JPH0433782A - Manufacture of composite material made of intermetallic compound partly at least - Google Patents

Manufacture of composite material made of intermetallic compound partly at least

Info

Publication number
JPH0433782A
JPH0433782A JP2133914A JP13391490A JPH0433782A JP H0433782 A JPH0433782 A JP H0433782A JP 2133914 A JP2133914 A JP 2133914A JP 13391490 A JP13391490 A JP 13391490A JP H0433782 A JPH0433782 A JP H0433782A
Authority
JP
Japan
Prior art keywords
intermetallic compound
composite material
heat
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2133914A
Other languages
Japanese (ja)
Other versions
JP2843644B2 (en
Inventor
Hideo Shingu
新宮 秀夫
Kohei Taguchi
功平 田口
Shigemi Sato
繁美 佐藤
Tomohiko Ayada
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2133914A priority Critical patent/JP2843644B2/en
Publication of JPH0433782A publication Critical patent/JPH0433782A/en
Application granted granted Critical
Publication of JP2843644B2 publication Critical patent/JP2843644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a fine joint by subjecting one member and the other member to heat treatment in a state with these members brought into contact with each other and utilizing self-generation of heat generated at the time of forming the intermetallic compound. CONSTITUTION:Both members which are worked into a desired shape are heated up to the temperature in which the metallic compound is formed. Diffusion or self-burning and sintering are generated by this heat treatment and the one member is joined to the other member by generation of heat or heat of reaction of self-burning at the time of forming the metallic compound. A mechanism of joining is carried out by force among molecules or metallic bonding force and diffusion due to the fact that the joint interface is softened or a part thereof is molten and an oxide film of the joint interface is destroyed or fine unevenness of the interface is crushed and both are completely stuck to each other by self-generation of heat at the time of forming the intermetallic compound.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、各種用途に使われる少なくとも一部が金属間
化合物からなる複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a composite material, at least a part of which is composed of an intermetallic compound, and which is used for various purposes.

「従来の技術」 金属間化合物は耐熱性、耐酸化性、耐摩耗性等に優れし
かも軽量に構成でき、また超電導等の機能性を有するな
どの優れた性質をもつため、各種用途に使われる素材と
してきわめて有望視されている。
``Conventional technology'' Intermetallic compounds are used in a variety of applications because they have excellent properties such as excellent heat resistance, oxidation resistance, and abrasion resistance, can be constructed lightweight, and have functional properties such as superconductivity. It is considered to be extremely promising as a material.

金属間化合物の例として、Ti−Al系、 Ni−Al
系、 Ni−Tl系、 Co−Tl系、 Fe−Al系
、 No−Al系。
Examples of intermetallic compounds include Ti-Al system, Ni-Al
system, Ni-Tl system, Co-Tl system, Fe-Al system, No-Al system.

Mo−8i系、 Nb−Al系、 Ti−3i系等の2
元系や、Fe−Al−9i系、 Al−Ga−As系等
の多元系が知られている。具体的には、構造材として、
TiAl、 Tis At。
2 such as Mo-8i system, Nb-Al system, Ti-3i system, etc.
Multi-component systems such as elemental systems, Fe-Al-9i systems, and Al-Ga-As systems are known. Specifically, as a structural material,
TiAl, Tis At.

Al3 Ti、 Co3Ti、 Ni3Al、 NiA
l、 FeAl、 MO3Alg 。
Al3Ti, Co3Ti, Ni3Al, NiA
l, FeAl, MO3Alg.

MoSi2. Nbi A1. Ti5Siq等が知ら
れている。また形状記憶効果を有するT1Ni、 Cu
Zn等、超電導材料としてNbs Sn、  V3 G
a、 Nbs Ga、 Nb3Ge等、磁性材料として
Pea  (AISi) 、5IICO5、半導体及び
その他の機能性材料としてInSb、 GaAs、 B
i2Te3゜Zn5e等その他にも多くのものがある。
MoSi2. Nbi A1. Ti5Siq and the like are known. In addition, T1Ni, Cu, which has a shape memory effect
Zn, etc., Nbs Sn, V3 G as superconducting materials
a, Nbs Ga, Nb3Ge, etc., magnetic materials such as Pea (AISi), 5IICO5, semiconductors and other functional materials such as InSb, GaAs, B
There are many others such as i2Te3°Zn5e.

金属間化合物を利用する製品例としては、高温で使用さ
れる外壁材や、タービン部材、ピストンやバルブシステ
ム等のエンジン部品、弾性部材、あるいは超電導等の各
種金属間化合物に固有の優れた性質を生かした機能部品
などが考えられる。
Examples of products that utilize intermetallic compounds include external wall materials that are used at high temperatures, turbine components, engine parts such as pistons and valve systems, elastic components, and superconductors that exhibit the unique properties of various intermetallic compounds. Functional parts that take advantage of this can be considered.

[発明が解決しようとする課題] 金属間化合物は上記のように優れた性質を有する反面、
接合に困難を伴う。例えば、金属間化合物からなる一方
の部材を電子ビーム溶接法によって他方の部材に接合さ
せる場合、溶接部において結晶粒の粗大化を生じたり、
実用上無視できない程大きな溶接欠陥が生じることがあ
り、接合部の組織・欠陥等を制御するには至っていない
[Problems to be solved by the invention] Although intermetallic compounds have excellent properties as described above,
Difficult to join. For example, when joining one member made of an intermetallic compound to another member by electron beam welding, coarsening of crystal grains may occur in the welded part, or
Welding defects that are too large to be ignored in practice may occur, and it has not been possible to control the structure, defects, etc. of the joint.

ろう付けや接着剤による接合も考えられるが、接合部の
耐熱性や機械的性質や固有の機能性等が母材よりも劣る
ため、母材である金属間化合物の優れた特質を生かしき
れない。
Bonding using brazing or adhesives can be considered, but the heat resistance, mechanical properties, and inherent functionality of the bonded parts are inferior to that of the base material, so it is not possible to take advantage of the excellent properties of the intermetallic compound that is the base material. .

また、接合部を加圧しつつ加熱することによって高温下
で接合させることも考えられるが、接合部が軟化する温
度まで加熱されると所定の形状を維持することが困難と
なる。
It is also possible to join at a high temperature by heating the joint while applying pressure, but if the joint is heated to a temperature at which it becomes soft, it becomes difficult to maintain a predetermined shape.

従って本発明の目的は、少なくとも一方が金属間化合物
からなる複合材を高品質かつ安価に接合でき、接合時の
加熱温度が比較的低くてすみ、接合部が母材と同等の性
能を発揮できるような接合部の組織・欠陥等の制御がな
された複合材の製造方法を提供することにある。
Therefore, an object of the present invention is to be able to join composite materials in which at least one side is an intermetallic compound with high quality and at low cost, to require relatively low heating temperatures during joining, and to enable the joint to exhibit performance equivalent to that of the base material. It is an object of the present invention to provide a method for manufacturing a composite material in which the structure, defects, etc. of the joints are controlled.

[課題を解決するための手段] 上記目的を果たすために開発された本発明方法は、少な
くとも一方の部材の材料に金属間化合物を形成可能な組
成比で混合された複数の元素を含有する混合体を用い、
一方の部材と他方の部材を互いに接触させた状態で金属
間化合物が形成される温度で熱処理し、金属間化合物形
成時に発生する発熱を双方の部材の接触面に作用させる
ことにより、この自己発熱を利用して双方の部材を互い
に接合させることを特徴とする製造方法である。
[Means for Solving the Problems] The method of the present invention developed to achieve the above object uses a mixture containing a plurality of elements mixed in a composition ratio capable of forming an intermetallic compound in the material of at least one member. using your body,
This self-heating process is achieved by heat-treating one member and the other member in contact with each other at a temperature at which an intermetallic compound is formed, and applying the heat generated during the formation of the intermetallic compound to the contact surface of both members. This is a manufacturing method characterized by joining both members to each other using.

上記混合体は、適宜手段によって圧着しておくと更によ
い場合がある。
It may be even better if the above-mentioned mixture is compressed by an appropriate means.

第1図に本発明方法による複合材製造工程の概略を示し
ている。
FIG. 1 shows an outline of the composite material manufacturing process according to the method of the present invention.

上記熱処理は、例えばアルミナや珪砂等の粉粒体を圧力
媒体とする擬似等方圧プレス加工(以下、PHIPと称
する)によって接合する部材の自重以上に加圧しながら
行なうと更に好ましい結果が得られる場合がある。加圧
時の雰囲気は、大気中あるいは不活性ガスであってもよ
いが、真空中あるいは酸化還元雰囲気ガス等を用いるこ
とによって、接合強度と母材強度を向上できる場合があ
る。
More favorable results can be obtained when the above heat treatment is performed while applying pressure greater than the weight of the members to be joined, for example by pseudo isostatic pressing (hereinafter referred to as PHIP) using granular material such as alumina or silica sand as a pressure medium. There are cases. The atmosphere during pressurization may be air or an inert gas, but the bonding strength and base material strength may be improved by using a vacuum or a redox atmosphere gas.

また、これらの雰囲気を組合わせてもよい。Furthermore, these atmospheres may be combined.

上記一方の部材の原料は、少なくとも一部が金属間化合
物形成前の金属材料から構成されている必要があるが、
一部に金属間化合物を含んでいてもよい。また、接合後
の複合材の諸特性を改善する目的、あるいは所望の部品
形状への成形の容易化を図る目的で、適宜の元素や酸化
物・窒化物・炭化物等の化合物が含まれていてもよい。
The raw material for one of the above members must be at least partially composed of a metal material before the formation of an intermetallic compound,
It may partially contain an intermetallic compound. In addition, suitable elements and compounds such as oxides, nitrides, and carbides are included in order to improve the properties of the composite material after joining, or to facilitate molding into the desired part shape. Good too.

上記原料は純金属の塊である必要はなく、固溶体であっ
てもよいし、めっき等によってつくられた複合体であっ
てもよい。混合前の原料の形態は、粉末。
The raw material does not need to be a pure metal lump, and may be a solid solution or a composite made by plating or the like. The form of the raw materials before mixing is powder.

フレーク状、線材、箔等である。They are flakes, wires, foils, etc.

混合方法ないし圧着方法は、原料が粉末あるいはフレー
ク状である場合、V型混合機、ボールミル、ミキサ等に
よって混合したものを押出すか、金型プレスあるいはホ
ットプレスまたはCIP(冷間等方圧プレス成形)もし
くはHIPによって圧着させる。また、混合された上記
原料を金属パイプに詰めるなどして、スェージングマシ
ンによって所定の外径になるまで鍛造するようにしても
よい。
When the raw materials are in the form of powder or flakes, the mixing method or pressing method is to extrude the mixed material using a V-type mixer, ball mill, mixer, etc., or to use mold press, hot press, or CIP (cold isostatic press molding). ) or crimped by HIP. Alternatively, the mixed raw materials may be packed into a metal pipe and then forged using a swaging machine until it reaches a predetermined outer diameter.

線状原料の場合には、原料の線を束ねるかまたは撚り合
わせたのち、伸線機あるいはスェージングマシン、押出
し機等を使って線同志を圧着させる。箔状原料の場合に
は、箔を厚み方向に積層するかあるいは積層後に巻いた
状態で、圧延装置あるいはスェージングマシン、押出し
機により圧着させる。
In the case of linear raw materials, the raw material wires are bundled or twisted together, and then the wires are crimped together using a wire drawing machine, swaging machine, extruder, or the like. In the case of foil-like raw materials, the foils are laminated in the thickness direction or rolled up after being laminated and then pressed together using a rolling device, swaging machine, or extruder.

上記成形工程は冷間で行ってもよいが、成形時の変形抵
抗を減少させるために温間で行ってもよい。温間で成形
する場合、金属間化合物が形成される温度以下であるこ
とか好ましいが、組織の一部に金属間化合物を生じる程
度の短時間で成形が終了するなら、金属間化合物が形成
される温度以上の温間で成形を行ってもよい。
The above molding step may be performed cold, but may also be performed warm in order to reduce deformation resistance during molding. In the case of warm forming, it is preferable that the temperature be below the temperature at which intermetallic compounds are formed, but if forming is completed in a short time that forms intermetallic compounds in a part of the structure, intermetallic compounds will not be formed. The molding may be performed at a warm temperature higher than the temperature.

上記成形工程は、適宜の方法により、大気中もしくは真
空中、不活性ガスあるいは酸化還元雰囲気ガス等、ある
いはこれら雰囲気を組合わせて行われてもよい。
The above-mentioned molding step may be carried out by an appropriate method in the air, in vacuum, inert gas, redox atmosphere gas, etc., or in a combination of these atmospheres.

[作用] 所望の形状に加工された金属間化合物形成前の一方の部
材と、他方の部材は、金属間化合物が形成される温度ま
で加熱される。この熱処理によって拡散または自己燃焼
焼結を生じ、金属間化合物が形成されると同時に、金属
間化合物形成時の発熱もしくは自己燃焼反応熱により一
方の部材と他方の部材が接合される。自己発熱による温
度は加熱温度よりも高くなる。なお、熱処理時の変形を
小さくする上では、加熱温度を金属間化合物の固相線以
下の温度域にするとよい。金属間化合物の形成を終わら
せるには上記温度を一定時間維持する必要がある場合が
ある。温度が低いと時間が長くかかる。
[Function] One member processed into a desired shape before the formation of an intermetallic compound and the other member are heated to a temperature at which an intermetallic compound is formed. This heat treatment causes diffusion or self-combustion sintering to form an intermetallic compound, and at the same time, one member and the other member are joined by the heat generated during the formation of the intermetallic compound or by the heat of the self-combustion reaction. The temperature due to self-heating becomes higher than the heating temperature. In addition, in order to reduce deformation during heat treatment, it is preferable to set the heating temperature to a temperature range below the solidus line of the intermetallic compound. It may be necessary to maintain the above temperature for a certain period of time to terminate the formation of intermetallic compounds. The lower the temperature, the longer it takes.

本発明による接合のメカニズムは、金属間化合物形成時
の上記自己発熱によって接合部界面が軟化もしくは一部
が溶融して接合部界面の酸化被膜が破壊され、あるいは
界面の微細な凹凸が潰れ、双方が完全に密着することに
よる分子間力ないし金属結合的な力、そして拡散による
と考えられる。
The bonding mechanism according to the present invention is that the self-heating during the formation of the intermetallic compound softens or partially melts the bond interface, destroying the oxide film at the bond interface, or crushing the fine irregularities at the interface. This is thought to be due to intermolecular force or metallic bonding force due to complete contact between the two, and diffusion.

[実施例] 以下に本発明の実施例について、第2図ないし第6図を
参照して説明する。第3図および第4図に示された複合
材Aの一例は、一方の部材1と、円筒状の他方の部材2
とからなる。一方の部材1に凸部3が設けられており、
この凸部3に他方の部材2の開口端部が嵌合させられて
いる。
[Example] Examples of the present invention will be described below with reference to FIGS. 2 to 6. An example of the composite material A shown in FIGS. 3 and 4 includes one member 1 and the other cylindrical member 2.
It consists of A convex portion 3 is provided on one member 1,
The opening end of the other member 2 is fitted into this convex portion 3 .

第2図に示す製造工程の一例は、一方の部材1の材料で
ある混合圧着体の原料を混合する工程5と、必要に応じ
て行われる混合された原料を圧着して形状を付与する混
合圧着体製造工程6と、必要に応じて行われる成形前熱
処理工程7と、成形工程8と、他方の部材2を製造する
工程10と、一方の部材1と他方の部材2を仮止めする
工程11と、接合予定部を封止する工程12と、金属間
化合物の形成温度まで加熱する熱処理工程13と、必要
に応じて実施される熱処理後の加工工程14と、金属間
化合物形成後の熱処理工程15および仕上げ工程16を
含んでいる。
An example of the manufacturing process shown in FIG. 2 includes a step 5 of mixing the raw materials of the mixed pressed body, which is the material of one member 1, and a mixing step of pressing the mixed raw materials to give a shape, which is performed as necessary. A crimped body manufacturing process 6, a pre-forming heat treatment process 7 performed as necessary, a molding process 8, a process 10 of manufacturing the other member 2, and a process of temporarily fixing one member 1 and the other member 2. 11, a step 12 of sealing the part to be joined, a heat treatment step 13 of heating to the temperature for forming an intermetallic compound, a processing step 14 after the heat treatment performed as necessary, and a heat treatment after the formation of the intermetallic compound. It includes a step 15 and a finishing step 16.

一方の部材1の原料を混合する工程5においては、−例
としてガスアトマイズ法により作製した350メツシユ
以下のA1粉末と、850メツシユ以下のスポンジTi
粉末を重量分率でTi : Al −64%:36%の
割合で、Arガス置換された乾式ボールミルを用いて混
合する。
In step 5 of mixing the raw materials for one member 1, for example, A1 powder of 350 mesh or less produced by gas atomization method and sponge Ti powder of 850 mesh or less
The powders are mixed in a weight fraction of Ti:Al-64%:36% using a dry ball mill purged with Ar gas.

混合圧着体の製造工程6において、金型ブレスを用いて
、所望形状の混合圧着体(この場合、圧粉体)を得る。
In step 6 of producing a pressed mixed body, a mold press is used to obtain a pressed mixed body (in this case, a green compact) having a desired shape.

なお、金型プレスを行う代りに、上記混合原料をバイブ
に詰め、ロータリスェージング等によって各種形状に圧
着させるようにしてもよい。なお、上記混合体をそのま
ま熱処理工程13において熱処理する場合には、この工
程6を省略してもよい。
Note that instead of performing mold pressing, the mixed raw materials may be packed in a vibrator and pressed into various shapes by rotary swaging or the like. Note that if the mixture is heat treated as it is in the heat treatment step 13, this step 6 may be omitted.

上記工程6が終了したのち、必要に応じて例えば真空中
で行われる焼鈍等の成形前熱処理工程7を実施すること
により、前記工程6で混合圧着体を製造した時の加工歪
を除去し、変形抵抗を減少させる。また、混合圧着体の
圧着面を拡散によって強固なものとし、強度を向上させ
る。
After the above step 6 is completed, if necessary, a pre-forming heat treatment step 7 such as annealing performed in a vacuum is performed to remove the processing strain when the mixed pressed body is manufactured in the above step 6, Reduce deformation resistance. Further, the pressure bonding surface of the mixed pressure bonded body is made stronger by diffusion, and the strength is improved.

成形前熱処理工程7は、混合体もしくは混合圧着体の不
純物成分を拡散または除去する効果もある。この熱処理
工程7は、大気中もしくは真空中、不活性ガスあるいは
酸化還元雰囲気ガス等、あるいはこれら雰囲気を組合わ
せて行われてもよい。
The pre-forming heat treatment step 7 also has the effect of diffusing or removing impurity components in the mixture or mixed pressed body. This heat treatment step 7 may be performed in the air or vacuum, in an inert gas, a redox atmosphere gas, or a combination of these atmospheres.

処理温度は金属間化合物が形成される温度以下が一般的
であるが、圧着面の一部に金属間化合物ができる程度の
短時間の加熱であるなら金属間化合物が形成される温度
以上であってもかまわない。
The processing temperature is generally below the temperature at which intermetallic compounds are formed, but if the heating is short enough to form an intermetallic compound on a part of the bonded surface, it may be above the temperature at which an intermetallic compound is formed. It doesn't matter.

Ti−Al系の場合は200℃〜600℃の範囲が望ま
しい。
In the case of Ti-Al system, the temperature range is preferably from 200°C to 600°C.

上記工程6によって得られた混合圧着体に、成形工程8
によって鍛造あるいは機械加工等を行ってもよい。但し
、前記工程6によって所望の形状が得られる場合は、上
記熱処理工程7および成形工程8を省略してもよい。
Molding process 8
Forging or machining may also be performed. However, if the desired shape is obtained by the step 6, the heat treatment step 7 and the molding step 8 may be omitted.

他方の部材2の製造工程10においては、ガスアトマイ
ズ法により作製した 350メツシユ以下のA1粉末と
、350メツシユ以下のスポンジTi粉末を重量分率で
Ti : Al−64%:36%の割合で、Arガス置
換された乾式ボールミルを用いて混合する。そののち、
金型ブレスあるいはバイブに詰めてスェージング加工す
るなどして、所望形状の混合圧着体を得る。なお、この
混合圧着体を一方の部材1と同様の工程によって成形す
るようにしてもよい。
In the manufacturing process 10 of the other member 2, A1 powder of 350 mesh or less produced by a gas atomization method and sponge Ti powder of 350 mesh or less were mixed in a weight fraction of Ti:Al-64%:36%, and Ar. Mix using a gas-substituted dry ball mill. after that,
The mixture is packed into a mold press or a vibrator and subjected to swaging processing to obtain a mixed and pressed body having a desired shape. Incidentally, this mixed press-bonded body may be molded by the same process as one of the members 1.

上記各工程を経て得られた金属間化合物形成前の一方の
部材1の材料(混合圧着体)と他方の部材2の材料(混
合圧着体)は、互いに接合部位を嵌合させることによっ
て仮止めされる。両部材1゜2を固定する方法としては
、本実施例のような凹凸嵌合以外に、圧接、摩擦圧接、
接着剤、ろう付け、ボルト止め等が採用されてもよい。
The material of one member 1 (mixed crimped body) and the material of the other member 2 (mixed crimped body) before intermetallic compound formation obtained through each of the above steps are temporarily fixed by fitting their joint parts together. be done. Methods for fixing both members 1.2 include pressure welding, friction welding,
Adhesives, brazing, bolting, etc. may also be employed.

一方の部材1と他方の部材2の接合部の接触面積は、複
合材Aの形状を保持したり、良好な接合強度を得るため
に0.001 mm2以上か望ましく、更には0.01
ai2以上が望ましい。
The contact area of the joint between one member 1 and the other member 2 is preferably 0.001 mm2 or more, more preferably 0.01 mm2, in order to maintain the shape of the composite material A and obtain good joint strength.
Ai2 or higher is desirable.

こうして互いに固定された両部材1.2は、必要に応じ
て封止材によって接合部を封止することにより、下記P
HIPを行なう際に粉粒体2〕か接合部に入り込まない
ようにする。封止材としては、上記混合圧着体と同様の
組成や他の組成、更には他の金属やセラミックス等から
なる板、線、箔、粉末等、あるいは無機接着剤や有機接
着剤、ろう材が用いられる。この封止材は、予め接合部
の縁に形成しておいた溝等に詰めるなどしてもよい。ま
た、この封止材と同様の効果をもたらすために、両部材
1.2の全体を金属8ガラス等によって真空密封するな
どしてもよい。
Both members 1.2 fixed to each other in this way are sealed by sealing the joint part with a sealing material as necessary, so that the following P
When performing HIP, make sure that the granular material 2 does not get into the joint. The sealing material may include plates, wires, foils, powders, etc. made of the same composition as the above-mentioned mixed pressure-bonded body or other compositions, or other metals or ceramics, or inorganic adhesives, organic adhesives, and brazing materials. used. This sealing material may be filled into a groove or the like formed in advance at the edge of the joint. Further, in order to bring about the same effect as this sealing material, the entirety of both members 1.2 may be vacuum-sealed with metal 8 glass or the like.

上記部材1,2は例えば第5図に示されたPHIPを実
施する装置20に入れられ、金属間化合物が形成される
温度まで加熱されかつ必要に応じて擬似等方圧で加圧さ
れる。この装置20は、′ 圧力媒体として例えばアル
ミナ粉末等の固形粉粒体21を満たした耐圧ステンレス
鋼製ポット22と、このポット22に内蔵されたコイル
状の抵抗発熱体であるカンタルヒータ23と、温度検出
用の熱電対24と、ステンレス鋼製の蓋25と、この蓋
25を加圧する油圧シリンダ等の加圧手段26と、上記
ポット22を包囲する密閉容器状の真空チャンバ27と
、このチャンバ27の内部を排気する排気装置28等を
備えて構成されている。
The members 1 and 2 are placed in a PHIP apparatus 20 shown in FIG. 5, for example, and heated to a temperature at which an intermetallic compound is formed, and if necessary pressurized with pseudo-isostatic pressure. This device 20 includes: a pressure-resistant stainless steel pot 22 filled with a solid powder 21 such as alumina powder as a pressure medium; a Kanthal heater 23 which is a coiled resistance heating element built into the pot 22; A thermocouple 24 for temperature detection, a lid 25 made of stainless steel, a pressurizing means 26 such as a hydraulic cylinder that pressurizes the lid 25, a vacuum chamber 27 in the form of a closed container surrounding the pot 22, and this chamber. It is configured to include an exhaust device 28 and the like for exhausting the inside of 27.

チャンバ27はOリング等のシール材29によって気密
が保たれる。粉粒体21は、耐熱および耐圧性を有する
ものであればよいから、アルミナ粉末以外のセラミック
ス粉末やカーボン粉末等を利用してもよい。
The chamber 27 is kept airtight by a sealing material 29 such as an O-ring. The powder 21 may be any material as long as it has heat resistance and pressure resistance, so ceramic powder, carbon powder, or the like other than alumina powder may be used.

加圧手段26によって例えば500kgf’/cm2の
擬似等方圧をかける。また、排気装置28によってチャ
ンバ27内を排気することにより、ポット22の内部も
排気した状態で、ヒータ23によって例えば900℃ま
で加熱する。この時の温度は熱電対24によって測定す
ることができる。一方の部材1と他方の部材2の材料で
ある前記混合圧着体は、上記温度に加熱されることによ
り、自己燃焼焼結により金属間化合物を形成すると同時
に発熱し、互いの接合界面において拡散結合することな
どにより一体化する。なお、圧力媒体としてガスや液体
、もしくは流動体を用いるHIP等によって、等方圧で
加圧してもよい。あるいは型を用いるホットプレスによ
って機械的に加圧することにより、金属間化合物形成前
の混合体もしくは混合圧着体を所定の形状に成形すると
同時に、熱処理工程13を行ってもよい。
A pseudo isostatic pressure of, for example, 500 kgf'/cm2 is applied by the pressurizing means 26. Moreover, by evacuating the inside of the chamber 27 with the exhaust device 28, the inside of the pot 22 is also evacuated, and the pot 22 is heated to, for example, 900° C. by the heater 23. The temperature at this time can be measured by the thermocouple 24. When the mixed press-bonded body, which is the material of one member 1 and the other member 2, is heated to the above temperature, it forms an intermetallic compound by self-combustion sintering and generates heat at the same time, causing diffusion bonding at the bonding interface between them. Unify by doing things like Note that the pressure may be applied isostatically by HIP or the like using gas, liquid, or fluid as a pressure medium. Alternatively, the heat treatment step 13 may be performed at the same time as the mixture or pressed mixed body before intermetallic compound formation is formed into a predetermined shape by mechanically pressurizing by hot pressing using a mold.

Ti−Al系の場合は、50kg f /■2以上に加
圧するとよい。これ以下の圧力では、複合材の強度か極
端に低下する。さらに高強度な複合材を得るためには、
200 )cg f / cm 2以上に加圧するとよ
い。
In the case of Ti-Al type, it is preferable to pressurize it to 50 kg f /■2 or more. If the pressure is lower than this, the strength of the composite material will be drastically reduced. In order to obtain even higher strength composite materials,
200 ) cg f / cm 2 or more.

Tj−Al系の場合の熱処理温度は400℃以上かよい
。400℃以下では、処理時間が長くかかる。また、T
i−Al系の場合の雰囲気は、高強度な複合材を得るた
めには、真空中で行なうのが特によい。
In the case of Tj-Al system, the heat treatment temperature may be 400°C or higher. If the temperature is below 400°C, the processing time will be long. Also, T
In the case of i-Al system, it is particularly preferable to use a vacuum atmosphere in order to obtain a high-strength composite material.

大気中で行なうと酸化が進行し、強度が低下する場合か
ある。
If done in the atmosphere, oxidation may progress and the strength may decrease.

TiAlの標準生成熱はΔH298−75KJ/ +0
01であり、金属間化合物形成時に発生する熱量が外部
に逃げない場合の複合体の温度は、TiAlの融点以上
になり、十分な発熱が得られる。なおΔH2,8は一4
0KJ/mol以下であると効果が大きい。
The standard heat of formation of TiAl is ΔH298-75KJ/+0
01, and when the amount of heat generated during the formation of the intermetallic compound does not escape to the outside, the temperature of the composite is equal to or higher than the melting point of TiAl, and sufficient heat generation is obtained. Note that ΔH2,8 is -4
The effect is great when it is 0 KJ/mol or less.

またTj−Al系の場合は、上記熱処理温度までの昇温
スピードをlO℃/ win以上にするとよい。この昇
温スピードでは、急激な反応が起こるので、複合体の温
度上昇が十分なものとなる。
Further, in the case of Tj-Al system, it is preferable that the temperature increase speed up to the above heat treatment temperature is 10° C./win or more. At this temperature increase speed, a rapid reaction occurs, so that the temperature of the composite is sufficiently increased.

上記実施例装置20を使用した場合、所望の真空度を部
材1,2の表面および内部に及ぼすことができるから、
必要に応じて真空雰囲気中で複合材Aを金属間化合物形
成温度まで加熱することができる。このため、複合材A
に含まれる不純物の除去が図れるとともに、空孔をさら
に減少させることができる。また、大気中で行なっても
よいが、必要に応じてチャンバ27の内部を特定のガス
に置換させることにより、ガス雰囲気中で金属間化合物
を形成させることも可能である。そして特にPHIPを
用いることにより上記実施例以外の複雑な形状の複合材
にも容易に適用できる。
When the above embodiment device 20 is used, a desired degree of vacuum can be applied to the surfaces and insides of the members 1 and 2.
If necessary, composite material A can be heated in a vacuum atmosphere to an intermetallic compound forming temperature. For this reason, composite material A
In addition to removing impurities contained in the pores, the number of pores can be further reduced. Further, although it may be performed in the atmosphere, it is also possible to form an intermetallic compound in a gas atmosphere by replacing the inside of the chamber 27 with a specific gas as necessary. In particular, by using PHIP, it can be easily applied to complex-shaped composite materials other than those of the above embodiments.

なお、必要があれば上記熱処理工程13の終了後に、鍛
造等の適宜の加工工程14を実施することにより、母材
と接合部の欠陥、偏析の改善、不純物の分散等を図って
もよい。
Note that, if necessary, after the heat treatment step 13 is completed, an appropriate processing step 14 such as forging may be carried out to improve defects and segregation between the base material and the joint, to disperse impurities, etc.

また、上記熱処理工程13によって金属間化合物の形成
と接合がなされた後、必要に応じて上記擬似等方圧と雰
囲気を維持した状態で複合材Aを例えば900℃に保持
し、1時間の熱処理工程15を行ってもよい。処理温度
は、金属間化合物の固相線以下の温度域が望ましい。特
に、Ti−Al系の場合は700℃以上が望ましい。こ
れ以下の温度では十分な拡散が進行しない。この熱処理
工程15は、大気中で行ってもよいが、不活性ガスある
いは真空雰囲気や酸化還元雰囲気等のガス中で行えば更
に好ましい結果か得られることがある。また、これらの
雰囲気を組合わせてもよい。材料によっては加圧しない
状態で二〇熱処理工程15を実施してもよい。
After the intermetallic compound is formed and bonded in the heat treatment step 13, if necessary, the composite material A is held at, for example, 900° C. while maintaining the pseudo-isotropic pressure and atmosphere, and heat-treated for 1 hour. Step 15 may also be performed. The treatment temperature is preferably in a temperature range below the solidus line of the intermetallic compound. In particular, in the case of Ti-Al system, the temperature is preferably 700°C or higher. At temperatures below this temperature, sufficient diffusion does not proceed. This heat treatment step 15 may be performed in the atmosphere, but more favorable results may be obtained if it is performed in an inert gas, vacuum atmosphere, redox atmosphere, or other gas. Furthermore, these atmospheres may be combined. Depending on the material, the heat treatment step 15 may be performed without applying pressure.

金属間化合物形成後の熱処理工程15を行うことによっ
て、複合材A +:含まれる空孔を更に減少させること
ができるとともに、組織の均一化が促進され、また、接
合歪の除去、更には不純物の拡散もしくは不純物の除去
が図れる。この熱処理工程15の実施によって、結晶粒
の大きさや金属間化合物組織または析出物の調整をする
ことも可能である。
By performing the heat treatment step 15 after the formation of the intermetallic compound, it is possible to further reduce the pores included in the composite material A+, promote uniformity of the structure, remove bonding strain, and furthermore remove impurities. Diffusion or removal of impurities can be achieved. By carrying out this heat treatment step 15, it is also possible to adjust the size of crystal grains, intermetallic compound structure, or precipitates.

以上の一連の工程によって、(TiAl + Tis 
Al)の金属間化合物からなる一方の部材1と、同じく
(TiAI+ Ti3At)の金属間化合物からなる他
方の部材2とが完全に一体化された複合材Aが得られた
。この複合材Aは、母材および接合部に実用上問題にな
るような欠陥が存在せず、均質であり、良好な接合強度
を有していた。
Through the above series of steps, (TiAl + Tis
A composite material A was obtained in which one member 1 made of an intermetallic compound of Al) and the other member 2 made of an intermetallic compound of (TiAI+Ti3At) were completely integrated. This composite material A had no defects that would pose a practical problem in the base material and the joint, was homogeneous, and had good joint strength.

第6図は上記複合材Aの接合部の顕微鏡写真である。接
合部の組織は母材とほぼ同じであり、接合部の判別が困
難なほど良好な接合がなされた。
FIG. 6 is a microscopic photograph of the joint of the composite material A. The structure of the joint was almost the same as that of the base metal, and the joint was so good that it was difficult to distinguish the joint.

母材および接合部は共に優れた耐熱性と耐酸化性を発揮
し、しかも接合強度がきわめて大きい。
Both the base material and the joint exhibit excellent heat resistance and oxidation resistance, and the joint strength is extremely high.

なお、上記熱処理工程15の終了後に仕上げ工程16を
行ってもよい。例えばバレル加工等によって複合材Aの
表面を滑らかなものにする。あるいは機械加工等によっ
て表面の研磨を行うとか、表面傷1表面層等の除去ある
いは切断、研削加工等により形状の修正、追加を行った
り、前記封止材のはみ出した箇所もしくは封止材の全体
を除去する。また、ショットピーニング等を行うことに
より、複合材Aの表層部に圧縮残留応力を生じさせれば
、複合材Aの耐久性を更1q高めることができる。
Note that the finishing step 16 may be performed after the heat treatment step 15 is completed. For example, the surface of the composite material A is made smooth by barrel processing or the like. Alternatively, the surface may be polished by machining, or the shape may be corrected or added to by removing or cutting surface scratches, the surface layer, etc., or by grinding, or where the sealant protrudes or the entire sealant. remove. Moreover, if compressive residual stress is generated in the surface layer of the composite material A by performing shot peening or the like, the durability of the composite material A can be further increased by 1q.

なお一方の部材1の材料にTj : Al −84%二
36%の混合圧着体を用い、他方の部材2の材料にTi
 : Al−37,17%: 82.83%の混合圧着
体を用いて、上記実施例と同様の製造工程を実施したと
ころ、金属間化合物(TjAI+Tji At)からな
る一方の部材1と、金属間化合物(Al3 Ti)から
なる他方の部材2とが完璧に接合された複合材が得られ
た。
Note that one member 1 is made of a crimped mixture of Tj: Al-84% and 36%, and the other member 2 is made of Ti.
: When the same manufacturing process as in the above example was carried out using a mixed crimped body of Al-37, 17%: 82.83%, one member 1 made of an intermetallic compound (TjAI+Tji At) and an intermetallic A composite material was obtained in which the other member 2 made of the compound (Al3Ti) was perfectly joined.

第7図に示された顕微鏡写真は、一方の部材1にTl二
^1−64%二36%の混合圧着体を用い、他方の部材
2にインコネルMA754を用いて得た複合材の接合部
を示している。接合部には十分な拡散層もしくは、化合
物層が形成され、高強度な接合体が得られた。製造工程
は前記実施例の工程(第2図)と同様である。
The micrograph shown in FIG. 7 shows a joint of a composite material obtained by using a mixed crimped body of Tl2^1-64%236% for one member 1 and using Inconel MA754 for the other member 2. It shows. A sufficient diffusion layer or compound layer was formed at the joint, and a high-strength joint was obtained. The manufacturing process is similar to that of the previous embodiment (FIG. 2).

なお、他方の部材2は、Ni、 Ni合金、N1基耐熱
合金、 TI、 Tf金合金 A1. A1合金などの
金属、81等の半金属、あるいは金属間化合物、アルミ
ナ、窒化けい素、炭化けい素等のセラミックス等の無機
材料のいずれでもよいし、耐熱プラスチック等の有機材
料でも適用できる場合がある。一方の部材1と他方の部
材2に、1つ以上の共通元素が含まれていればなおよい
The other member 2 is made of Ni, Ni alloy, N1 base heat-resistant alloy, TI, Tf gold alloy A1. It may be metals such as A1 alloy, semi-metals such as 81, or inorganic materials such as intermetallic compounds, ceramics such as alumina, silicon nitride, silicon carbide, etc., and organic materials such as heat-resistant plastics may also be applicable. be. It is better if one member 1 and the other member 2 contain one or more common elements.

第8図ないし第17図は、複合材の形状例を示している
。第8図および第9図に示された複合材A2は、カム形
状の一方の部材1と、シャフト形状の他方の部材2を互
いに前記方法によって接合したものである。この場合、
接合部に溝40を設け、この溝40に封止材41を詰込
むことにより、前記PHIPを行なう際に接合部に粉粒
体21が入り込まないようにしている。
8 to 17 show examples of shapes of composite materials. The composite material A2 shown in FIGS. 8 and 9 is one in which one cam-shaped member 1 and the other shaft-shaped member 2 are joined together by the method described above. in this case,
By providing a groove 40 in the joint and filling the groove 40 with a sealing material 41, the granular material 21 is prevented from entering the joint during the PHIP.

第10図および第11図に示された複合材A3は、テー
パ状の端部50を有する一方の部材1を、他方の部材2
のテーバ孔51に挿入した状態で接合を行なうようにし
ている。第12図および第13図に示された複合材A4
は、円板状の一方の部材1を、ピストンヘッド状の他方
の部材2の端面に接合している。第14図および第15
図に示された複合材A、は、バルブ形状をなす一方の部
材1を円柱ロッド状の他方の部材2に接合したものであ
る。また、第16図に示される複合材A6のように、一
方の部材1と他方の部材2を厚み方向に重ねて接合して
もよいし、あるいは第17図に示された複合材A7のよ
うに、一方の部材1と他方の部材2を長平方向に接合し
てもよい。
The composite material A3 shown in FIGS. 10 and 11 has one member 1 having a tapered end 50 and the other member 2.
The bonding is performed while it is inserted into the taper hole 51 of. Composite material A4 shown in Figures 12 and 13
, one disc-shaped member 1 is joined to the end surface of the other piston-head-shaped member 2. Figures 14 and 15
The composite material A shown in the figure is one in which one member 1 having a bulb shape is joined to the other member 2 having a cylindrical rod shape. Alternatively, one member 1 and the other member 2 may be stacked and bonded in the thickness direction, as in composite material A6 shown in FIG. 16, or as in composite material A7 shown in FIG. 17. Alternatively, one member 1 and the other member 2 may be joined in the longitudinal direction.

また本発明は、前記実施例で示したものに限らず、Ti
−Al系の他の組成についても適用できる。
Further, the present invention is not limited to what was shown in the above embodiments, but the present invention is also applicable to Ti
-It is also applicable to other compositions based on Al.

特に、少なくとも一方の部材を、前記混合原料の組成比
が重量%でAlが14〜63%、Tiが86〜37%の
範囲にすると、Ti−Al系金属間化合物からなる複合
材においては、金属間化合物形成時の大きな発熱により
、気孔率が3%以下で最大欠陥が100μm以下である
高強度な複合材が得られた。
In particular, when the composition ratio of the mixed raw materials in at least one member is in the range of 14 to 63% Al and 86 to 37% Ti by weight, in a composite material made of a Ti-Al intermetallic compound, Due to the large heat generated during the formation of intermetallic compounds, a high-strength composite material with a porosity of 3% or less and a maximum defect of 100 μm or less was obtained.

また本発明は、他の金属間化合物を形成する系について
も適用できる。
The present invention can also be applied to systems that form other intermetallic compounds.

[発明の効果] 本発明によれば、金属間化合物形成時に発生する大きな
自己発熱を接合部に作用させることができ、接合界面に
おける欠陥発生の防止および接合に必要な拡散を進行さ
せる効果があり、加熱温度が比較的低くても自己発熱に
よって良好な接合部が短時間で容易に得られる。
[Effects of the Invention] According to the present invention, large self-heating generated during the formation of an intermetallic compound can be applied to the bonding portion, which has the effect of preventing the occurrence of defects at the bonding interface and promoting the diffusion necessary for bonding. Even if the heating temperature is relatively low, a good joint can be easily obtained in a short time due to self-heating.

また、金属間化合物の融点に比べてかなり低い温度で金
属間化合物の形成と接合がなされるため、接合温度が低
いにもかかわらず接合後は母材・接合部とも金属間化合
物と同等以上の耐熱性や機能性を発揮できる。
In addition, since the intermetallic compound is formed and bonded at a temperature considerably lower than the melting point of the intermetallic compound, even though the bonding temperature is low, after bonding, both the base material and the bonded part have a temperature equal to or higher than that of the intermetallic compound. It can demonstrate heat resistance and functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示す工程説明図、第2図は本発明
の一実施例を示す工程説明図、第3図は複合材の一例を
示す斜視図、第4図は第3図に示された複合材の断面図
、第5図はPHIPを実施する装置の断面図、第6図は
接合部の金属組織を600倍に拡大して示す顕微鏡写真
、第7図は接合部の他の例を示す金属組織を400倍に
拡大した顕微鏡写真、第8図は複合材の例を示す斜視図
、第9図は第8図に示された複合材の断面図、第10図
は複合材の例を示す斜視図、第11図は第10図に示さ
れた複合材の断面図、第12図は複合材の例を示す斜視
図、第13図は第12図に示された複合材の断面図、第
14図は複合材の例を示す斜視図、第15図は第14図
に示された複合材の断面図、第16図および第17図は
それぞれ互いに異なる複合材の例を示す断面図である。 1・・・一方の部材、2・・・他方の部材、20・・・
PHIPを実施するための装置。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 313図     篇4図 jI5図 拌1′、部 ■ ×600 第6図 ・f台P−( 第7図 第8図      第9図 j11o図       第11図 毘12図       第13図 / 第16図 第17図
Fig. 1 is a process explanatory diagram showing the method of the present invention, Fig. 2 is a process explanatory diagram showing an embodiment of the present invention, Fig. 3 is a perspective view showing an example of a composite material, and Fig. 4 is a process explanatory diagram showing an example of the composite material. A cross-sectional view of the composite material shown, FIG. 5 is a cross-sectional view of the apparatus for performing PHIP, FIG. 6 is a micrograph showing the metal structure of the joint at 600 times magnification, and FIG. 7 is a cross-sectional view of the metal structure of the joint. Fig. 8 is a perspective view showing an example of a composite material, Fig. 9 is a cross-sectional view of the composite material shown in Fig. 8, and Fig. 10 is a composite material. Fig. 11 is a cross-sectional view of the composite material shown in Fig. 10, Fig. 12 is a perspective view showing an example of the composite material, and Fig. 13 is a cross-sectional view of the composite material shown in Fig. 12. 14 is a perspective view showing an example of a composite material, FIG. 15 is a sectional view of the composite material shown in FIG. 14, and FIGS. 16 and 17 are examples of different composite materials. FIG. 1... One member, 2... Other member, 20...
Equipment for implementing PHIP. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 313 Part 4 Figure j I 5 Figure 1', Section ■ ×600 Figure 6/F unit P-( Figure 7 Figure 8 Figure 9 Figure j11o Figure Figure 11 Figure 12 Figure 13/ Figure 16 Figure 17

Claims (3)

【特許請求の範囲】[Claims] (1)一方の部材と他方の部材を接合してなる複合材の
製造方法であって、少なくとも一方の部材の材料に金属
間化合物を形成可能な組成比で混合された複数の元素を
含有する混合体を用い、上記一方の部材と他方の部材を
互いに接触させた状態で金属間化合物が形成される温度
で熱処理し、金属間化合物形成時に発生する発熱を双方
の部材の接触面に作用させることにより、この発熱を利
用して双方の部材を互いに接合させることを特徴とする
、少なくとも一部が金属間化合物からなる複合材の製造
方法。
(1) A method for manufacturing a composite material formed by joining one member and another member, wherein the material of at least one member contains a plurality of elements mixed in a composition ratio capable of forming an intermetallic compound. Using the mixture, heat treatment is performed at a temperature at which an intermetallic compound is formed while the one member and the other member are in contact with each other, and the heat generated during the formation of the intermetallic compound is applied to the contact surface of both members. A method for manufacturing a composite material at least partially made of an intermetallic compound, characterized in that both members are joined to each other by utilizing this heat generation.
(2)上記熱処理時に一方の部材と他方の部材を加圧し
た状態で上記接合を行うことを特徴とする請求項1記載
の複合材の製造方法。
(2) The method for manufacturing a composite material according to claim 1, characterized in that the joining is performed in a state where one member and the other member are pressurized during the heat treatment.
(3)上記熱処理時に、擬似等方圧プレスによって所定
の雰囲気中で上記一方の部材と他方の部材を加圧した状
態で上記接合を行うことを特徴とする請求項1記載の複
合材の製造方法。
(3) Manufacturing the composite material according to claim 1, wherein during the heat treatment, the one member and the other member are bonded under pressure in a predetermined atmosphere using a pseudo isostatic press. Method.
JP2133914A 1990-05-25 1990-05-25 Method for producing composite material at least partially composed of an intermetallic compound Expired - Fee Related JP2843644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2133914A JP2843644B2 (en) 1990-05-25 1990-05-25 Method for producing composite material at least partially composed of an intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2133914A JP2843644B2 (en) 1990-05-25 1990-05-25 Method for producing composite material at least partially composed of an intermetallic compound

Publications (2)

Publication Number Publication Date
JPH0433782A true JPH0433782A (en) 1992-02-05
JP2843644B2 JP2843644B2 (en) 1999-01-06

Family

ID=15116044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2133914A Expired - Fee Related JP2843644B2 (en) 1990-05-25 1990-05-25 Method for producing composite material at least partially composed of an intermetallic compound

Country Status (1)

Country Link
JP (1) JP2843644B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064523A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Pressure-welded flat heat pipe, manufacturing equipment, and its manufacturing method
WO2009060954A1 (en) * 2007-11-08 2009-05-14 Aida Chemical Industries Co., Ltd. Thermoformed metallic object, process for producing the same, and process for producing patterned metallic sheet material
JP2017500443A (en) * 2013-12-06 2017-01-05 スネクマ Method for producing parts by selective melting of powders

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064523A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Pressure-welded flat heat pipe, manufacturing equipment, and its manufacturing method
WO2009060954A1 (en) * 2007-11-08 2009-05-14 Aida Chemical Industries Co., Ltd. Thermoformed metallic object, process for producing the same, and process for producing patterned metallic sheet material
JP5132685B2 (en) * 2007-11-08 2013-01-30 相田化学工業株式会社 Metal thermoformed body, method for producing the same, and method for producing patterned metal sheet
JP2017500443A (en) * 2013-12-06 2017-01-05 スネクマ Method for producing parts by selective melting of powders

Also Published As

Publication number Publication date
JP2843644B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP5078605B2 (en) Method for producing billets or bars containing molybdenum
KR100721780B1 (en) Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
CN107012355B (en) A kind of preparation method of single-layer graphene reinforced aluminum matrix composites
JPH0130882B2 (en)
JPH01301806A (en) Formation of high density contact
Hodge Elevated-temperature compaction of metals and ceramics by gas pressures
US5768679A (en) Article made of a Ti-Al intermetallic compound
JPH0130898B2 (en)
US4919323A (en) Diffusion bonding nickel base alloys
JP3259959B2 (en) Composite material and method for producing the same
JPH0433782A (en) Manufacture of composite material made of intermetallic compound partly at least
JP3218241B2 (en) Method of manufacturing spring seat mainly composed of intermetallic compound
JPH11172351A (en) Ti-al alloy, production of the alloy, and method for joining the alloy
RU2298450C2 (en) Method for producing cermet powder materials
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
CN111687530B (en) Method for compounding hydrogen absorption expansion substance and other materials
JP3010190B2 (en) Method and apparatus for producing functionally graded material
EP2050561B1 (en) Manufacturing process and apparatus
JP3218242B2 (en) Manufacturing method of valve train parts mainly composed of intermetallic compounds
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
JP2843661B2 (en) Ti-Al based composite material
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
JPS59157201A (en) Manufacture of molded body of zinc-aluminum alloy powder
JPH0569159A (en) Method for joining composite material composed of, at least, one part of intermetallic compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees