JPH04337308A - Production of block copolymer - Google Patents

Production of block copolymer

Info

Publication number
JPH04337308A
JPH04337308A JP10788291A JP10788291A JPH04337308A JP H04337308 A JPH04337308 A JP H04337308A JP 10788291 A JP10788291 A JP 10788291A JP 10788291 A JP10788291 A JP 10788291A JP H04337308 A JPH04337308 A JP H04337308A
Authority
JP
Japan
Prior art keywords
propylene
polymerization
ethylene
carbon atoms
hydrocarbon residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10788291A
Other languages
Japanese (ja)
Other versions
JP3076619B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Kensei Sasaki
佐々木 建世
Ryuichi Sugimoto
隆一 杉本
Tsutomu Iwatani
岩谷 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP03107882A priority Critical patent/JP3076619B2/en
Publication of JPH04337308A publication Critical patent/JPH04337308A/en
Application granted granted Critical
Publication of JP3076619B2 publication Critical patent/JP3076619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title copolymer having excellent balance of impact resistance and stiffness by polymerizing ethylene with propylene in the presence of a specific transition metal compound and organic aluminum under specific conditions. CONSTITUTION:At first, propylene or propylene or propylene and <=6wt.% ethylene is polymerized in the presence of a transition metal compound expressed by the formula (A is 6-20C substituted cyclopentadienyl; N is Si; R is 1-20C hydrocarbon residue; X is 1-10C hydrocarbon residue or halogen; M is titanium, zirconium or hafnium) and an organoaluminum (preferably used at an amount of 50-5000mol based on the compound expressed by the formula) such as trimethylaluminum so as to become rate of polymerization of 40-95% based on total polymer and then ethylene and propylene having a weight ratio of (10/90)-(95/5) are polymerized so as to become rate of polymerization of 60-5% based on total polymer to provide the objective copolymer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はブロック共重合体の製造
方法に関する。詳しくは特定の触媒を用いてプロピレン
とエチレンをブロック共重合することからなるブロック
共重合体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing block copolymers. Specifically, the present invention relates to a method for producing a block copolymer, which comprises block copolymerizing propylene and ethylene using a specific catalyst.

【0002】0002

【従来技術】ポリプロピレンの耐衝撃性、特に低温での
それを改良する目的で始めにプロピレンを単独で重合し
ついでエチレンとプロピレンを共重合することで耐衝撃
性のプロピレンのブロック共重合体を製造することにつ
いては良く知られており用いる触媒、重合方法により得
られる重合体の物性が異なることから多くの改良がなさ
れ報告されている。
[Prior art] In order to improve the impact resistance of polypropylene, especially at low temperatures, a block copolymer of impact resistant propylene is produced by first polymerizing propylene alone and then copolymerizing ethylene and propylene. This is well known, and many improvements have been made and reported since the physical properties of the resulting polymer vary depending on the catalyst and polymerization method used.

【0003】0003

【発明が解決しようとする課題】上記ブロック共重合に
よる方法によってかなり物性の優れたものが得られるが
、共重合体に対する物性の要求は益々厳しくなっており
さらに物性に優れた共重合体の開発が望まれている。
[Problem to be solved by the invention] Although products with considerably excellent physical properties can be obtained by the above-mentioned block copolymerization method, the requirements for physical properties of copolymers are becoming increasingly strict, and the development of copolymers with even more excellent physical properties. is desired.

【0004】0004

【課題を解決するための手段】本発明者らは上記問題を
解決して耐衝撃性と剛性のバランスに優れた共重合体を
製造する方法について鋭意探索し本発明を完成した。
[Means for Solving the Problems] The present inventors have completed the present invention by intensively searching for a method for solving the above-mentioned problems and producing a copolymer with an excellent balance between impact resistance and rigidity.

【0005】即ち本発明は、下記一般式の化2(式中A
は炭素数6〜20の置換シクロペンタジエニル基、Nは
珪素元素、Rは炭素数1〜20の炭化水素残基、Xは炭
素数1〜10の炭化水素残基あるいはハロゲン原子、M
はチタン、ジルコニウム、ハフニウムから選ばれる金属
原子。)で表される遷移金属化合物と有機アルミニウム
の存在下にはじめにプロピレン単独あるいは6重量%ま
でのエチレンとの共重合体を全重合体の40〜95重量
%になるまで重合しついでエチレンとプロピレンを10
/90〜95/5重量比で全重合体の60〜5重量%と
なる様に重合することを特徴とするブロック共重合体の
製造方法である。
That is, the present invention provides the following general formula (2) (wherein A
is a substituted cyclopentadienyl group having 6 to 20 carbon atoms, N is a silicon element, R is a hydrocarbon residue having 1 to 20 carbon atoms, X is a hydrocarbon residue having 1 to 10 carbon atoms or a halogen atom, M
is a metal atom selected from titanium, zirconium, and hafnium. ) in the presence of a transition metal compound represented by 10
This is a method for producing a block copolymer, which is characterized in that the polymerization is carried out at a weight ratio of /90 to 95/5, which accounts for 60 to 5% by weight of the total polymer.

【0006】[0006]

【化2】 本発明において用いられる遷移金属化合物は、上記一般
式化2で示され、式中Aとしては、炭素数6〜20の置
換シクロペンタジエニル基、好ましくはシクロペンタジ
エニル基の水素の1〜4個を炭素数1〜5のアルキル基
で置換したもの、特に好ましくはシクロペンタジエニル
基の水素の2〜4個をメチル基で置換したものが例示さ
れる。Nは珪素元素であり、Rとしては炭素数1〜20
の炭化水素残基、好ましくは炭素数1〜10の炭化水素
残基、とくに好ましくは炭素数1〜6のアルキル基、ア
リル基が例示される。Xは炭素数1〜10の炭化水素残
基あるいはハロゲン原子であり、炭素数1〜3のアルキ
ル基あるいは塩素が好ましく例示される。Mはチタン、
ジルコニウム、ハフニウムから選ばれる金属原子であり
特に、ジルコニウムあるいはハフニウムが例示される。
embedded image The transition metal compound used in the present invention is represented by the above general formula 2, where A is a substituted cyclopentadienyl group having 6 to 20 carbon atoms, preferably a cyclopentadienyl group. Examples include those in which 1 to 4 hydrogen atoms are substituted with an alkyl group having 1 to 5 carbon atoms, particularly preferably those in which 2 to 4 hydrogen atoms in a cyclopentadienyl group are substituted with a methyl group. N is a silicon element, and R has 1 to 20 carbon atoms.
Examples include hydrocarbon residues, preferably hydrocarbon residues having 1 to 10 carbon atoms, particularly preferably alkyl groups and allyl groups having 1 to 6 carbon atoms. X is a hydrocarbon residue having 1 to 10 carbon atoms or a halogen atom, preferably an alkyl group having 1 to 3 carbon atoms or chlorine. M is titanium,
A metal atom selected from zirconium and hafnium, with particular examples of zirconium and hafnium.

【0007】本発明において使用される有機アルミニウ
ム化合物としてはアルミニウムの縮合体であるアルミノ
キサンが好ましく利用され、重合度として5〜100程
度の線状あるいは環状のアルミノキサン、特にアルキル
基としてメチル基を有するものが好ましく利用される。 ここで、上記遷移金属触媒成分に対するアルミノキサン
の使用割合としては10〜1000000 モル倍、通
常50〜5000モル倍である。
[0007] As the organoaluminum compound used in the present invention, aluminoxane which is a condensate of aluminum is preferably used, and linear or cyclic aluminoxane having a degree of polymerization of about 5 to 100, especially one having a methyl group as an alkyl group. is preferably used. Here, the ratio of aluminoxane used to the above transition metal catalyst component is 10 to 1,000,000 times by mole, usually 50 to 5,000 times by mole.

【0008】また有機アルミニウムとして炭素数1〜1
2のアルキル残基が1〜3個結合したアルキルアルミニ
ウム化合物が好適に用いられ、具体的には、トリメチル
アルミニウム、トリエチルアルミニウム、トリイソプロ
ピルアルミニウム、トリブチルアルミニウム、ジメチル
アルミニウムクロライド、ジエチルアルミニウムクロラ
イド、ジイソプロピルアルミニウムクロライド、ジイソ
プロピルアルミニウムイソプロポキシド、エチルアルミ
ニウムジクロライド、エチルアルミニウムジイソプロポ
キシド等が挙げられる。
[0008] Also, organic aluminum containing 1 to 1 carbon atoms
Alkylaluminum compounds in which 1 to 3 alkyl residues of 2 are bonded are preferably used, and specifically, trimethylaluminum, triethylaluminum, triisopropylaluminium, tributylaluminium, dimethylaluminum chloride, diethylaluminum chloride, diisopropylaluminum chloride. , diisopropylaluminium isopropoxide, ethylaluminum dichloride, ethylaluminum diisopropoxide, and the like.

【0009】これらのアルミニウム化合物のなかでも特
にトリアルキルアルミニウム化合物が好ましく利用され
、この際にはアルキルアルミニウムと安定アニオン、あ
るいはそれを発生する化合物を組み合わせて用いられる
Among these aluminum compounds, trialkyl aluminum compounds are particularly preferably used, and in this case, a combination of an alkyl aluminum and a stable anion, or a compound that generates it, is used.

【0010】ここで安定アニオン、あるいはそれを発生
する化合物としては、カチオンとアニオンのイオン対か
ら形成されるイオン性化合物や親電子性の化合物が挙げ
られる。これらの化合物は通常、ルイス酸化合物として
知られている化合物で、適当なルイス酸性を有しており
、触媒として用いられる中性のメタロセン化合物と反応
してイオン性化合物に変える性質を有することが必要で
、上記一般式化2で表される遷移金属化合物と反応して
、上記一般式化2中Xで示される基が電子対としてルイ
ス酸化合物に移り、遷移金属カチオン化合物を生成なら
しめるものであり、ルイス酸自体あるいはイオン対とな
ったアニオンが、生成した遷移金属カチオン化合物に対
して再結合したり、強く配位して重合活性を不活性化し
ないものである。
Examples of stable anions or compounds that generate them include ionic compounds formed from ion pairs of cations and anions and electrophilic compounds. These compounds are usually known as Lewis acid compounds, and have appropriate Lewis acidity, and have the property of converting into ionic compounds by reacting with neutral metallocene compounds used as catalysts. A compound that is necessary and reacts with the transition metal compound represented by the above general formula 2, and the group represented by X in the above general formula 2 transfers as an electron pair to the Lewis acid compound to generate a transition metal cation compound. The Lewis acid itself or the anion that forms an ion pair does not recombine or strongly coordinate with the generated transition metal cation compound to inactivate the polymerization activity.

【0011】ここで溶液中の遷移金属化合物に対する有
機アルミニウム化合物の使用割合としては、遷移金属原
子に対してアルミニウム原子が1〜100000モル倍
、通常1〜5000モル倍が好ましい。もちろん、これ
以上の過剰の有機アルミニウム化合物を用いても何等問
題はないが、重合の効果は変わらず、また後処理を強化
する必要がある。
The ratio of the organoaluminum compound to the transition metal compound in the solution is preferably 1 to 100,000 times, usually 1 to 5,000 times, the aluminum atom to the transition metal atom. Of course, there is no problem even if an excess of the organoaluminum compound is used, but the polymerization effect remains the same, and it is necessary to strengthen the post-treatment.

【0012】本発明で重合に使用される炭化水素溶媒と
しては例えば、プロパン、ブタン、ペンタン、ヘキサン
、ヘプタン、オクタン、ノナン、デカン、ヘキサデカン
、シクロペンタン、シクロヘキサンなどの脂肪族炭化水
素化合物の他にベンゼン、トルエン、キシレン、エチル
ベンゼンなどの芳香族炭化水素化合物やジエチルエーテ
ル、テトラヒドロフラン等のエーテル化合物あるいはエ
ステル化合物も利用できる。用いる有機アルミニウム化
合物と反応しなければ塩化メチレンなどのハロゲン化炭
化水素化合物も使用できる。
Examples of the hydrocarbon solvent used in the polymerization in the present invention include aliphatic hydrocarbon compounds such as propane, butane, pentane, hexane, heptane, octane, nonane, decane, hexadecane, cyclopentane, and cyclohexane. Aromatic hydrocarbon compounds such as benzene, toluene, xylene, and ethylbenzene, and ether or ester compounds such as diethyl ether and tetrahydrofuran can also be used. Halogenated hydrocarbon compounds such as methylene chloride can also be used if they do not react with the organoaluminum compound used.

【0013】本発明において重要なのは、はじめにプロ
ピレン単独あるいは6重量%までのエチレンとの共重合
体を全重合体の40〜95重量%になるまで重合しつい
でエチレンとプロピレンを10/90〜95/5重量比
で全重合体の60〜5重量%となる様に重合することで
ある。はじめの重合が全重合体の40重量%未満では剛
性が劣り、またエチレン含量が6重量%を越えても剛性
が不良となり好ましくない。分子量としては135℃の
テトラリン溶液で測定した極限粘度が0.5 〜10程
度で、特に0.7 〜5程度であるのが好ましい。また
前段の重合で得られる重合体の13C−NMRで測定し
たアイソタクチックペンタッド分率は0.8 以上、好
ましくは0.9 以上、特に0.95以上であることが
物性のバランスを良好に保つという点で好ましい。
What is important in the present invention is that propylene alone or a copolymer of up to 6% by weight of ethylene is first polymerized to 40 to 95% by weight of the total polymer, and then ethylene and propylene are mixed in a ratio of 10/90 to 95/1. 5% by weight of the total polymer. If the initial polymerization is less than 40% by weight of the total polymer, the rigidity will be poor, and if the ethylene content exceeds 6% by weight, the rigidity will be poor, which is not preferred. As for the molecular weight, it is preferable that the intrinsic viscosity measured in a tetralin solution at 135 DEG C. is about 0.5 to 10, particularly about 0.7 to 5. In addition, the isotactic pentad fraction measured by 13C-NMR of the polymer obtained in the first stage polymerization is 0.8 or more, preferably 0.9 or more, and especially 0.95 or more to obtain a good balance of physical properties. This is preferable in that it keeps the

【0014】また後段の重合に際し、エチレンとプロピ
レンを10/90重量比より小さい比率で重合すると耐
衝撃性が不良であり、また95/5重量比より大きくて
も耐衝撃性が不良となる。分子量としては135℃のテ
トラリン溶液で測定した極限粘度が0.5 〜20程度
、特に1.0 〜10程度であるのが好ましい。
Further, in the subsequent polymerization, if ethylene and propylene are polymerized in a ratio smaller than 10/90 weight ratio, the impact resistance will be poor, and if the weight ratio is larger than 95/5, the impact resistance will be poor. As for the molecular weight, it is preferable that the intrinsic viscosity measured in a tetralin solution at 135 DEG C. is about 0.5 to 20, particularly about 1.0 to 10.

【0015】また重合条件については特に制限はなく不
活性媒体を用いる溶媒重合法、或いは実質的に不活性媒
体の存在しない塊状重合法、気相重合法も利用できる。 重合温度としては−100 〜200 ℃、重合圧力と
しては常圧〜100 kg/cm2 で行うのが一般的
である。好ましくは−100 〜100 ℃、常圧〜5
0kg/cm2 である。
There are no particular limitations on the polymerization conditions, and solvent polymerization using an inert medium, bulk polymerization in which an inert medium is not substantially present, and gas phase polymerization can also be used. Generally, the polymerization temperature is -100 to 200 DEG C., and the polymerization pressure is normal pressure to 100 kg/cm2. Preferably -100 to 100°C, normal pressure to 5
0 kg/cm2.

【0016】また重合に際し10重量%以下の量で炭素
数4以上のα−オレフィン、例えばブテン−1、ペンテ
ン−1、ヘキセン−1、ヘプテン−1、4−メチルペン
テン−1、をプロピレンに変えて用いることで透明性な
どの物性を改良することもできる。10重量%より多い
と物性が不良となり好ましくない。
[0016] Also, during polymerization, α-olefins having 4 or more carbon atoms, such as butene-1, pentene-1, hexene-1, heptene-1, and 4-methylpentene-1, are converted to propylene in an amount of 10% by weight or less. Physical properties such as transparency can also be improved by using it. If it exceeds 10% by weight, the physical properties will be poor, which is not preferable.

【0017】[0017]

【実施例】以下に実施例を示しさらに本発明を説明する
[Examples] The present invention will be further explained by showing examples below.

【0018】実施例1 常法にしたがって合成したジメチルシリルビス(2,4
−ジメチルシクロペンタジエニル)をリチウム化し、四
塩化ジルコニウムと反応することで得たジメチルシリル
ビス(2,4−ジメチルシクロペンタジエニル)ジルコ
ニウムジクロリド1mgをトルエン10mlに溶解し、
メチルアルミノキサン(東ソー・アクゾ製)670mg
 を加えて触媒成分溶液とし、プロピレンを1.5kg
 挿入した容積5 リットルのオートクレーブに挿入し
た。ついで内温を15℃に保ちながら2 時間重合した
。ついでエチレンを5 kg/cm2−Gまで追加し内
温を30℃としてエチレン分圧を保ちながら10分間重
合した。
Example 1 Dimethylsilylbis(2,4
1 mg of dimethylsilylbis(2,4-dimethylcyclopentadienyl) zirconium dichloride obtained by lithiation of (dimethylcyclopentadienyl) and reacting with zirconium tetrachloride is dissolved in 10 ml of toluene,
Methylaluminoxane (manufactured by Tosoh Akzo) 670mg
to make a catalyst component solution, and 1.5 kg of propylene
It was inserted into an autoclave with a volume of 5 liters. Then, polymerization was carried out for 2 hours while maintaining the internal temperature at 15°C. Then, ethylene was added to 5 kg/cm2-G, the internal temperature was raised to 30 DEG C., and polymerization was carried out for 10 minutes while maintaining the ethylene partial pressure.

【0019】重合終了後未反応のモノマーをパージし、
内容物を取り出し、乾燥してポリマーを456 g得た
。135 ℃テトラリン溶液で測定した極限粘度(以下
、ηと記す)は1.48、エチレン含量は5.6 重量
%であった。2,6−ジ−t−ブチル−4−メチルフェ
ノールを加え造粒したものの230 ℃でのメルトフロ
ーインデックス(ASTM D1238)は8.7 で
あった。また厚さ1mm のシートを作成して、引張降
伏点応力(ASTM D−638)、曲げ剛性度(AS
TM D747) 、アイゾット衝撃強度(ASTM 
D256(−10 ℃、23℃))を測定したところそ
れぞれ238kg/cm2 、7200kg/cm2、
48kg・cm/cm 、38kg・cm/cm であ
った。なお、プロピレン単独重合が終わったところで重
合をやめてポリマーを取り出し13C−NMRで測定し
たところアイソタクチックペンタッド分率は0.97で
あった。またモデル重合で算出した共重合部は42重量
%であった。
After completion of polymerization, unreacted monomers are purged,
The contents were taken out and dried to obtain 456 g of polymer. The intrinsic viscosity (hereinafter referred to as η) measured with a tetralin solution at 135° C. was 1.48, and the ethylene content was 5.6% by weight. The melt flow index (ASTM D1238) at 230° C. of the product granulated by adding 2,6-di-t-butyl-4-methylphenol was 8.7. In addition, a sheet with a thickness of 1 mm was prepared, and the tensile yield point stress (ASTM D-638) and bending stiffness (AS
TM D747), Izod impact strength (ASTM
D256 (-10°C, 23°C) was measured to be 238 kg/cm2, 7200 kg/cm2, respectively.
They were 48 kg·cm/cm 2 and 38 kg·cm/cm 2 . When the propylene homopolymerization was completed, the polymerization was stopped and the polymer was taken out and measured by 13C-NMR, and the isotactic pentad fraction was found to be 0.97. Further, the copolymerized portion calculated by model polymerization was 42% by weight.

【0020】比較例1 触媒として市販の高活性三塩化チタン触媒( 丸紅ソル
ベー社(株)TG21)100mg とジエチルアルミ
ニウムクロリド1ml を用い、重合温度を、プロピレ
ン単独での重合を65℃、エチレンとの共重合を50℃
とし、さらにプロピレン単独での重合の際には水素を5
.5NL 用いた。共重合の時間を30分、45分、6
0分としてエチレン含量、11.5% 、14.8% 
、18.6% の3種のエチレン含量の共重合体を合成
し同様に評価した。メルトフローインデックス、引張降
伏点応力、曲げ剛性度、アイゾット衝撃強度(−10℃
、23℃) はそれぞれ、エチレン含量11.5% の
ものは9.5g/10min、285kg/cm2 、
9800kg/cm2、7.2 kg・cm/cm 、
3.2kg ・cm/cm 、エチレン含量14.8%
 のものは8.1g/10min、235kg/cm2
 、6800kg/cm2、14.5 kg ・cm/
cm 、4.5kg ・cm/cm 、エチレン含量1
8.6% のものは6.9g/10min、165kg
/cm2 、5100kg/cm2、22.5 kg 
・cm/cm 、16.3kg・cm/cm であり、
プロピレン単独重合部で得たポリプロピレンのアイソタ
クチックペンタッド分率は0.97であり、MW/MN
 は6.5 であった。
Comparative Example 1 Using 100 mg of a commercially available highly active titanium trichloride catalyst (TG21, manufactured by Marubeni Solvay Co., Ltd.) and 1 ml of diethylaluminium chloride, the polymerization temperature was changed to 65°C for propylene alone, and 65°C for polymerization with ethylene. Copolymerization at 50℃
In addition, when polymerizing propylene alone, hydrogen is added to 5
.. 5NL was used. Copolymerization time: 30 minutes, 45 minutes, 6
Ethylene content as 0 minutes, 11.5%, 14.8%
, 18.6%, three types of copolymers with ethylene contents were synthesized and similarly evaluated. Melt flow index, tensile yield point stress, bending stiffness, Izod impact strength (-10℃
, 23°C) with 11.5% ethylene content: 9.5g/10min, 285kg/cm2,
9800kg/cm2, 7.2 kg・cm/cm,
3.2kg・cm/cm, ethylene content 14.8%
The one is 8.1g/10min, 235kg/cm2
, 6800kg/cm2, 14.5 kg・cm/
cm, 4.5kg・cm/cm, ethylene content 1
8.6% is 6.9g/10min, 165kg
/cm2, 5100kg/cm2, 22.5 kg
・cm/cm, 16.3kg・cm/cm,
The isotactic pentad fraction of polypropylene obtained from the propylene homopolymerization part is 0.97, and MW/MN
was 6.5.

【0021】実施例2 エチレンとの共重合をエチレン分圧8kg/cm2−G
 とし5 分間重合したところエチレン含量8.2 重
量%の物を得た。 同様に物性を測定したところメルトフローインデックス
、引張降伏点応力、曲げ剛性度、アイゾット衝撃強度(
−10℃、23℃) はそれぞれ、6.2g/10mi
n、285kg/cm2 、9800kg/cm2、2
4.9 kg ・cm/cm 、8.5kg ・cm/
cm であった。なお、プロピレン単独重合が終わった
ところで重合をやめてポリマーを取り出し13C−NM
Rで測定したところアイソタクチックペンタッド分率は
0.97であった。 またモデル重合で算出した共重合部は25重量%であっ
た。
Example 2 Copolymerization with ethylene was carried out at an ethylene partial pressure of 8 kg/cm2-G.
After polymerization for 5 minutes, a product with an ethylene content of 8.2% by weight was obtained. Physical properties were similarly measured, including melt flow index, tensile yield point stress, bending stiffness, and Izod impact strength (
-10℃, 23℃) are 6.2g/10mi, respectively.
n, 285kg/cm2, 9800kg/cm2, 2
4.9kg・cm/cm, 8.5kg・cm/
It was cm. In addition, when the propylene homopolymerization is completed, the polymerization is stopped and the polymer is taken out and 13C-NM
The isotactic pentad fraction measured by R was 0.97. Further, the copolymerized portion calculated by model polymerization was 25% by weight.

【0022】[0022]

【発明の効果】本発明の方法を実施することにより物性
バランスに優れた共重合体を得ることができ工業的に極
めて価値がある。
[Effects of the Invention] By carrying out the method of the present invention, a copolymer having an excellent balance of physical properties can be obtained, which is extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の理解を助けるためのフロー図である。FIG. 1 is a flow diagram to aid understanding of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  下記一般式の化1(式中Aは炭素数6
〜20の置換シクロペンタジエニル基、Nは珪素元素、
Rは炭素数1〜20の炭化水素残基、Xは炭素数1〜1
0の炭化水素残基あるいはハロゲン原子、Mはチタン、
ジルコニウム、ハフニウムから選ばれる金属原子。)で
表される遷移金属化合物と有機アルミニウムの存在下に
はじめにプロピレン単独あるいは6重量%までのエチレ
ンとの共重合体を全重合体の40〜95重量%になるま
で重合しついでエチレンとプロピレンを10/90〜9
5/5重量比で全重合体の60〜5重量%となる様に重
合することを特徴とするブロック共重合体の製造方法。 【化1】
[Claim 1] Chemical formula 1 of the following general formula (wherein A is 6 carbon atoms)
~20 substituted cyclopentadienyl groups, N is silicon element,
R is a hydrocarbon residue having 1 to 20 carbon atoms, and X is a hydrocarbon residue having 1 to 1 carbon atoms.
0 hydrocarbon residue or halogen atom, M is titanium,
A metal atom selected from zirconium and hafnium. ) in the presence of a transition metal compound represented by 10/90-9
A method for producing a block copolymer, which comprises polymerizing the block copolymer at a weight ratio of 5/5 to 60 to 5% by weight of the total polymer. [Chemical formula 1]
【請求項2】  置換シクロペンタジエニル基がシクロ
ペンタジエニル基の1〜5個の水素が炭化水素残基で置
換したものである請求項1記載の方法。
2. The method according to claim 1, wherein the substituted cyclopentadienyl group is one in which 1 to 5 hydrogen atoms of the cyclopentadienyl group are replaced with hydrocarbon residues.
JP03107882A 1991-05-14 1991-05-14 Method for producing block copolymer Expired - Lifetime JP3076619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03107882A JP3076619B2 (en) 1991-05-14 1991-05-14 Method for producing block copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03107882A JP3076619B2 (en) 1991-05-14 1991-05-14 Method for producing block copolymer

Publications (2)

Publication Number Publication Date
JPH04337308A true JPH04337308A (en) 1992-11-25
JP3076619B2 JP3076619B2 (en) 2000-08-14

Family

ID=14470476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03107882A Expired - Lifetime JP3076619B2 (en) 1991-05-14 1991-05-14 Method for producing block copolymer

Country Status (1)

Country Link
JP (1) JP3076619B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027740A1 (en) * 1994-04-11 1995-10-19 Mitsui Petrochemical Industries, Ltd. Process for producing propylene polymer composition, and propylene polymer composition
WO1995027741A1 (en) 1994-04-11 1995-10-19 Mitsui Petrochemical Industries, Ltd. Process for producing propylene polymer composition, and propylene polymer composition
JPH0848835A (en) * 1994-08-08 1996-02-20 Mitsui Toatsu Chem Inc Deterioration-resistant thermoplastic resin composition
WO1998034971A1 (en) * 1997-02-07 1998-08-13 Exxon Chemical Patents Inc. Propylene polymers incorporating polyethylene macromers
EP0863183A1 (en) 1995-11-24 1998-09-09 Chisso Corporation Propylene composition, process for preparing the same, polypropylene composition, and molded articles
US5874505A (en) * 1996-12-02 1999-02-23 Chisso Corporation Polypropylene composition
WO1999014270A1 (en) * 1997-09-18 1999-03-25 Chisso Corporation Polypropylene composition
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6207756B1 (en) 1998-03-04 2001-03-27 Exxon Chemical Patents, Inc. Product and method for making polyolefin polymer dispersions
US6319998B1 (en) 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors
US6329477B1 (en) 1998-03-04 2001-12-11 Exxonmobil Chemical Patents Inc. Method for increasing diene conversion in EPDM type polymerizations
US6337372B1 (en) 1998-08-04 2002-01-08 Chisso Corporation Propylene/propylene/olefin block copolymer and process for producing the same
US6555635B2 (en) 1997-02-07 2003-04-29 Exxonmobil Chemical Patents Inc. Preparation of vinyl-containing macromers
US6649659B1 (en) 1992-12-24 2003-11-18 Smithkline Beecham Corporation Atovaquone pharmaceutical compositions
WO2007013585A1 (en) 2005-07-29 2007-02-01 Japan Polypropylene Corporation Propylene block copolymer and process for production thereof
JP2007056251A (en) * 2005-07-29 2007-03-08 Japan Polypropylene Corp Propylene block copolymer
WO2007034915A1 (en) 2005-09-22 2007-03-29 Japan Polypropylene Corporation Propylene resin composition
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
JP2007284584A (en) * 2006-04-18 2007-11-01 Japan Polypropylene Corp Production method of propylene block copolymer
US8461365B2 (en) 2008-12-17 2013-06-11 Japan Polypropylene Corporation Metallocene complex and polymerization method of olefin
WO2014069391A1 (en) 2012-11-01 2014-05-08 日本ポリプロ株式会社 Metallocene complex and olefin polymerization method
US9783625B2 (en) 2013-02-27 2017-10-10 Japan Polyethylene Corporation Metallocene compound, catalyst for olefin polymer, method for producing olefin polymer, and olefin polymer
US9963522B2 (en) 2014-03-20 2018-05-08 Japan Polypropylene Corporation Metallocene complex and method for producing olefin polymer

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649659B1 (en) 1992-12-24 2003-11-18 Smithkline Beecham Corporation Atovaquone pharmaceutical compositions
US5969049A (en) * 1994-04-11 1999-10-19 Mitsui Chemicals, Inc. Process for preparing propylene polymer composition and propylene polymer composition
WO1995027741A1 (en) 1994-04-11 1995-10-19 Mitsui Petrochemical Industries, Ltd. Process for producing propylene polymer composition, and propylene polymer composition
US5753769A (en) * 1994-04-11 1998-05-19 Mitsui Petrochemical Industries, Ltd. Process for preparing propylene polymer composition and propylene polymer composition
WO1995027740A1 (en) * 1994-04-11 1995-10-19 Mitsui Petrochemical Industries, Ltd. Process for producing propylene polymer composition, and propylene polymer composition
JPH0848835A (en) * 1994-08-08 1996-02-20 Mitsui Toatsu Chem Inc Deterioration-resistant thermoplastic resin composition
EP0863183A1 (en) 1995-11-24 1998-09-09 Chisso Corporation Propylene composition, process for preparing the same, polypropylene composition, and molded articles
EP0863183B2 (en) 1995-11-24 2008-05-28 Chisso Corporation Propylene composition, process for preparing the same, polypropylene composition, and molded articles
US5874505A (en) * 1996-12-02 1999-02-23 Chisso Corporation Polypropylene composition
US6147180A (en) * 1997-02-07 2000-11-14 Exxon Chemical Patents Inc. Thermoplastic elastomer compositions from branched olefin copolymers
US6660809B1 (en) 1997-02-07 2003-12-09 Exxonmobil Chemical Patents Inc. Propylene polymers incorporating polyethylene macromers
WO1998034971A1 (en) * 1997-02-07 1998-08-13 Exxon Chemical Patents Inc. Propylene polymers incorporating polyethylene macromers
US6555635B2 (en) 1997-02-07 2003-04-29 Exxonmobil Chemical Patents Inc. Preparation of vinyl-containing macromers
WO1999014270A1 (en) * 1997-09-18 1999-03-25 Chisso Corporation Polypropylene composition
US6423793B1 (en) 1997-12-10 2002-07-23 Exxonmobil Chemical Patents Inc. Elastomeric propylene polymers
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6329477B1 (en) 1998-03-04 2001-12-11 Exxonmobil Chemical Patents Inc. Method for increasing diene conversion in EPDM type polymerizations
US6319998B1 (en) 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors
US6207756B1 (en) 1998-03-04 2001-03-27 Exxon Chemical Patents, Inc. Product and method for making polyolefin polymer dispersions
US6337372B1 (en) 1998-08-04 2002-01-08 Chisso Corporation Propylene/propylene/olefin block copolymer and process for producing the same
US7875682B2 (en) 2005-07-29 2011-01-25 Japan Polypropylene Corporation Propylene block copolymer and process for production thereof
WO2007013585A1 (en) 2005-07-29 2007-02-01 Japan Polypropylene Corporation Propylene block copolymer and process for production thereof
JP2007056251A (en) * 2005-07-29 2007-03-08 Japan Polypropylene Corp Propylene block copolymer
WO2007034915A1 (en) 2005-09-22 2007-03-29 Japan Polypropylene Corporation Propylene resin composition
JP2007284584A (en) * 2006-04-18 2007-11-01 Japan Polypropylene Corp Production method of propylene block copolymer
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
US7906599B2 (en) 2006-04-19 2011-03-15 Japan Polypropylene Corporation Transition metal compound, catalyst for olefin polymerization containing the same, and method for producing propylene/ethylene-α-olefin block copolymer by using the catalyst
US8461365B2 (en) 2008-12-17 2013-06-11 Japan Polypropylene Corporation Metallocene complex and polymerization method of olefin
WO2014069391A1 (en) 2012-11-01 2014-05-08 日本ポリプロ株式会社 Metallocene complex and olefin polymerization method
US9902749B2 (en) 2012-11-01 2018-02-27 Japan Polypropylene Corporation Metallocene complex and olefin polymerization method
US9783625B2 (en) 2013-02-27 2017-10-10 Japan Polyethylene Corporation Metallocene compound, catalyst for olefin polymer, method for producing olefin polymer, and olefin polymer
US10005864B2 (en) 2013-02-27 2018-06-26 Japan Polyethylene Corporation Metallocene compound, catalyst for olefin polymer, method for producing olefin polymer, and olefin polymer
US9963522B2 (en) 2014-03-20 2018-05-08 Japan Polypropylene Corporation Metallocene complex and method for producing olefin polymer

Also Published As

Publication number Publication date
JP3076619B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
JP3076619B2 (en) Method for producing block copolymer
US6372930B1 (en) Polymeric ligands, polymeric metallocenes, catalyst systems, preparation, and use
JP2818199B2 (en) Syndiotactic polypropylene resin composition and method for producing the same
NO172544B (en) SOLID CATALYST COMPONENT FOR OLEPHINE COPY POLYMERIZATION AND PROCEDURE FOR OLEPHINE COPY POLYMERIZATION USING THE SOLID CATALYST COMPONENT
JP3357186B2 (en) Method for producing propylene block copolymer
US4212961A (en) Process for producing soft resins
EP0979247B1 (en) Process for producing isotactic polypropylenes in condensed phase using titanocenes
JP2854886B2 (en) Propylene and butene copolymer
JPH07649B2 (en) Method for producing catalyst component for olefin polymerization
JPH06172414A (en) Production of propylene block copolymer
US5081190A (en) Block copolymer of propylene and a process for the production thereof
JP4524275B2 (en) A vinyl group- and polar group-containing propylene copolymer and a method for producing a polymer using the same.
AU651161B2 (en) Ethylene-propylene copolymer compositions
JP2733060B2 (en) Propylene copolymer composition
JP3473144B2 (en) Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer
JPH0625357A (en) New propylene based copolymer and its production
JP3582209B2 (en) Propylene (co) polymer composition and method for producing the same
JP2981262B2 (en) How to crosslink polypropylene
JPH04258652A (en) High-impact polypropylene resin composition
JPH1025323A (en) Production of alpha-olefin block copolymer
JPH06228223A (en) Solid catalyst component for olefin polymerization, catalyst composed of the catalyst component and production of olefin polymer using the catalyst
JP3531304B2 (en) Olefin (co) polymerization catalyst and method for producing olefin (co) polymer
JPS62161810A (en) Production of propylene block copolymer
JPS59126401A (en) Production of solid catalyst component for olefin polymerization
JPS6330507A (en) Production of ehylene copolymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

EXPY Cancellation because of completion of term