JPH04337413A - Displacement measurement device - Google Patents

Displacement measurement device

Info

Publication number
JPH04337413A
JPH04337413A JP10927191A JP10927191A JPH04337413A JP H04337413 A JPH04337413 A JP H04337413A JP 10927191 A JP10927191 A JP 10927191A JP 10927191 A JP10927191 A JP 10927191A JP H04337413 A JPH04337413 A JP H04337413A
Authority
JP
Japan
Prior art keywords
prism
light
measured
reflected
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10927191A
Other languages
Japanese (ja)
Inventor
Junichi Oda
小田 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10927191A priority Critical patent/JPH04337413A/en
Publication of JPH04337413A publication Critical patent/JPH04337413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a displacement measurement device by which displacement of the bottom part of such as a deep hole can be also measured. CONSTITUTION:End sides of first prism 11 as well as of a second prism 12 are inserted into a deep hole 22 of an objective 21 to be measured. The ends of the first as well as of the second prisms 11, 12 will not be in contact with a bottom part 23 of the deep hole 22. A light shaft is irradiated on a reflection surface 13 of the first prism 11 from a light emitter 2 through a lens 3. The light shaft is bent on the reflection surface 13 by 90 deg., and is linearly transmitted in the first prism 11, and is irradiated from am output end 14 and is reflected on the bottom part 23. The reflected light is input from an input end 16 of the second prism 12, and is repeatedly reflected in the second prism 12 while reflected on a reflection surface 15, and the light is converged by a lens 5, and an image is formed on a line sensor 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、たとえば穴の底部の変
位を測定する変位測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a displacement measuring device for measuring displacement at the bottom of a hole, for example.

【0003】0003

【従来の技術】従来のこの種の変位測定器としては、た
とえば図3に示す構成の装置が知られている。
2. Description of the Related Art As a conventional displacement measuring device of this type, for example, a device having a configuration shown in FIG. 3 is known.

【0004】この図3に示す変位測定器1は、三角測量
の原理を応用して、微細な表面の凹凸などを、光により
非接触で、容易に高精度かつ高速に検出するものである
The displacement measuring device 1 shown in FIG. 3 applies the principle of triangulation to easily detect minute surface irregularities using light in a non-contact manner with high precision and high speed.

【0005】そして、この変位測定器1は、光を照射す
る投光器2を設け、この投光器2から照射される光を集
光するレンズ3を設けている。また、このレンズ3を介
して照射された光を被測定体4で散乱反射して、この反
射された光を再び集光するレンズ5を設け、このレンズ
5で集光された光を受光する受光器としてのラインセン
サ6を設けている。
The displacement measuring device 1 is provided with a light projector 2 for emitting light, and a lens 3 for condensing the light emitted from the light projector 2. Further, a lens 5 is provided which scatters and reflects the light irradiated through the lens 3 on the object to be measured 4 and focuses the reflected light again, and receives the light focused by the lens 5. A line sensor 6 is provided as a light receiver.

【0006】そうして、投光器2から光を照射し、レン
ズ3で集光して被測定体4で反射させ、この反射された
光をレンズ5で集光させ、被測定体4の位置の違いによ
り光軸を変化させて、ラインセンサ6で結像しこのライ
ンセンサ6の受光位置に対応した電気信号を出力し、三
角測量法により被測定体4の位置を検知している。
Then, light is emitted from the projector 2, focused by the lens 3, and reflected by the object to be measured 4. The reflected light is focused by the lens 5, and the position of the object to be measured 4 is determined. The optical axis is changed depending on the difference, an image is formed by the line sensor 6, an electric signal corresponding to the light receiving position of the line sensor 6 is outputted, and the position of the object 4 to be measured is detected by triangulation.

【0007】すなわち、変位測定器1と被測定体4との
距離が短いと、被測定体4で反射される光軸の入射角お
よび反射角の角度は比較的広くなり、反対に、変位測定
器1と被測定部4との距離が長いと光軸の入射角と反射
角との角度は比較的狭くなり、これら角度の相違により
、ラインセンサ6の結像される位置が異なる。
That is, if the distance between the displacement measuring device 1 and the object to be measured 4 is short, the angle of incidence and reflection angle of the optical axis reflected by the object to be measured 4 will be relatively wide; When the distance between the device 1 and the part to be measured 4 is long, the angle between the incident angle and the reflection angle of the optical axis becomes relatively narrow, and the difference in these angles causes a difference in the position where the image of the line sensor 6 is formed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の図3に示す変位測定器1により被測定体4の位置を
検出する場合、被測定体4に入射される投光器2からレ
ンズ3を介した光軸、および、被測定体4で反射されレ
ンズ5を介してラインセンサ6に結像される光軸のいず
れもが透過できる空間でなければならない。
[Problems to be Solved by the Invention] However, when detecting the position of the object to be measured 4 using the conventional displacement measuring device 1 shown in FIG. The space must be such that both the optical axis and the optical axis reflected by the object to be measured 4 and imaged on the line sensor 6 via the lens 5 can pass through.

【0009】このため、従来の三角測量法を用いた図3
に示す変位測定器1の場合、被測定体4が深穴などの場
合は光軸が深穴の周囲により遮蔽され、深穴の底部など
の変位は検出できない問題を有している。
For this reason, using the conventional triangulation method,
In the case of the displacement measuring device 1 shown in FIG. 1, when the object to be measured 4 is a deep hole, the optical axis is blocked by the periphery of the deep hole, and the problem is that displacement at the bottom of the deep hole cannot be detected.

【0010】本発明は、上記問題点に鑑みなされたもの
で、深穴などの底部の変位も測定できる変位測定器を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a displacement measuring instrument that can also measure displacement at the bottom of a deep hole or the like.

【0011】〔発明の構成〕[Configuration of the invention]

【0012】0012

【課題を解決するための手段】本発明の変位測定器は、
光を照射する投光器と、この投光器から照射された光を
被測定体に照射させる第1のプリズムと、この第1のプ
リズムから照射され前記被測定体で反射された反射光が
入射される第2のプリズムと、この第2のプリズムから
の光を受光し受光位置にしたがって前記被測定体の変位
を測定する受光器とを具備したものである。
[Means for Solving the Problems] The displacement measuring device of the present invention has the following features:
a first prism that irradiates the object to be measured with the light emitted from the projector; and a first prism that receives the reflected light emitted from the first prism and reflected by the object to be measured. This device is equipped with a second prism and a light receiver that receives light from the second prism and measures the displacement of the object according to the light receiving position.

【0013】[0013]

【作用】本発明は、投光器から照射された光を、第1の
プリズムを介して被測定部に照射し、この被測定部で反
射された光を、第2のプリズムを介して受光器に受光さ
せ、三角測量法により被測定部の変位を測定することに
より、周囲の光の障害物の有無にかかわらず光を遮蔽す
ることなく被測定体で光を反射できるので、周囲に光の
障害物のある深穴の底部の変位の測定もできる。
[Operation] In the present invention, the light emitted from the projector is directed to the part to be measured through the first prism, and the light reflected from the part to be measured is sent to the receiver through the second prism. By receiving light and measuring the displacement of the part to be measured using the triangulation method, the light can be reflected by the part to be measured without blocking the light, regardless of the presence or absence of surrounding light obstructions. It is also possible to measure the displacement at the bottom of a deep hole containing an object.

【0014】[0014]

【実施例】以下、本発明の変位測定器の一実施例を図面
を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the displacement measuring device of the present invention will be described below with reference to the drawings.

【0015】なお、図3に示す従来例と同一部分には、
同一符号を付して説明する。
[0015] Note that the same parts as the conventional example shown in Fig. 3 include:
The description will be given using the same reference numerals.

【0016】この図1に示す変位測定器1は、光を照射
する投光器2を設け、この投光器2から照射される光を
集光するレンズ3を設けている。
The displacement measuring instrument 1 shown in FIG. 1 is provided with a light projector 2 for emitting light, and a lens 3 for condensing the light emitted from the light projector 2.

【0017】そして、このレンズ3の投光器2からの光
軸の反対側には、第1および第2のプリズム11,12
が設けられている。第1のプリズム11は、細長状で一
端は長手方向に対して45°の斜面に切欠かれた反射面
13が形成され、他端は長手方向に垂直の出力端14が
形成されている。そうして、この第1のプリズム11は
、投光器2からの光軸に対して垂直に、かつ、反射面1
3の内面が投光器2に対向し、反射面13にて光軸を9
0°屈折させている。また、第2のプリズム12も第1
のプリズム11と同様に細長状で、第2のプリズム12
は第1のプリズム11より長くなっている。さらに、こ
の第2のプリズム12の一端は第1のプリズム11と同
様に長手方向に対して45°の斜面に切欠かれた反射面
15が形成され、他端は入力端16が形成されている。 そして、この第2のプリズム12は第1のプリズム11
と平行に第1のプリズム11に当接し、第1のプリズム
11の光軸の下側に位置している。
On the opposite side of the lens 3 from the optical axis from the projector 2, there are first and second prisms 11 and 12.
is provided. The first prism 11 has an elongated shape, and one end thereof is formed with a reflective surface 13 cut into a slope at 45° with respect to the longitudinal direction, and the other end is formed with an output end 14 perpendicular to the longitudinal direction. Then, this first prism 11 is perpendicular to the optical axis from the projector 2, and the reflective surface 1
The inner surface of 3 faces the projector 2, and the optical axis is set at 9 with the reflective surface 13.
It is refracted by 0°. Further, the second prism 12 is also
The second prism 12 is elongated like the prism 11 of
is longer than the first prism 11. Furthermore, like the first prism 11, one end of this second prism 12 is formed with a reflective surface 15 cut out on an inclined surface at an angle of 45 degrees with respect to the longitudinal direction, and the other end is formed with an input end 16. . This second prism 12 is the same as the first prism 11.
The first prism 11 contacts the first prism 11 in parallel with the first prism 11, and is located below the optical axis of the first prism 11.

【0018】また、この第2のプリズム12の反射面1
5には、反射された光を再び集光するレンズ5を設け、
このレンズ5で集光された光を受光する受光器としての
ラインセンサ6を設けている。
Furthermore, the reflective surface 1 of this second prism 12
5 is provided with a lens 5 that refocuses the reflected light,
A line sensor 6 is provided as a light receiver that receives the light focused by the lens 5.

【0019】次に、上記実施例の動作について説明する
Next, the operation of the above embodiment will be explained.

【0020】まず、第1のプリズム11および第2のプ
リズム12の他端側を、被測定体21の深穴22に挿入
する。このとき、第1および第2のプリズム11,12
の他端の先端と、深穴22の底部23に接触しないよう
に、間隙を有させる。
First, the other ends of the first prism 11 and the second prism 12 are inserted into the deep hole 22 of the object to be measured 21 . At this time, the first and second prisms 11 and 12
A gap is provided so that the tip of the other end does not come into contact with the bottom 23 of the deep hole 22.

【0021】そして、投光器2からレンズ3を介して第
1のプリズム11の反射面13に光軸を照射する。この
反射面13で光軸は90°屈折され、第1のプリズム1
1内を直線的に透過し、出力端14から照射され底部2
3で反射される。この反射された光は、第2のプリズム
12の入力端16から入力され、第2のプリズム12内
で反射を繰り返されながら反射面15で反射し、レンズ
5で集光しラインセンサ6に結像する。
Then, the optical axis is irradiated from the projector 2 through the lens 3 onto the reflective surface 13 of the first prism 11 . The optical axis is refracted by 90 degrees at this reflective surface 13, and the first prism 1
1 and is irradiated from the output end 14 to the bottom 2.
It is reflected at 3. This reflected light is input from the input end 16 of the second prism 12, is repeatedly reflected within the second prism 12, is reflected by the reflective surface 15, is focused by the lens 5, and is condensed to the line sensor 6. Image.

【0022】このラインセンサ6での結像位置は、等価
的に示した図1と同様の被測定体4の光路と同様に、底
部23の深さに比例して変化するので、このラインセン
サ6は、受光位置にしたがって電気信号を出力し、三角
測量法により変位である深さを検出することができる。
The image forming position on this line sensor 6 changes in proportion to the depth of the bottom 23, similar to the optical path of the object to be measured 4 equivalently shown in FIG. 6 outputs an electric signal according to the light receiving position, and can detect the depth, which is the displacement, by triangulation.

【0023】すなわち、底部23の深さが深いほど反射
角が小さくなり、反対に浅いほど反射角が大きくなるの
で、ラインセンサ6の受光位置は底部23が深いと投光
器2側に近づき、浅いと投光器2から遠のく。
That is, the deeper the bottom 23 is, the smaller the reflection angle is, and conversely, the shallower the bottom 23 is, the larger the reflection angle is. Therefore, the deeper the bottom 23 is, the closer the light receiving position of the line sensor 6 is to the projector 2; Move away from floodlight 2.

【0024】なお、図1に示す変位測定装置1では、P
−Rの光路と、P0−Rの光路とを等しく設定している
ので、較正することなく、第1および第2のプリズム1
1,12を有さない場合と同様に変位を測定することが
できる。
Note that in the displacement measuring device 1 shown in FIG.
Since the optical path of -R and the optical path of P0-R are set equal, the first and second prisms 1 can be adjusted without calibration.
1 and 12, the displacement can be measured in the same manner as in the case without the 1 and 12.

【0025】また、投光器はレーザ光例えば半導体レー
ザ光やその他収斂性の高い光一般を使用してもよい。
Further, the projector may use laser light, such as semiconductor laser light, or other highly convergent light in general.

【0026】また、実施例では光軸の下側に出射する例
を述べたが出射光の方向はこれに限定されない。
Furthermore, in the embodiment, an example was described in which the light is emitted below the optical axis, but the direction of the emitted light is not limited to this.

【0027】さらに、この図1に示す変位測定装置1を
用いて、ブラウン管の電子銃構体のカソードと第2グリ
ッドとの距離を設定する場合を図3を参照して説明する
Further, the case of setting the distance between the cathode of the electron gun assembly of a cathode ray tube and the second grid using the displacement measuring device 1 shown in FIG. 1 will be described with reference to FIG. 3.

【0028】この電子銃構体30は、第1グリッド32
、第2グリッド33、第3グリッド34、第4グリッド
35、第5グリッド36および第6グリッド37が直線
的に接続され、第1グリッド32側にカソード31が接
続されたものである。そして、第1および第2グリッド
32,33の内径41,42が約0.5mm、第3グリ
ッド34の内径43が約2mm、第4ないし第6グリッ
ド35,36,37の内径が約5mmに設定されている
This electron gun assembly 30 has a first grid 32
, a second grid 33, a third grid 34, a fourth grid 35, a fifth grid 36, and a sixth grid 37 are connected linearly, and the cathode 31 is connected to the first grid 32 side. The inner diameters 41, 42 of the first and second grids 32, 33 are about 0.5 mm, the inner diameter 43 of the third grid 34 is about 2 mm, and the inner diameters of the fourth to sixth grids 35, 36, 37 are about 5 mm. It is set.

【0029】そうして、カソード31と第1グリッド3
2との間隔を例えば0.1mm±5μに設定する際、第
1ないし第6グリッド32,33,34,35,36,
37の内径41,42,43,44,45,46に挿入
し、第2グリッド33に対するカソード31の変位を測
定し位置合わせする。
[0029] Then, the cathode 31 and the first grid 3
2, for example, when setting the interval to 0.1 mm ± 5 μ, the first to sixth grids 32, 33, 34, 35, 36,
37, the displacement of the cathode 31 with respect to the second grid 33 is measured and aligned.

【0030】[0030]

【発明の効果】本発明の変位測定器によれば、投光器か
ら照射された光を、第1のプリズムを介して被測定部に
照射し、この被測定部で反射された光を、第2のプリズ
ムを介して受光器に受光させ、三角測量法により被測定
部の変位を測定することにより、周囲の光の障害物の有
無にかかわらず光を遮蔽することなく被測定体で光を反
射できるので、周囲に光の障害物のある深穴の底部の変
位の測定も、非接触、高精度で高速にできる。
Effects of the Invention According to the displacement measuring device of the present invention, the light emitted from the projector is irradiated onto the part to be measured via the first prism, and the light reflected from the part to be measured is transmitted to the second prism. The light is received by the receiver through the prism, and the displacement of the measured part is measured using the triangulation method.The light is reflected by the measured object without blocking the light, regardless of the presence or absence of surrounding light obstructions. This allows for non-contact, high-precision, and high-speed measurement of displacement at the bottom of a deep hole with surrounding optical obstructions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の変位測定器の一実施例を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing an embodiment of a displacement measuring device of the present invention.

【図2】同上変位測定器を用いてブラウン管の電子銃を
測定する説明図である。
FIG. 2 is an explanatory diagram of measuring an electron gun of a cathode ray tube using the displacement measuring device.

【図3】従来例の変位測定器を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional displacement measuring device.

【符号の説明】[Explanation of symbols]

1    変位測定器 2    投光器 6    受光器 11    第1のプリズム 12    第2のプリズム 21    被測定体 1 Displacement measuring device 2 Floodlight 6 Photo receiver 11 First prism 12 Second prism 21 Object to be measured

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光を照射する投光器と、この投光器か
ら照射された光を被測定体に照射させる第1のプリズム
と、この第1のプリズムから照射され前記被測定体で反
射された反射光が入射される第2のプリズムと、この第
2のプリズムからの光を受光し受光位置にしたがって前
記被測定体の変位を測定する受光器とを具備したことを
特徴とする変位測定器。
1. A projector that irradiates light, a first prism that irradiates the object to be measured with the light irradiated from the projector, and reflected light that is irradiated from the first prism and reflected by the object to be measured. A displacement measuring device comprising: a second prism into which light is incident; and a light receiver that receives light from the second prism and measures the displacement of the object according to the light receiving position.
JP10927191A 1991-05-14 1991-05-14 Displacement measurement device Pending JPH04337413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10927191A JPH04337413A (en) 1991-05-14 1991-05-14 Displacement measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10927191A JPH04337413A (en) 1991-05-14 1991-05-14 Displacement measurement device

Publications (1)

Publication Number Publication Date
JPH04337413A true JPH04337413A (en) 1992-11-25

Family

ID=14505941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10927191A Pending JPH04337413A (en) 1991-05-14 1991-05-14 Displacement measurement device

Country Status (1)

Country Link
JP (1) JPH04337413A (en)

Similar Documents

Publication Publication Date Title
EP0279347B1 (en) Optical axis displacement sensor
US7330278B2 (en) Optical displacement measurement device
EP0234562B1 (en) Displacement sensor
JP3947159B2 (en) Sensor device for quick optical distance measurement according to the confocal optical imaging principle
JPH04337413A (en) Displacement measurement device
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JP2828797B2 (en) Measuring method for depth of minute concave surface
JPH06102028A (en) Noncontact optical range finder and range finding method
JPH0587681A (en) Measuring method and apparatus of coating state
JPS60144606A (en) Position measuring device
JPS6262208A (en) Range-finding apparatuws and method
JPS6370110A (en) Distance measuring apparatus
JP2000105107A (en) Method for measuring pipe inserting size of faucet
JPH0357914A (en) Optical probe
JPH11257925A (en) Sensor device
JPH06281415A (en) Displacement measuring device
JP2004028914A (en) Optical displacement sensor
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces
JPH04268404A (en) Measuring apparatus for displacement and measuring apparatus for geometry
KR20050043164A (en) Oct(optical coherence tomography) system using a ccd(charge coupled device) camera
JPH06229822A (en) Photoelectric switch
JPH06102022A (en) Surface displacement gauge
JP2782628B2 (en) Displacement sensor
JPH0262184B2 (en)
JPH0558483B2 (en)