JPH0433782B2 - - Google Patents

Info

Publication number
JPH0433782B2
JPH0433782B2 JP57197639A JP19763982A JPH0433782B2 JP H0433782 B2 JPH0433782 B2 JP H0433782B2 JP 57197639 A JP57197639 A JP 57197639A JP 19763982 A JP19763982 A JP 19763982A JP H0433782 B2 JPH0433782 B2 JP H0433782B2
Authority
JP
Japan
Prior art keywords
reaction
dinitro
water
compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57197639A
Other languages
Japanese (ja)
Other versions
JPS5988446A (en
Inventor
Keisaburo Yamaguchi
Kenichi Sugimoto
Yoshimitsu Tanabe
Masaji Tamai
Teruhiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP57197639A priority Critical patent/JPS5988446A/en
Publication of JPS5988446A publication Critical patent/JPS5988446A/en
Publication of JPH0433782B2 publication Critical patent/JPH0433782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は、3′4′−テトラアミノゞフ
゚ニル化合物の補造方法に関する。 さらに詳しくは、䞀般匏 匏䞭、は、CO、CH2たたはSO2を瀺
すで衚わされる3′−ゞニトロ−4′−ゞ
アミノゞプニル化合物を還元觊媒の存圚䞋、鉱
酞氎䞭で接觊還元するこずにより䞀般匏 匏䞭、は䞀般匏(1)ず同じ意味を瀺すで衚わ
される3′4′−テトラアミノゞプニル
化合物の補造方法に関するものである。 本発明に係るテトラアミノ化合物は耐熱性暹脂
原料たたはその䞭間䜓等に有甚であり、特に近
幎、ポリカルボン酞誘導䜓ずの反応で埗られるポ
リむミド、ポリむミドアミド暹脂は超耐熱性暹脂
ずしお航空宇宙産業、自動車関連産業および耐熱
性電気絶瞁郚品等の分野においお泚目されおい
る。したが぀お、これらテトラアミノ化合物の工
業的に補造法の開発が期埅されおいる。 3′4′−テトラアミノゞプニル化合
物は、埓来、3′−ゞニトロ−4′−ゞアミ
ノゞプニル化合物を皮々の還元方法により補造
する方法が知られおいる。䟋えば、぀ぎのような
方法が知られおいる。すなわち、 (a) 濃塩酞䞭、塩化第二錫による還元 R.T.FosterらJ.of Polym.Sci. 418
1965J.K.StilleらJ.of Polym.Sci.
10231965、 (b) ゚タノヌル−塩酞䞭、塩化亜鉛による還元 J.Arientら、Collection Czech.Chem.
Commun.30 3718−291965GerC.A.
64 37291966 (c) 鉄による還元 A.V.IvanorらC.A.79 783101973、 (d) ゚タノヌル氎溶液䞭硫化ナトリりムによる還
元嘉戞ら、特公昭43−24655 (e) ゞメチルホルムアミド溶媒たたは氎溶媒でラ
ネむニツケル、Pd觊媒を甚いた接觊還元 E.R.KofanorらJ.Org.Chem of USSR 15
991979 (f) 酢酞゚チル䞭、Pt觊媒を甚いた接觊還
元 V.L.Bellら of Polym Sci  3056
1967等である。 しかしながら、3′−ゞニトロ−4′−ゞ
アミノゞプニル化合物を還元しお3′
4′−テトラアミノゞプニル化合物を高収率で、
しかも高玔床で埗るためには、䞊蚘のいずれの方
法も皮々の難点があり、工業的に実斜されおいな
いのが珟状である。 すなわち、(a)(b)(c)に代衚される匷酞性䞋で
金属を甚いた還元方法では、䜿甚された廃金属、
廃酞の凊理等に倚倧の経費を芁し、か぀目的物か
ら埮量の金属成分を取り陀くこずが難かしいずい
う欠点を有しおいる。さらに、これらの方法によ
぀お埗られる目的物の収率は䞀般に䜎い。 たた、アルカリ性条件䞋の還元方法である(d)の
方法では原料に察しお玄重量倍もの還元剀を甚
いなければならないため経枈的でなく、その䞊、
目的物から埮量の硫化物を陀く必芁があり、残査
の凊理ず䜵せ、煩雑な工皋が必芁である。 次に、(e)(f)のように還元觊媒を甚いお接觊還
元する方法があるが、被還元物の3′−ゞニト
ロ−4′−ゞアミノゞプニル化合物の各皮溶
剀に察する溶解床は極めお小さいので、10気圧前
埌の比范的䜎圧に属する圧力䞋で還元反応を進行
させるには、酢酞゚チルのような溶剀を倚量に䜿
甚するか、あるいは溶解性のある溶剀ずしお
N′−ゞメチルホルムアミドを䜿甚しお行な぀お
いる。䟋えば、酢酞゚チル溶媒を甚いる堎合は、
原料に察しお10数倍〜35倍量を䜿甚しおいるの
で、反応における容積効率が䜎く、なおか぀目的
物の収率は50〜65皋床でしかない。 䞀方、N′−ゞメチルホルムアミド溶媒を
甚いる方法では、目的物が黒耐色で埗られ、この
着色は再結晶を繰り返しおも取り陀くこずがむず
かしいずいう倧きな欠点がある。さらに、これら
有機溶剀を䜿甚した堎合、溶剀の回収にも経費が
必芁であるので、極めお䞍経枈であるずいわねば
ならない。 これらの有機溶媒のかわりに氎溶媒を䜿甚した
堎合、反応条件は90〜130℃の枩床で、100気圧の
高圧による還元反応であり、目的物の収率も10〜
70皋床ず䜎い。さらに、被還元物の濃床が5wt
皋床であるので、この反応を実斜するには、高
圧反応装眮を必芁ずし、しかも容積効率が䜎いの
で経枈的でなく、工業的には非垞に困難である。 本発明者らは、䞊蚘のような欠点のない
3′4′−テトラアミノゞプニル化合物の補
造方法に぀いお鋭意怜蚎した。その結果、
3′−ゞニトロ−4′−ゞアミノゞプニル化合
物を還元觊媒の存圚䞋、鉱酞氎䞭で接觊還元する
こずにより高収率で3′4′−テトラアミ
ノゞプニル化合物を補造し埗るこずを芋出し、
本発明の方法を完成した。 すなわち、本発明は、䞀般匏 匏䞭、は、CO、CH2、たたはSO2を
瀺すで衚わされる3′−ゞニトロ−4′−
ゞアミノゞプニル化合物を還元觊媒の存圚䞋、
鉱酞氎䞭で接觊還元するこずを特城ずする䞀般匏
 匏䞭、は䞀般匏ず同じ意味を瀺す
で衚わされる3′4′テトラアミノゞプ
ニル化合物を補造する方法である。 本発明の方法によれば、ゞニトロゞアミノゞフ
゚ニル化合物よりテトラアミノゞプニル化合物
の収率は、ほが定量的である。さらに、目的物は
鉱酞塩ずしお埗られるので、経時安定性も非垞に
良奜であり、再結晶等による粟補も容易で、高玔
床の補品が埗られる。 すなわち、テトラアミノゞプニル化合物は䞀
般に、酞化着色のしやすい物質であるため、補造
条件および粟補条件ずも、倖気を遮断しお行な぀
おいるのが普通である。䟋えば、E.R.Kofanorら
はテトラアミノベンゟプノンを補造する際に、
埌凊理行皋を窒玠たたはアルゎン雰囲気䞋で行な
぀おいるE.R.KofanorらJ.Org.Chem.of
USSR.15991979。 しかしながら、本発明の方法では、これらテト
ラアミノゞプニル化合物の鉱酞塩が酞化着色さ
れ難いので、その鉱酞塩を氎溶媒等により再結晶
粟補を行な぀たのち、䞭和するこずによ぀お高玔
床の目的物を補造するこずができる。 本発明の方法で䜿甚する原料は、前蚘䞀般匏
で衚わされる化合物で、具䜓的には
3′−ゞニトロ−4′−ゞアミノゞプニル゚ヌ
テル、3′−ゞニトロ−4′−ゞアミノベン
ゟプノン3′−ゞニトロ−4′−ゞアミノ
ゞプニルメタン、3′−ゞニトロ−4′−
ゞアミノゞプニルスルフむドたたは3′−ゞ
ニトロ−4′−ゞアミノゞプニルスルホンで
あり、これらは公知の方法で補造される。 䟋えば、3′−ゞニトロ−4′−ゞアミノ
ゞプニル化合物は、兞型的には次の方法によ
぀お補造されおいる。 (1) 䞀般匏 匏䞭、は、CO、CH2、たたはSO2を
瀺すで衚わされる4′−ゞアミノゞプニル
化合物をアセチル化したのち、ニトロ化し、䞀般
匏 匏䞭、は䞀般匏ず同じ意味を瀺す
で衚わされる3′−ゞニトロ−4′−ゞアセ
チルアミノゞプニル化合物を埗、これを加氎分
解するこずにより3′−ゞニトロ−4′−ゞ
アミノゞプニル化合物を補造する方法。 (2) 䞀般匏 匏䞭、はCO、SO2を、はハロゲン原子
を瀺すで衚わされる4′−ゞハロゲンゞプ
ニル化合物をニトロ化しお埗られる䞀般匏 匏䞭、、は䞀般匏ず同じ意味を瀺
すで衚わされる3′−ゞニトロ−4′−ゞ
ハロゲンゞプニル化合物の4′䜍のハロゲン
原子をアンモニア等により、アミノ基に眮換しお
補造する方法である。 具䜓的には、3′−ゞニトロ−4′−ゞア
ミノゞプニル゚ヌテルは前蚘(1)の方法で70〜76
の収率で補造されるR.T.Fosterら、J.of
Polym Sci.418〜4191965、J.K.Stilleら、
J.ofPolym Sci  10151965。 3′−ゞニトロ−4′−ゞアミノベンゟフ
゚ノンは前蚘(1)の方法で玄80の収率で補造され
C.A.79 78310b1973、前蚘(2)の方法により
90以䞊の収率で補造されるG.S.Mironorら、
J.Org.Chem.ofUSSR.1538〜15431972。 3′−ゞニトロ−4′−ゞアミノゞプニ
ルスルホンは前蚘(2)の方法により補造されおいる
C.A.70114832y1969、C.A.7883962z
1973。 3′−ゞニトロ−4′−ゞアミノゞプニ
ルメタンは前蚘(1)の方法で63の収率で補造され
るV.L.BellらJ.of Polym Sci  3055〜
30561967。 3′−ゞニトロ−4′−ゞアミノゞプニ
ルスルフむドは前蚘(1)の方法で72の収率で補造
されるJ.K.StilleらJ.of Polym Sci 556〜
5571966。 次に、本発明の方法で䜿甚する鉱酞ずしおは、
硫酞、塩酞たたは燐酞であり、奜たしくは硫酞、
塩酞が甚いられる。 これら鉱酞の䜿甚量は、原料のゞニトロゞアミノ
ゞプニル化合物に察しお〜圓量であり、さ
らに奜たしくは〜2.5圓量で充分である。 すなわち、原料のゞアミン類が鉱酞塩ずな぀
お、氎に可溶化するに必芁な量があれば良く、
圓量皋床では、ゞニトロアミノゞプニル化合物
の鉱酞塩を䜜り、圓量皋床では、ゞニトロゞ
アミノゞプニル化合物の鉱酞塩ずな぀お氎に
可溶化し、還元反応が進行する。 ゞニトロゞアミノゞプニル化合物の鉱酞塩の氎
に察する溶解性は、鉱酞塩より鉱酞塩の方が
良奜であるため、鉱酞塩の方が還元反応も早く
進行する。 鉱酞の䜿甚量が圓量以䞋では、未反応物が残る
ので奜たしくなく、たた、圓量以䞊の過剰量を
䜿甚しおも反応性等に関䞎しない。 鉱酞氎の濃床ずしおは0.05〜芏定溶液で十分
であり、鉱酞氎濃床が垌薄であれば容積効率が䜎
䞋し、濃厚すぎるず觊媒の劣化が早たるので、奜
たしくない。奜たしくは0.5〜芏定の範囲で䜿
甚する。 たた、本発明の方法では、鉱酞氎にメタノヌ
ル、゚タノヌル、む゜プロパノヌル、゚チレング
リコヌル、セロ゜ルブ、ゞオキサンおよびテトラ
ヒドロフラン等、氎ず混和するような溶剀を加え
お反応を行な぀おも䜕ら差し぀かえない。 本発明の方法で䜿甚する還元觊媒ずしおは、䞀
般に接觊還元に䜿甚されおいる金属觊媒、䟋え
ば、パラゞりム、癜金、ロゞりム、ルテニりム、
リツケル、コバルト、銅等を䜿甚するこずができ
る。工業的にはパラゞりムおよび癜金觊媒を䜿甚
するのが奜たしい。 これらの觊媒は金属の状態でも䜿甚するこずがで
きるが、通垞はカヌボン、硫酞バリりム、シリカ
ゲル、アルミナ等の担䜓衚面に付着させお甚いた
り、たた、ニツケル、コバルト、銅等はラネヌ觊
媒ずしおも甚いられる。 觊媒の䜿甚量は、ゞニトロゞアミノゞプニル化
合物に察しお金属ずしお0.01〜20重量の範囲で
あり、通垞、金属の状態で䜿甚する堎合は〜10
重量、担䜓に付着させお甚いる堎合では0.05〜
重量の範囲である。 反応枩床は、特に限定されない。䞀般的には20
〜100℃の範囲で行なわれる。 又、反応圧力は垞圧䞋で十分進行するが、反応
を早めるために垞圧〜100Kgcm2・の範囲に加
圧するこずは䜕ら差し぀かえない。 反応の終点は、氎玠吞収量の定量によるか、た
たは薄局クロマトグラフむヌにより知るこずがで
きる。 反応終了埌、目的物の鉱酞塩が析出状態にある
堎合は氎を加えるか、さらに昇枩するかによ぀お
溶解されたのち、熱ろ過するこずによ぀お觊媒を
陀くこずができる。觊媒を陀いた反応液は、必芁
に応じお濃瞮し、攟冷するず目的物の鉱酞塩が析
出する。これをろ過しお埗たのち、垌アルカリ氎
たたは垌アンモニア氎で䞭和すれば、3′
4′−テトラアミノゞプニル化合物が埗られ
るが、より高玔床の目的物が必芁であれば、鉱酞
塩を再び氎で再結晶したのち、䞭和すれば良い。 本発明の方法は、高玔床の3′4′−テ
トラアミノゞプニル化合物を高収率で安䟡に補
造しうる方法であり、埓来法にずもなう廃棄物に
よる環境汚染の問題もなく、粟補も煩雑な条件䞋
での操䜜が䞍芁である等、工業的な補造方法ずし
お奜適である。 以䞋、本発明を実斜䟋により、曎に詳现に説明
する。 実斜䟋  枩床蚈、攪拌噚を備えたガラス補密閉容噚に
3′−ゞニトロ−4′−ゞアミノベンゟプ
ノン151g0.5モル、Pd觊媒日本゚ン
ゲルハルト瀟補10.6gおよび1.6芏定塩酞氎溶液
715ml1.1モルを装入し、攪拌䞋で氎玠を導入
しながら、反応枩床を70〜75℃に保぀お15時間、
反応を行な぀たずころ693.08モルの氎玠を
吞収した。これ以䞊、氎玠の吞収が認められなく
な぀たので反応を終了した。 次に、反応液を85℃に昇枩し、析出しおいる反
応生成物を溶解させたのち、熱ろ過しお觊媒を陀
いた。ろ過を枛圧濃瞮により、氎200mlを留去さ
せたのち、攟冷するず3′4′−テトラア
ミノベンゟプノン塩酞塩の結晶が析出した。こ
れをろ過し、メタノヌル100mlで掗浄したのち也
燥しお137g収率87の淡黄色針状結晶を埗
た。この塩酞塩の結晶を、掻性炭を䜿甚し、
氎で再結晶するこずにより、玔粋な3′
4′−テトラアミノベンゟプノン塩酞塩の針状結
晶を埗た。 【衚】 で埗られた3′4′−テト
ラアミノベンゟプノン塩酞塩を、氎に溶解させ
たのち垌アンモニア氎で䞭和するこずにより
3′4′−テトラアミノベンゟプノンの淡黄
色針状結晶を埗た。高速液䜓クロマトグラフむヌ
による玔床は99.9であ぀た。融点214〜215℃ 実斜䟋  枩床蚈、撹拌噚を備えたガラス補密閉容噚に
3′−ゞニトロ−4′−ゞアミノゞプニル
スルホン33.8g0.1モル、ラオむニツケル觊媒
3.4gおよび芏定塩酞氎溶液100ml0.3モルを
装入し、撹拌䞋で氎玠を導入しながら反応枩床を
80〜85℃に保぀お10時間、反応を行な぀たずころ
13.00.58モルの氎玠を吞収した。これ以
䞊、氎玠の吞収が認められなか぀たので反応を終
了した。 次に、反応液を同枩床で熱ろ過しお觊媒を陀
き、攟冷するず淡耐色針状結晶が析出した。これ
をろ別し、也燥しお28.5g収率81の3′4
4′−テトラアミノゞプニルスホン塩酞塩を埗
た。 (A) この塩酞塩の結晶を、掻性炭を甚い、80む
゜プロピルアルコヌル氎溶液で再結晶するこず
により、玔粋な3′4′−テトラアミノ
ゞプニルスルホン塩酞塩の癜色針状結晶を埗
た。 【衚】 (B) で埗られた3′4′−テトラア
ミノゞプニルスルホン塩酞塩を氎に溶解させ
たのち、垌アンモニア氎で䞭和するこずにより
3′4′−テトラアミノゞプニルスル
ホンの癜色埮赀味針状結晶を埗た。 高速液䜓クロマトグラフむヌによる玔床は99.9
であ぀た。融点173〜174.5℃ 実斜䟋  枩床蚈、撹拌噚を備えたガラス補密閉容噚に
3′−ゞニトロ−4′−ゞアミノベンゟプ
ノン34.1g0.1モル、Pdc1.7gおよび
芏定燐酞氎溶液500ml0.2モルを装入し、撹
拌䞋で氎玠を導入しながら、反応枩床を60〜65℃
に保぀お時間、反応を行な぀たずころ13.5の
氎玠を吞収した。これ以䞊、氎玠の吞収が認めら
れなくな぀たので、反応を終了した。 次に、反応液を同枩床で熱ろ過しお觊媒を陀
き、ろ液を枛圧濃瞮しお氎400mlを留去させた。
これを攟冷するず3′4′−テトラアミノ
ベンゟプノン燐酞塩の黄色結晶が析出した。結
晶をろ別し、メタノヌル20mlで掗浄したのち、也
燥しお38.5g収率87.8の淡黄色針状結晶を埗
た。この燐酞塩の結晶を、掻性炭を甚い、氎で再
結晶するず玔粋な3′4′−テトラアミノ
ベンゟプノン燐酞塩の針状結晶が埗られた。 【衚】 実斜䟋  枩床蚈、撹拌噚を備えたガラス補密閉容噚に
3′−ゞニトロ−4′−ゞアミノゞプニル
゚ヌテル29g0.1モル、Pt觊媒3gおよび
芏定硫酞氎溶液220ml0.11モルを装入し、
撹拌䞋で氎玠を導入しながら、反応枩床を80〜85
℃に保぀お時間、反応を行な぀たずころ、13.7
0.61モルの氎玠を吞収した。これ以䞊、氎
玠の吞収が認められなくな぀たので反応を終了し
た。 次に、反応液を同枩床で熱ろ過しお觊媒を陀
き、ろ液に氎200mlを加えお冷华したのち、垌苛
性゜ヌダヌ氎溶液で䞭和するず淡耐色の結晶が析
出した。これをろ別し、也燥しお3′
4′−テトラアミノゞプニル゚ヌテル22g収率
95.5を埗た。高速液䜓クロマトグラフむヌに
よる玔床は98.1であ぀た。 このものを窒玠気流䞋で、掻性炭を甚い、゚タ
ノヌル−氎で再結晶するこずにより癜色埮赀
味結晶の玔品を埗た。融点150〜151℃ 【衚】 実斜䟋  原料に3′−ゞニトロ−4′−ゞアミノフ
゚ニルメタンを䜿甚した以倖、実斜䟋ず同様の
方法で還元反応を行ない、3′−4′−テ
トラアミノゞプニルメタンを収率96.1で埗
た。 ゚タノヌル氎から再結晶しお玔品を埗た。融点
137〜139℃ 実斜䟋  原料に3′−ゞニトロ−、4′−ゞアミノゞ
プニルスルフむドを䜿甚した以倖、実斜䟋ず
同様の方法で還元反応を行ない、3′44′−
テトラアミノゞプニルスルフむドを収率89.2
で埗た。゚タノヌル−氎から再結晶しお玔品を埗
た。融点102〜103℃
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a 3,3',4,4'-tetraaminodiphenyl compound. For more details, see the general formula () A 3,3'-dinitro-4,4'-diaminodiphenyl compound represented by (wherein, X represents O, CO, CH 2 S or SO 2 ) was contacted in mineral acid water in the presence of a reducing catalyst. By reducing the general formula () The present invention relates to a method for producing a 3,3',4,4'-tetraaminodiphenyl compound represented by the formula (wherein, X has the same meaning as in general formula (1)). The tetraamino compound according to the present invention is useful as a heat-resistant resin raw material or its intermediate, and in particular, in recent years, polyimide and polyimide amide resins obtained by reaction with polycarboxylic acid derivatives have been used in the aerospace industry as super heat-resistant resins. It is attracting attention in fields such as automobile-related industries and heat-resistant electrical insulation parts. Therefore, the development of an industrial method for producing these tetraamino compounds is expected. Conventionally, 3,3',4,4'-tetraamino diphenyl compounds are produced by various reduction methods of 3,3'-dinitro-4,4'-diaminodiphenyl compounds. For example, the following method is known. (a) Reduction with stannic chloride in concentrated hydrochloric acid (RTFoster et al., J. of Polym. Sci., 3 418
(1965), JKStille et al., J.of Polym.Sci., 3
1023 (1965)), (b) reduction with zinc chloride in ethanol-hydrochloric acid (J.Arient et al., Collection Czech.Chem.
Commun., 30 3718-29 (1965), (Ger); CA,
64 3729 (1966)) (c) Reduction with iron (AVIvanor et al., CA, 79 78310 (1973)), (d) Reduction with sodium sulfide in an aqueous solution of ethanol (Kado et al., Japanese Patent Publication No. 43-24655) (e) Dimethyl Catalytic reduction using Raney-nickel, Pd/c catalysts in formamide or water solvents (ERKofanor et al., J.Org.Chem of USSR 15
99 (1979)) (f) Catalytic reduction using a Pt/c catalyst in ethyl acetate (VLBell et al., J of Polym Sci 5 3056
(1967)) etc. However, by reducing the 3',3-dinitro-4,4'-diaminodiphenyl compound, 3,3',4,
4'-tetraaminodiphenyl compound in high yield,
Moreover, all of the above-mentioned methods have various difficulties in obtaining high-purity products, and at present they have not been implemented industrially. In other words, in the reduction methods using metals under strong acidity as typified by (a), (b), and (c), the waste metals used,
Disadvantages include that a large amount of expense is required for processing the waste acid, and that it is difficult to remove trace amounts of metal components from the target product. Furthermore, the yields of the target products obtained by these methods are generally low. In addition, method (d), which is a reduction method under alkaline conditions, is not economical because it requires the use of a reducing agent approximately 5 times the weight of the raw material.
It is necessary to remove a trace amount of sulfide from the target product, and in addition to processing the residue, a complicated process is required. Next, there is a method of catalytic reduction using a reduction catalyst as shown in (e) and (f). Since the solubility is extremely low, in order to proceed with the reduction reaction under a relatively low pressure of around 10 atmospheres, a large amount of a solvent such as ethyl acetate must be used, or a soluble solvent such as N,
This is done using N'-dimethylformamide. For example, when using ethyl acetate solvent,
Since the amount used is 10 to 35 times the amount of the raw material, the volumetric efficiency in the reaction is low, and the yield of the target product is only about 50 to 65%. On the other hand, the method using N,N'-dimethylformamide solvent has a major drawback in that the desired product is obtained in a dark brown color, and this coloring is difficult to remove even after repeated recrystallization. Furthermore, when these organic solvents are used, it must be said that they are extremely uneconomical as recovery of the solvents also requires expense. When an aqueous solvent is used instead of these organic solvents, the reaction conditions are a reduction reaction at a temperature of 90 to 130 °C and a high pressure of 100 atm, and the yield of the target product is also 10 to 130 °C.
It is low at around 70%. Furthermore, the concentration of the reductant is 5wt.
%, a high-pressure reactor is required to carry out this reaction, and the volumetric efficiency is low, making it uneconomical and industrially very difficult. The present inventors have proposed 3.
A method for producing 3',4,4'-tetraaminodiphenyl compound was intensively investigated. As a result, 3,
3,3',4,4'-tetraamino diphenyl compound was obtained in high yield by catalytic reduction of 3'-dinitro-4,4'-diaminodiphenyl compound in mineral acid water in the presence of a reducing catalyst. discovered that it could be manufactured,
The method of the present invention has been completed. That is, the present invention provides the general formula () 3,3'-dinitro-4,4'- (wherein, X represents O, CO, CH 2 , S or SO 2 )
In the presence of a catalyst that reduces the diaminodiphenyl compound,
General formula () characterized by catalytic reduction in mineral acid water (In the formula, X has the same meaning as the general formula ())
This is a method for producing a 3,3',4,4' tetraaminodiphenyl compound represented by: According to the method of the present invention, the yield of the tetraaminodiphenyl compound from the dinitrodiaminodiphenyl compound is almost quantitative. Furthermore, since the target product is obtained as a mineral acid salt, it has very good stability over time and is easy to purify by recrystallization, etc., resulting in a highly pure product. That is, since tetraaminodiphenyl compounds are generally substances that are easily colored by oxidation, both production and purification conditions are usually carried out while blocking outside air. For example, in producing tetraaminobenzophenone, ERKofanor et al.
Post-treatment steps are carried out under nitrogen or argon atmosphere (ERKofanor et al., J.Org.Chem.of
USSR., 15 99 (1979)). However, in the method of the present invention, since the mineral acid salts of these tetraminodiphenyl compounds are difficult to be colored by oxidation, the mineral acid salts are purified by recrystallization using a water solvent, etc., and then neutralized. High purity target products can be produced. The raw material used in the method of the present invention is a compound represented by the general formula (), specifically 3,
3'-dinitro-4,4'-diaminodiphenyl ether, 3,3'-dinitro-4,4'-diaminobenzophenone 3,3'-dinitro-4,4'-diaminodiphenylmethane, 3, 3′-dinitro-4,4′-
Diaminodiphenyl sulfide or 3,3'-dinitro-4,4'-diaminodiphenylsulfone, which are produced by known methods. For example, 3,3'-dinitro-4,4'-diaminodiphenyl compounds are typically produced by the following two methods. (1) General formula () (wherein, X represents O, CO, CH 2 , S or SO 2 ) is acetylated, then nitrated, and the general formula () (In the formula, X has the same meaning as the general formula ())
A method for producing a 3,3'-dinitro-4,4'-diaminodiphenyl compound by obtaining a 3,3'-dinitro-4,4'-diacetylamino diphenyl compound represented by and hydrolyzing the same. . (2) General formula () General formula () obtained by nitrating a 4,4'-dihalogen diphenyl compound represented by (wherein, X represents CO or SO 2 and Y represents a halogen atom) (wherein, This is a method of manufacturing by substituting with an amino group. Specifically, 3,3'-dinitro-4,4'-diaminodiphenyl ether is prepared by the method (1) above.
% yield (RTFoster et al., J.of
Polym Sci., 3 418-419 (1965), JKStille et al.
J. of Polym Sci 3 1015 (1965). 3,3'-dinitro-4,4'-diaminobenzophenone was produced by the method (1) above with a yield of about 80% (CA, 79 78310b (1973), and by the method (2) above).
produced with a yield of over 90% (GSMironor et al.
J.Org.Chem.ofUSSR., 8 , 1538-1543 (1972)). 3,3'-dinitro-4,4'-diaminodiphenylsulfone is produced by the method (2) above (CA, 70 114832y (1969), CA, 78 , 83962z
(1973)). 3,3'-dinitro-4,4'-diaminodiphenylmethane is produced by the method (1) above in a yield of 63% (VLBell et al., J. of Polym Sci 5 3055~
3056 (1967)). 3,3'-dinitro-4,4'-diaminodiphenyl sulfide is produced by the method (1) above in a yield of 72% (JK Stille et al., J. of Polym Sci 4 556~
557 (1966)). Next, the mineral acids used in the method of the present invention include:
Sulfuric acid, hydrochloric acid or phosphoric acid, preferably sulfuric acid,
Hydrochloric acid is used. The amount of these mineral acids used is 1 to 4 equivalents, more preferably 1 to 2.5 equivalents, based on the dinitrodiaminodiphenyl compound as the raw material. In other words, it is sufficient to have the amount necessary for the raw material diamines to become mineral acid salts and to be solubilized in water.
When the amount is approximately equivalent, a 1-mineral acid salt of the dinitroaminodiphenyl compound is produced, and when it is approximately 2 equivalents, it becomes a 2-mineral acid salt of the dinitrodiaminodiphenyl compound, which is solubilized in water, and the reduction reaction proceeds. Since the solubility of the mineral salt of the dinitrodiaminodiphenyl compound in water is better for the di-mineral salt than for the mono-mineral salt, the reduction reaction proceeds faster in the di-mineral salt. If the amount of mineral acid used is 1 equivalent or less, unreacted substances remain, which is not preferable, and even if an excess amount of 4 equivalents or more is used, it does not affect the reactivity. A 0.05 to 5N solution is sufficient as the concentration of the mineral acid water; if the concentration of the mineral acid water is too dilute, the volumetric efficiency will decrease, and if it is too concentrated, the catalyst will deteriorate more quickly, which is not preferred. It is preferably used within the range of 0.5 to 3 normal. Furthermore, in the method of the present invention, there is no problem in carrying out the reaction by adding a water-miscible solvent such as methanol, ethanol, isopropanol, ethylene glycol, cellosolve, dioxane, and tetrahydrofuran to the mineral acid water. The reduction catalyst used in the method of the present invention includes metal catalysts commonly used in catalytic reduction, such as palladium, platinum, rhodium, ruthenium,
Litkel, cobalt, copper, etc. can be used. Industrially it is preferred to use palladium and platinum catalysts. Although these catalysts can be used in the metal state, they are usually used by being attached to the surface of a carrier such as carbon, barium sulfate, silica gel, or alumina, and nickel, cobalt, copper, etc. are also used as Raney catalysts. It will be done. The amount of the catalyst used is in the range of 0.01 to 20% by weight as metal based on the dinitrodiaminodiphenyl compound, and usually 2 to 10% by weight when used in the metal state.
Weight%, 0.05~ when used by adhering to a carrier
It is in the range of 5% by weight. The reaction temperature is not particularly limited. Generally 20
It is carried out at a temperature of ~100°C. Further, although the reaction proceeds satisfactorily under normal pressure, there is no problem in pressurizing the reaction to a range of normal pressure to 100 kg/cm 2 ·G in order to hasten the reaction. The end point of the reaction can be determined by quantifying the amount of hydrogen uptake or by thin layer chromatography. After the completion of the reaction, if the target mineral salt is in a precipitated state, it is dissolved by adding water or by further raising the temperature, and then the catalyst can be removed by hot filtration. The reaction solution from which the catalyst has been removed is concentrated if necessary and allowed to cool to precipitate the target mineral salt. After filtering this and neutralizing it with dilute alkaline water or dilute ammonia water, 3,3',
A 4,4'-tetraaminodiphenyl compound is obtained, but if a higher purity target product is required, the mineral salt may be recrystallized again with water and then neutralized. The method of the present invention is a method that can produce high-purity 3,3',4,4'-tetraaminodiphenyl compounds at high yields and at low cost, and eliminates the problem of environmental pollution caused by waste that accompanies conventional methods. It is suitable as an industrial production method because it does not require any purification operations under complicated conditions. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 In a closed glass container equipped with a thermometer and a stirrer, 151 g (0.5 mol) of 3,3'-dinitro-4,4'-diaminobenzophenone and a 5% Pd/c catalyst (manufactured by Nippon Engelhard Co., Ltd.) were added. ) 10.6g and 1.6N hydrochloric acid aqueous solution
715 ml (1.1 mol) was charged, and hydrogen was introduced under stirring while maintaining the reaction temperature at 70 to 75°C for 15 hours.
When the reaction was carried out, 69 (3.08 mol) of hydrogen was absorbed. Since no more hydrogen absorption was observed, the reaction was terminated. Next, the temperature of the reaction solution was raised to 85° C. to dissolve the precipitated reaction product, and then the catalyst was removed by hot filtration. After filtration was concentrated under reduced pressure to remove 200 ml of water, the mixture was allowed to cool, and crystals of 3,3',4,4'-tetraaminobenzophenone hydrochloride were precipitated. This was filtered, washed with 100 ml of methanol, and then dried to obtain 137 g (yield: 87%) of pale yellow needle crystals. (A) Crystallize this hydrochloride using activated carbon,
By recrystallizing with water, pure 3,3',4,
Needle-shaped crystals of 4'-tetraaminobenzophenone hydrochloride were obtained. [Table] The 3,3',4,4'-tetraaminobenzophenone hydrochloride obtained in (B) and (A) was dissolved in water and then neutralized with dilute aqueous ammonia.
Pale yellow needle crystals of 3',4,4'-tetraaminobenzophenone were obtained. The purity determined by high performance liquid chromatography was 99.9%. Melting point: 214-215°C Example 2 33.8 g (0.1 mol) of 3,3'-dinitro-4,4'-diaminodiphenylsulfone, Laoiniskel catalyst in a closed glass container equipped with a thermometer and a stirrer.
3.4 g and 100 ml (0.3 mol) of 3N hydrochloric acid aqueous solution were charged, and the reaction temperature was increased while introducing hydrogen under stirring.
The reaction was carried out at 80-85℃ for 10 hours.
Absorbed 13.0 (0.58 mol) of hydrogen. Since no further absorption of hydrogen was observed, the reaction was terminated. Next, the reaction solution was filtered hot at the same temperature to remove the catalyst, and when it was allowed to cool, pale brown needle crystals were precipitated. This was filtered and dried to give 28.5g (yield 81%) of 3,3′4,
4'-tetraaminodiphenylsulfone hydrochloride was obtained. (A) White needle-like crystals of pure 3,3',4,4'-tetraaminodiphenylsulfone hydrochloride are obtained by recrystallizing the hydrochloride crystals from an 80% isopropyl alcohol aqueous solution using activated carbon. I got it. [Table] (B) After dissolving the 3,3',4,4'-tetraaminodiphenylsulfone hydrochloride obtained in (A) in water, the 3,3 White (slightly reddish) needle-shaped crystals of ',4,4'-tetraaminodiphenylsulfone were obtained. Purity determined by high performance liquid chromatography is 99.9%
It was hot. Melting point: 173-174.5°C Example 3 In a closed glass container equipped with a thermometer and a stirrer, 34.1 g (0.1 mol) of 3,3'-dinitro-4,4'-diaminobenzophenone and 5% Pd/c1. 7g and 1,
Charge 500 ml (0.2 mol) of 2N phosphoric acid aqueous solution and raise the reaction temperature to 60-65°C while introducing hydrogen under stirring.
When the reaction was carried out for 6 hours at a constant temperature, 13.5 hours of hydrogen was absorbed. Since no more hydrogen absorption was observed, the reaction was terminated. Next, the reaction solution was filtered hot at the same temperature to remove the catalyst, and the filtrate was concentrated under reduced pressure to distill off 400 ml of water.
When this was allowed to cool, yellow crystals of 3,3',4,4'-tetraaminobenzophenone phosphate were precipitated. The crystals were filtered, washed with 20 ml of methanol, and then dried to obtain 38.5 g (yield: 87.8%) of pale yellow needle crystals. The phosphate crystals were recrystallized from water using activated carbon to obtain needle-like crystals of pure 3,3',4,4'-tetraaminobenzophenone phosphate. [Table] Example 4 In a closed glass container equipped with a thermometer and a stirrer, 29 g (0.1 mol) of 3,3'-dinitro-4,4'-diaminodiphenyl ether, 3 g of 5% Pt/c catalyst, and 1 Charge 220ml (0.11mol) of normal sulfuric acid aqueous solution,
While introducing hydrogen under stirring, increase the reaction temperature to 80-85
When the reaction was carried out for 6 hours at ℃, the result was 13.7
(0.61 mol) of hydrogen was absorbed. Since no more hydrogen absorption was observed, the reaction was terminated. Next, the reaction solution was filtered hot at the same temperature to remove the catalyst, and after cooling by adding 200 ml of water to the filtrate, it was neutralized with a dilute aqueous caustic soda solution to precipitate light brown crystals. This is filtered, dried and 3,3′,4,
22g of 4′-tetraaminodiphenyl ether (yield
95.5%). The purity determined by high performance liquid chromatography was 98.1%. This product was recrystallized from ethanol-water using activated carbon under a nitrogen stream to obtain a pure white (slightly reddish) crystal. Melting point 150-151℃ [Table] Example 5 A reduction reaction was carried out in the same manner as in Example 4 except that 3,3'-dinitro-4,4'-diaminophenylmethane was used as the raw material. ',4,-4'-tetraaminodiphenylmethane was obtained in a yield of 96.1%. A pure product was obtained by recrystallization from ethanol water. melting point
137-139℃ Example 6 A reduction reaction was carried out in the same manner as in Example 4 except that 3,3'-dinitro-4,4'-diaminodiphenyl sulfide was used as the raw material, and 3,3'4 ,4′−
Tetraaminodiphenyl sulfide yield 89.2%
I got it from A pure product was obtained by recrystallization from ethanol-water. Melting point 102~103℃

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、は、CO、CH2、たたはSO2を
瀺すで衚わされる3′−ゞニトロヌ4′−
ゞアミノゞプニル化合物を還元觊媒の存圚䞋、
鉱酞氎䞭で接觊還元するこずを特城ずする 䞀般匏 匏䞭、は䞀般匏ず同じ意味を瀺す
で衚わされる3′4′−テトラアミノゞフ
゚ニル化合物の補造方法。
[Claims] 1 General formula () 3,3'-dinitro 4,4'- (wherein, X represents O, CO, CH 2 , S or SO 2 )
In the presence of a catalyst that reduces the diaminodiphenyl compound,
General formula () characterized by catalytic reduction in mineral acid water (In the formula, X has the same meaning as the general formula ())
A method for producing a 3,3',4,4'-tetraaminodiphenyl compound represented by
JP57197639A 1982-11-12 1982-11-12 Production of 3,2'-4,4'-tetraaminodiphenyl compound Granted JPS5988446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197639A JPS5988446A (en) 1982-11-12 1982-11-12 Production of 3,2'-4,4'-tetraaminodiphenyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197639A JPS5988446A (en) 1982-11-12 1982-11-12 Production of 3,2'-4,4'-tetraaminodiphenyl compound

Publications (2)

Publication Number Publication Date
JPS5988446A JPS5988446A (en) 1984-05-22
JPH0433782B2 true JPH0433782B2 (en) 1992-06-04

Family

ID=16377827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197639A Granted JPS5988446A (en) 1982-11-12 1982-11-12 Production of 3,2'-4,4'-tetraaminodiphenyl compound

Country Status (1)

Country Link
JP (1) JPS5988446A (en)

Also Published As

Publication number Publication date
JPS5988446A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
CZ18597A3 (en) Process for preparing 5-amino-2,4,6-triiodine-1,3-benzenedicarboxylic acid
JPS60215657A (en) Preparation of n-acylphenylalanine
JP2904038B2 (en) Process for producing 4,6-diaminoresorcinol and its precursor
JPH0433782B2 (en)
JPS60116656A (en) Manufacture of pure 3-acetylamino-aniline
CA1305711C (en) Process for the preparation of substituted indolinone derivatives by transfer hydrogenation
CA2256251C (en) A method of producing aminocyanoacetamide
US6958418B2 (en) Process for preparing vanillylamine hydrochloride
US6340773B1 (en) Preparation of halogenated primary amines
US6194600B1 (en) Method of producing aminocyanoacetamide
CN107778307B (en) Preparation method of central alpha 2 adrenoreceptor agonist
JP4022953B2 (en) Process for producing 2,2-bis (3-amino-4-hydroxyphenyl) propane
CN114890953A (en) Preparation method of 2-aminomethyl pyrimidine hydrochloride
JPH01221356A (en) 3-amino-4-trifluoromethylbenzoic acid and its production
CA2461574C (en) Process for preparing vanillylamine hyrochloride
JPH11310558A (en) Production of 2-amino-4,5,3',4'-tetramethoxybenzophenone
JP2002105034A (en) Method for producing 9,9-bis(3-amino-4-hydroxyphenyl) fluorene
JPH0421655B2 (en)
JP3647915B2 (en) 2-Amino-5-nitrophenylacetic acid and method for producing the same
CN113816891A (en) Synthesis method of 5, 6-dihydroxyindole and derivatives thereof
JPS61225155A (en) Production of 3,4'-diaminodiphenyl ether
JPS63303958A (en) Production of 2-amino-4,6-dichloro-5-alkylphenol
JPS5946274A (en) Preparation of 2-alkyl-4-amino-5-aminomethylpyrimidine
JPH07101915A (en) Production of 4,4',4"-triamino-2,5-dimethoxytriphenylamine
JPH0713045B2 (en) 2.5-difluorophenol derivative