の様にして得られも イ
オン性化合物を1から50%溶解した溶剤にイオン交換
性の層状化合物粉末を1〜50%となるように加え 次
にBO鎖およびBO鎖を有するポリエーテル化合物をス
ラリー全体に対して0.1〜20%の割合になるように
加え ディスパーサ等の混合粉砕機により粉砕混合して
固形分含量が5〜95%の電解質スラリーを調製すム次
く このようにして得たスラリーをそのまま成形する力
\ あるいはテフロン板とかナイロンメツシュシートと
かの支持体上に流延あるいは塗布して成形した衡 溶剤
を一部あるいは全部散逸させることで固形電解質組成物
が得られも 支持体がメツシュ状であれば支持体を一体
化したままで固形電解質組成物として用いることも可能
であム必要に応よ これらの工程は相対湿度が40%以
下の乾燥雰囲気中で行われも また 溶剤として(よ アセトン、メチルエチルケトン
、メチルイソブチルケトン等のケトン系溶in−ヘキサ
ン、 n−へブタン、n−オクタン、 シクロヘキサン
等の飽和炭化水素系溶剋 ベンゼン、トルエン、キシレ
ン等の芳香族系溶剋 酢酸エチ/k  酢酸プチノk 
プロピレンカーボネート等のエステル系溶剋 メタノー
ノk エタノール、イソブロピルアルコーノk エチレ
ングリコール、グリセリン、ポリエチレングリコール等
のアルコール系溶剋 アセトニトリル等のニトリル類 
あるいは水が用いられも 〈実施例1〉 分子内に10個のN原子を含有するポリエチレンイミン
にエチレンオキサイド(EO)とブチレンオキサイド(
BO)をEOとBOO比が30/70となるように付加
して得た平均分子量が180000のポリエーテル化合
物をアセトニトリルに溶解し20%のポリエーテル溶液
(A)を調整した ざらへ イオン性物質としてLiC
Fa Sonを10%溶解したポリエーテル溶液(A)
に 固形分含量が30%となるように平均粒径が25μ
mのγ−りん酸ジルコニウム粉末を添加L  40℃で
24時間撹半混合し九 得られた電解質スラリーを平滑
なテフロン製の板の上でドクターブレードを用い塗布し
た挑 130℃の乾燥アルゴン気流中で1時間乾燥しさ
らに5時間真空乾燥することで、大きさ 80/80m
瓜 厚さ25μmのリチウムイオン伝導性のシート状の
固形電解質成形体(A1)を電池 〈実施例2〉 トリエチレンテトラミンにEOとBOをEO/BO=8
0/20  (重量比)の割合で付加することで得た平
均分子量が8000のポリエーテル化合物をプロピレン
カーボネート中に溶解し10%のポリエーテル溶液(B
)を調整しな  さらにイオン性物質としてLiCIO
4を10%溶解したポリエーテル溶液(B)に 固形分
含量が20%となるように平均粒径が15μmのモンモ
リロナイト粉末を添加し 40℃で24時間撹半混合し
た得られた電解質スラリーを平滑なテフロン製の板の上
で厚さ85μへ 開口率40%、330メツシユのポリ
エステルメツシュに塗布した後、 130℃の乾燥アル
ゴン気流中で1時間乾燥しさらに5時間真空乾燥するこ
とで、大きさ 80/80mK  厚さ110μmのシ
ート状のリチウムイオン伝導性の固形電解質成形体(B
1)を得?。
Vanadine, antimony, tungsten, or those modified with organic cations such as quaternary ammonium salts or organic polar compounds such as ethylene oxide and propylene oxide are listed, but solid electrolytes also have a risk of loss of chemical stability. Although it is possible to add and mix ion conductive powder as long as there is no
Cu4Ip-xc1s*x (x-0,25-1,0,
Copper ion conductive solid electrolyte IL such as Me-Rb, K, NHa or a mixture thereof) and CuI-CueO-MoOs glass, RbAgals, Ag*S3
= AgI-Ag2d-Moon Gala A Ag5I
Silver ion conductive solid electrolyte such as aW04, LiI, Li
I ・I(aQ, Li-β-A120s, Li
Lithium ion conductive solid electrolyte such as l-Li25-Bass, H*Mo+tPO4s ・29HeQ, HsW+aP
A proton-conducting solid electrolyte such as O4s/29HaO can be used, and any particle size ranging from ultrafine particles with an average particle size of 1 μm or less to particles of several tens of μm can be used, but the solid electrolyte composition of the present invention has the following properties. Add 1 to 50% of the ion exchange layered compound powder to a solvent in which 1 to 50% of the ionic compound is dissolved, and then add the BO chain and the polyether compound having the BO chain to the entire slurry. The electrolyte slurry is added to the electrolyte slurry at a ratio of 0.1 to 20% and mixed using a mixer such as a disperser to prepare an electrolyte slurry with a solid content of 5 to 95%. A solid electrolyte composition can be obtained by dissipating some or all of the solvent. If it is in the form of a mesh, it is possible to use it as a solid electrolyte composition with the support integrated.If necessary, these steps may be carried out in a dry atmosphere with a relative humidity of 40% or less. Ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, saturated hydrocarbon solvents such as n-hebutane, n-octane, and cyclohexane, aromatic solvents such as benzene, toluene, and xylene, and acetic acid. Ethi/k acetate puchino-k
Ester-based solvents such as propylene carbonate, methanol, ethanol, isopropyl alcohol, alcohol-based solvents such as ethylene glycol, glycerin, polyethylene glycol, etc. Nitriles such as acetonitrile
Alternatively, water may be used. Example 1 Ethylene oxide (EO) and butylene oxide (
A 20% polyether solution (A) was prepared by dissolving a polyether compound with an average molecular weight of 180,000 obtained by adding BO) at an EO to BOO ratio of 30/70 in acetonitrile. as LiC
Polyether solution containing 10% Fa Son (A)
The average particle size is 25μ so that the solids content is 30%.
γ-zirconium phosphate powder was added to the mixture at 40°C for 24 hours, and the resulting electrolyte slurry was coated on a smooth Teflon plate using a doctor blade in a dry argon stream at 130°C. By drying for 1 hour and vacuum drying for another 5 hours, the size is 80/80m.
Melon A lithium ion conductive sheet-like solid electrolyte molded body (A1) with a thickness of 25 μm is used as a battery (Example 2) EO and BO are added to triethylenetetramine (EO/BO=8)
A 10% polyether solution (B
) and LiCIO as an ionic substance.
Montmorillonite powder with an average particle size of 15 μm was added to a polyether solution (B) in which 10% of 4 was dissolved so that the solid content was 20%, and the mixture was stirred and mixed at 40°C for 24 hours.The resulting electrolyte slurry was smoothed. It was coated on a polyester mesh of 330 mesh with an aperture ratio of 40% to a thickness of 85μ on a Teflon board, dried for 1 hour in a dry argon stream at 130℃, and then vacuum dried for 5 hours. 80/80mK Sheet-like lithium ion conductive solid electrolyte molded body (B
Got 1)? .

〈実施例3〉 ヘキサメチレンテトラミンにEOとBOをEO/P○=
60/40の割合で付加することで得た平均分子量が1
5000のポリエーテル化合物をイオン交換水に溶解し
10%のポリエーテル溶液(C)を調整した さら番ミ
  イオン性物質としてLiCIO4を20%溶解した
ポリエーテル溶液(C)に 固形分含量が20%となる
ように平均粒径が25μmのT−りん酸ジルコニウム粉
末を添加し40℃で24時間撹半混合した 得られた電
解質スラリーをシリコン樹脂製の板の上で厚さ85μm
 開口率40%、 330メツシユのポリエステルメツ
シュに塗布した後、 80℃で1時間乾燥し大気中に一
昼夜放置して、大きさ80x80m爪厚さ100μmの
シート状の固形電解質成形体(CI)を得た この成形
体 (C1)中ではリチウムイオンのほかプロトンも伝
導イオンとして作用しているようであも 〈実施例4〉 ジプロピレンテトラミンにEOとBOO比がEO/BO
=80/20 (重量比)を付加することで得た平均分
子量が250000のポリエーテル化合物をイオン交換
水に溶解し10%のポリエーテル溶液(D)を調整し丸
 さら番! イオン性物質としてAlCl雪を20%溶
解したポリエーテル溶液(D)に 固形分含量が20%
となるように平均粒径が15μmのモンモリロナイト粉
末を添加し 40℃で24時間撹半混合した 得られた
電解質スラリーをシリコン樹脂製の板の上で厚さ85μ
瓜 開口率40%、330メツシユのポリエステルメツ
シュに塗布した後、 80℃で1時間乾燥し 大気中に
一昼夜放置して、大きさ80x80rn爪 厚さ100
μmのシート状の固形電解質成形体(Dl)を電池 こ
の成形体中ではアルミニウムイオン、プロトンが伝導イ
オンとして作用しているようであム 〈実施例5〉 実施例1と同様にして得られた電解質スラリーに無機固
体電解質として平均粒径が5μmのLi−β−Alia
s粉末を20重量%添加して電解質スラリー(E)を得
た これを平滑なテフロン製の板の上でドクターブレー
ドを用い塗布した槻 80℃の乾燥アルゴン気流中で1
時間乾燥しさらに5時間真空乾燥することで、大きさ8
0x80m凪厚さ55μmのリチウムイオン伝導性のシ
ート状の固形電解質成形体(El)を得た表  電気伝
導度 試料No、    平均値   標準偏差(S/cm)
     (S/cm) 4xlO−” 2xlO−” 8xlO−’ 4xlO−’ 8xlO−” ±0.2 ±0゜2 ±0.1 ±0.5 ±0.2 1O−Il xlO−’ xlO−’ xlo−’ xlO−@ る。
<Example 3> EO and BO in hexamethylenetetramine EO/P○=
The average molecular weight obtained by adding at a ratio of 60/40 is 1
A 10% polyether solution (C) was prepared by dissolving 5,000 polyether compounds in ion-exchanged water.The solid content was 20% in a polyether solution (C) in which 20% of LiCIO4 was dissolved as an ionic substance. T-zirconium phosphate powder with an average particle size of 25 μm was added and mixed at 40°C for 24 hours.The resulting electrolyte slurry was placed on a silicone resin plate to a thickness of 85 μm.
After applying it to a 330-mesh polyester mesh with an aperture ratio of 40%, it was dried at 80°C for 1 hour and left in the air overnight to form a sheet-like solid electrolyte molded body (CI) with a size of 80 x 80 m and a nail thickness of 100 μm. In addition to lithium ions, protons also seem to act as conductive ions in this molded body (C1) obtained (Example 4).
A polyether compound with an average molecular weight of 250,000 obtained by adding =80/20 (weight ratio) was dissolved in ion-exchanged water to prepare a 10% polyether solution (D). A polyether solution (D) in which 20% of AlCl snow as an ionic substance is dissolved has a solid content of 20%.
Montmorillonite powder with an average particle size of 15 μm was added and mixed at 40°C for 24 hours. The resulting electrolyte slurry was spread on a silicone resin plate to a thickness of 85 μm.
Melon After applying it to a polyester mesh with an opening ratio of 40% and a mesh size of 330, it was dried at 80℃ for 1 hour and left in the air for a day and night to form a nail with a size of 80x80rn and a thickness of 100mm.
A battery using a μm sheet-like solid electrolyte molded body (Dl). In this molded body, aluminum ions and protons seem to act as conductive ions. Example 5 Obtained in the same manner as Example 1. Li-β-Alia with an average particle size of 5 μm was added to the electrolyte slurry as an inorganic solid electrolyte.
Electrolyte slurry (E) was obtained by adding 20% by weight of S powder. This was coated on a smooth Teflon plate using a doctor blade.
By drying for an hour and vacuum drying for another 5 hours, the size is 8.
Table for obtaining a lithium ion conductive sheet-like solid electrolyte molded body (El) with a thickness of 0x80m and a thickness of 55μm Electrical conductivity sample No. Average value Standard deviation (S/cm)
(S/cm) 4xlO-"2xlO-"8xlO-'4xlO-'8xlO-' ±0.2 ±0゜2 ±0.1 ±0.5 ±0.2 1O-Il xlO-'xlO-' xlo -'xlO-@ru.

径10mmの円板状に10枚づつ打ち抜きそれぞれ2枚
の白金円板で挟&50kg/cm”の圧力で上下から加
圧した状態で、アルゴンガス雰囲気中で振幅100mV
、周波数10KHzの交流信号を白金円板間に加え固形
電解質成形体円板の20℃での交流抵抗値を測定し九 
得られた電気伝導度の平均値を表に示し九 発明の効果
10 disks each with a diameter of 10 mm were punched out, each sandwiched between two platinum disks, and pressurized from above and below at a pressure of 50 kg/cm'' in an argon gas atmosphere with an amplitude of 100 mV.
An AC signal with a frequency of 10 KHz was applied between the platinum discs, and the AC resistance value of the solid electrolyte molded disc at 20°C was measured.
The average value of the electrical conductivity obtained is shown in the table.9 Effects of the invention

Claims (2)

【特許請求の範囲】[Claims] (1)ポリアミン化合物にエチレンオキサイド及びブチ
レンオキサイドを付加して得られるポリエーテル化合物
と、イオン交換性の層状化合物と、式MXで表されるイ
オン性物質(ただし、Mは電界の作用で固形電解質組成
物内を移動する金属イオン、プロトン、アンモニウムイ
オンであり、Xは強酸のアニオンである)を少なくとも
含有することを特徴とする固形電解質組成物。
(1) A polyether compound obtained by adding ethylene oxide and butylene oxide to a polyamine compound, an ion exchange layered compound, and an ionic substance represented by the formula MX (where M is a solid electrolyte due to the action of an electric field). A solid electrolyte composition characterized in that it contains at least a metal ion, a proton, or an ammonium ion that moves within the composition, and X is an anion of a strong acid.
(2)MXがアルカリ金属塩であることを特徴とする請
求項1記載の固形電解質組成物。
(2) The solid electrolyte composition according to claim 1, wherein MX is an alkali metal salt.
JP2140936A 1990-05-30 1990-05-30 Solid electrolyte composition Expired - Fee Related JP2870988B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2140936A JP2870988B2 (en) 1990-05-30 1990-05-30 Solid electrolyte composition
US07/706,988 US5188768A (en) 1990-05-30 1991-05-29 Solid form electrolyte composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140936A JP2870988B2 (en) 1990-05-30 1990-05-30 Solid electrolyte composition

Publications (2)

Publication Number Publication Date
JPH0433951A true JPH0433951A (en) 1992-02-05
JP2870988B2 JP2870988B2 (en) 1999-03-17

Family

ID=15280264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140936A Expired - Fee Related JP2870988B2 (en) 1990-05-30 1990-05-30 Solid electrolyte composition

Country Status (1)

Country Link
JP (1) JP2870988B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
CN115241528A (en) * 2022-06-28 2022-10-25 电子科技大学长三角研究院(湖州) Preparation method of montmorillonite and polyethyleneimine modified fluorine-containing meta-aramid-based polymer electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (en) * 1993-10-21 1995-05-09 Sony Corp Polymer solid electrolyte
CN115241528A (en) * 2022-06-28 2022-10-25 电子科技大学长三角研究院(湖州) Preparation method of montmorillonite and polyethyleneimine modified fluorine-containing meta-aramid-based polymer electrolyte

Also Published As

Publication number Publication date
JP2870988B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
Chen et al. Ionogel electrolytes for high‐performance lithium batteries: A review
Ang et al. One-pot synthesis of Fe (III)–polydopamine complex nanospheres: morphological evolution, mechanism, and application of the carbonized hybrid nanospheres in catalysis and Zn–air battery
Ding et al. A New Polyoxometalate (POM)‐Based Composite: Fabrication through POM‐Assisted Polymerization of Dopamine and Properties as Anode Materials for High‐Performance Lithium‐Ion Batteries
Wang et al. Nanostructured polymer composite electrolytes with self-assembled polyoxometalate networks for proton conduction
CN104704668B (en) Mix electrolyte
US6716548B1 (en) Composite electrolyte membranes for fuel cells and methods of making same
Chen et al. Covalently cross-linked perfluorosulfonated membranes with polysiloxane framework
WO2007029346A1 (en) Proton conductive hybrid material, and catalyst layer for fuel cell using the same
Tian et al. A crosslinked polyethyleneglycol solid electrolyte dissolving lithium bis (trifluoromethylsulfonyl) imide for rechargeable lithium batteries
Ulaganathan et al. Surface analysis studies on polymer electrolyte membranes using scanning electron microscope and atomic force microscope
Porthault et al. Development of a thin flexible Li battery design with a new gel polymer electrolyte operating at room temperature
Peng et al. Enhancing proton conductivity of sulfonated poly (ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide
Wang et al. Niobium Oxyhydroxide‐Polyoxometalate Composite as an Efficient Proton‐Conducting Solid Electrolyte
Yeganeh Ghotbi Solid state electrolytes for electrochemical energy devices
JP2006179448A (en) Electrolyte membrane and membrane-electrode joining element, and fuel cell using this the same
Dimri et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
Sachdeva et al. The use of heteropoly acids in proton exchange fuel cells
Wang et al. Polyoxometalate-polymer nanocomposites with multiplex proton transport channels for high-performance proton exchange membranes
JPH04267055A (en) Solid electrode composition
JP2001155744A (en) Proton conductor
Cai et al. Revealing the role of hydrogen bond coupling structure for enhanced performance of the solid-state electrolyte
Sadiq et al. Facile synthesis of highly flexible sodium ion conducting polyvinyl alcohol (PVA)-polyethylene glycol (PEG) blend incorporating reduced graphene-oxide (rGO) composites for electrochemical devices application
JPH0433951A (en) Solid electrolyte composition
Lin et al. Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane
Tran et al. Encapsulation of silicotungstic acid into chromium (III) terephthalate metal–organic framework for high proton conductivity membranes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees