JPH04336455A - Highly strong lead frame member - Google Patents
Highly strong lead frame memberInfo
- Publication number
- JPH04336455A JPH04336455A JP13723991A JP13723991A JPH04336455A JP H04336455 A JPH04336455 A JP H04336455A JP 13723991 A JP13723991 A JP 13723991A JP 13723991 A JP13723991 A JP 13723991A JP H04336455 A JPH04336455 A JP H04336455A
- Authority
- JP
- Japan
- Prior art keywords
- lead frame
- strength
- frame material
- alloy
- work hardening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 28
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 11
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 239000006104 solid solution Substances 0.000 claims abstract description 7
- 238000005482 strain hardening Methods 0.000 abstract description 9
- 238000005097 cold rolling Methods 0.000 abstract description 4
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 238000005096 rolling process Methods 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はIC(集積回路)などの
リードフレームとして用いられるリードフレーム材の改
良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in lead frame materials used as lead frames for ICs (integrated circuits) and the like.
【0002】0002
【従来の技術】ICなどのリードフレーム材は、一般に
熱膨張係数の小さいFe−Ni合金、例えばFe−42
Ni合金などのインバーが用いられているが、ICの小
型化、高集積化などに伴い、リードフレーム材の板厚を
薄くしたりリードフレーム材を打ち抜いたリードの幅を
狭くしたりすることが望まれている。例えば、リードフ
レーム材の板厚については、従来0.25mmであった
ものを0.1〜0.15mm程度まで薄くするのである
。[Prior Art] Lead frame materials such as ICs are generally made of Fe-Ni alloys with a small coefficient of thermal expansion, such as Fe-42.
Invar, such as Ni alloy, is used, but as ICs become smaller and more highly integrated, it becomes necessary to reduce the thickness of the lead frame material and narrow the width of the leads punched out of the lead frame material. desired. For example, the thickness of the lead frame material, which was conventionally 0.25 mm, will be reduced to about 0.1 to 0.15 mm.
【0003】0003
【発明が解決しようとする課題】しかしながら、このよ
うにリードフレーム材を薄くしたりリードの幅を狭くし
たりすると十分な強度が得られなくなるという問題があ
った。なお、従来から冷間圧延などにより加工硬化させ
て高強度化することが行われているが、例えばビッカー
ス硬さで250以上、引張強さで90(kgf/mm2
)以上を実現しようとすると、圧延率を著しく大きく
する必要があり、異方性が生じてその後の打抜き加工や
曲げ加工などに支障を来すのである。[Problems to be Solved by the Invention] However, when the lead frame material is made thinner or the lead width is made narrower, there is a problem that sufficient strength cannot be obtained. In addition, conventionally, work hardening by cold rolling etc. has been carried out to increase the strength.
) In order to achieve the above, it is necessary to significantly increase the rolling rate, which causes anisotropy and causes problems in subsequent punching, bending, etc.
【0004】本発明は以上の事情を背景として為された
もので、その目的とするところは、加工硬化のための圧
延率等をそれ程大きくすることなく実用上十分な強度が
得られるようにすることにある。The present invention has been made against the background of the above circumstances, and its purpose is to provide a material with sufficient strength for practical use without significantly increasing the rolling rate etc. for work hardening. There is a particular thing.
【0005】[0005]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、熱膨張係数が小さいFe−Ni合金を
加工硬化させて高強度化するリードフレーム材において
、前記Fe−Ni合金にNb,Zr,Mo,Taのうち
少なくとも一つを固溶強化元素として添加したことを特
徴とする。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a lead frame material in which an Fe-Ni alloy having a small coefficient of thermal expansion is work-hardened to have high strength. It is characterized in that at least one of Nb, Zr, Mo, and Ta is added as a solid solution strengthening element.
【0006】[0006]
【作用および発明の効果】すなわち、Fe−Ni合金に
Nb,Zr,Mo,またはTaを添加すると、それ等の
元素の固溶強化によって硬さや引張強さなどが向上し、
加工硬化のための圧延率等をそれ程大きくすることなく
リードフレーム材として実用上十分な強度が得られるよ
うになるのであり、これにより、リードフレーム材の板
厚を薄くしたりリードの幅を狭くしたりして高密度化を
図ることが可能となる。また、加工硬化のための圧延率
等をそれ程大きくする必要がないことから、異方性など
による加工性の低下を招く恐れがなく、リードフレーム
として用いる際の打抜き加工や曲げ加工が良好に行われ
る利点がある。[Operation and Effects of the Invention] That is, when Nb, Zr, Mo, or Ta is added to a Fe-Ni alloy, the hardness and tensile strength are improved due to the solid solution strengthening of these elements.
It becomes possible to obtain sufficient strength for practical use as a lead frame material without increasing the rolling rate for work hardening, etc., and this makes it possible to reduce the thickness of the lead frame material and narrow the lead width. This makes it possible to achieve higher density. In addition, since there is no need to increase the rolling rate etc. for work hardening, there is no risk of deterioration in workability due to anisotropy, etc., and punching and bending processes when used as lead frames can be performed well. It has the advantage of being
【0007】ここで、上記Fe−Ni合金としては、従
来から多用されているFe−42Ni合金やFe−36
Ni合金など、Niを40wt%前後含むものが好適に
用いられる。また、Nb,Zr,Mo,およびTaの添
加量は、Fe−Ni合金の種類によっても異なるが、N
bおよびZrについては1.5(wt%)程度以上、M
oおよびTaについては2.0(wt%)程度以上が望
ましく、加工硬化のための圧延率40%程度でビッカー
ス硬さ250以上、引張強さ90(kgf/mm2 )
以上を実現できる。なお、これ等の固溶強化元素を複数
種類添加することも可能で、その場合には各元素の添加
量は上記数値より少なくて良く、例えばNbおよびZr
を添加する場合にはその合計が1.5(wt%)程度以
上、MoおよびTaを添加する場合にはその合計が2.
0(wt%)程度以上であれば良い。[0007] Here, as the above-mentioned Fe-Ni alloy, Fe-42Ni alloy and Fe-36
A material containing approximately 40 wt% of Ni, such as a Ni alloy, is preferably used. Additionally, the amounts of Nb, Zr, Mo, and Ta added vary depending on the type of Fe-Ni alloy;
For b and Zr, about 1.5 (wt%) or more, M
o and Ta are preferably about 2.0 (wt%) or more, and at a rolling rate of about 40% for work hardening, the Vickers hardness is 250 or more and the tensile strength is 90 (kgf/mm2).
The above can be achieved. It is also possible to add multiple types of these solid solution strengthening elements, and in that case, the amount of each element added may be less than the above numerical value, for example, Nb and Zr.
When Mo and Ta are added, the total amount is about 1.5 (wt%) or more, and when Mo and Ta are added, the total amount is about 2.5% (wt%) or more.
It is sufficient if it is about 0 (wt%) or more.
【0008】[0008]
【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.
【0009】図1〜図3は、Fe−42NiにNb,Z
r,Mo,Taをそれぞれ1.0(wt%),2.0(
wt%) ,3.0(wt%)添加して試作したリード
フレーム材のビッカース硬さ,引張強さ,0.2%耐力
を示す図である。かかるリードフレーム材は、図4に従
って製造され、先ず、上記所定の組成となるように用意
した原料を溶解してインゴットを作り、これを1000
〜1200℃程度で熱間圧延して厚さ3〜5mm程度の
板材とする。その後、冷間圧延および真空焼鈍を3回繰
り返して板厚を0.25mmまで薄くした。真空焼鈍は
、冷間圧延によって発生した異方性や内部応力の除去等
を目的として行うもので、1000℃に2分間保持して
徐冷した。そして、最後に圧延前の板厚をT1 、圧延
後の板厚をT2 とした場合の圧延率{(T1 −T2
)/T1 }×100が40%の冷間圧延を施して加
工硬化させるとともに、目的とする板厚0.15mmの
リードフレーム材を得た。FIGS. 1 to 3 show Fe-42Ni with Nb and Z
r, Mo, and Ta were 1.0 (wt%) and 2.0 (
2 is a diagram showing the Vickers hardness, tensile strength, and 0.2% yield strength of a lead frame material prototyped with the addition of 3.0 (wt%). Such a lead frame material is manufactured according to FIG.
It is hot-rolled at about ~1200°C to form a plate material with a thickness of about 3-5 mm. Thereafter, cold rolling and vacuum annealing were repeated three times to reduce the plate thickness to 0.25 mm. Vacuum annealing was performed for the purpose of removing anisotropy and internal stress generated by cold rolling, and was slowly cooled by holding at 1000° C. for 2 minutes. Finally, the rolling ratio {(T1 − T2
)/T1 }×100 of 40% to work harden the material, and obtain a lead frame material having a target thickness of 0.15 mm.
【0010】図1〜図3において、「×」印は上記添加
元素を含まないFe−42Niから上記と同様にしてリ
ードフレーム材を製造した場合の値であり、Nb,Zr
,Mo,またはTaを添加して製造したリードフレーム
材は、それ等の元素による固溶強化によってビッカース
硬さ,引張強さ,0.2%耐力の何れについてもFe−
42Niに比べて高い値が得られることが判る。特に、
NbおよびZrについては1.5(wt%)程度以上、
MoおよびTaについては2.0(wt%)程度以上添
加すれば、ビッカース硬さは約250以上になるととも
に引張強さは約90(kgf/mm2 )以上となり、
板厚0.15mmでもリードフレーム材として実用上十
分な強度が得られる。[0010] In Figs. 1 to 3, the "x" mark indicates the value when lead frame material was manufactured in the same manner as above from Fe-42Ni that does not contain the above-mentioned additive elements.
Lead frame materials manufactured by adding , Mo, or Ta have improved Vickers hardness, tensile strength, and 0.2% yield strength due to solid solution strengthening by these elements.
It can be seen that a higher value can be obtained compared to 42Ni. especially,
About 1.5 (wt%) or more for Nb and Zr,
If about 2.0 (wt%) or more of Mo and Ta are added, the Vickers hardness will be about 250 or more and the tensile strength will be about 90 (kgf/mm2) or more.
Even with a plate thickness of 0.15 mm, sufficient strength for practical use as a lead frame material can be obtained.
【0011】また、加工硬化のための圧延率は40%で
それ程大きくないため、異方性などによる加工性の低下
を招く恐れがなく、リードフレームとして用いる際の打
抜き加工や曲げ加工が良好に行われる。In addition, since the rolling rate for work hardening is 40%, which is not so large, there is no risk of deterioration of workability due to anisotropy, etc., and punching and bending work when used as a lead frame can be performed well. It will be done.
【0012】なお、上例では固溶強化元素としてNb,
Zr,Mo,Taをそれぞれ1.0(wt%),2.0
(wt%) ,3.0(wt%)添加した場合について
説明したが、これ等の添加量を適宜変更できることは勿
論である。但し、Fe−42Niの基本特性を損なわな
いように、それ等の添加量は約5(wt%)以下に止め
ることが望ましい。[0012] In the above example, Nb,
Zr, Mo, and Ta were 1.0 (wt%) and 2.0, respectively.
(wt%), 3.0 (wt%) has been described, but it goes without saying that the amounts added can be changed as appropriate. However, in order not to impair the basic properties of Fe-42Ni, it is desirable to limit the amount of these additions to about 5 (wt%) or less.
【0013】また、上例では加工硬化のための圧延率が
40%であったが、異方性等による加工性の低下を招か
ない範囲で圧延率を変更することは差支えない。最終的
なリードフレーム材の板厚も0.15mmに限定される
ものではない。Further, in the above example, the rolling rate for work hardening was 40%, but the rolling rate may be changed within a range that does not cause deterioration of workability due to anisotropy or the like. The thickness of the final lead frame material is not limited to 0.15 mm either.
【0014】また、上記固溶強化元素に加えて析出硬化
型の元素等を添加することによりリードフレーム材を更
に高強度化することもできる。[0014] Furthermore, the strength of the lead frame material can be further increased by adding precipitation hardening elements in addition to the above solid solution strengthening elements.
【0015】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。Although no other examples are given, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.
【図1】本発明に係る複数種類のリードフレーム材のビ
ッカース硬さを示す図である。FIG. 1 is a diagram showing the Vickers hardness of multiple types of lead frame materials according to the present invention.
【図2】本発明に係る複数種類のリードフレーム材の引
張強さを示す図である。FIG. 2 is a diagram showing the tensile strength of multiple types of lead frame materials according to the present invention.
【図3】本発明に係る複数種類のリードフレーム材の0
.2%耐力を示す図である。FIG. 3: Zero of multiple types of lead frame materials according to the present invention.
.. It is a figure showing 2% yield strength.
【図4】図1乃至図3のリードフレーム材の製造手順を
示す図である。4 is a diagram showing a manufacturing procedure for the lead frame material shown in FIGS. 1 to 3. FIG.
Claims (1)
加工硬化させて高強度化するリードフレーム材において
、前記Fe−Ni合金にNb,Zr,Mo,Taのうち
少なくとも一つを固溶強化元素として添加したことを特
徴とする高強度リードフレーム材。1. A lead frame material in which a Fe-Ni alloy with a small coefficient of thermal expansion is work-hardened to increase its strength, wherein the Fe-Ni alloy is solid solution strengthened with at least one of Nb, Zr, Mo, and Ta. A high-strength lead frame material characterized by the addition of elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13723991A JP2907240B2 (en) | 1991-05-13 | 1991-05-13 | High strength lead frame material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13723991A JP2907240B2 (en) | 1991-05-13 | 1991-05-13 | High strength lead frame material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04336455A true JPH04336455A (en) | 1992-11-24 |
JP2907240B2 JP2907240B2 (en) | 1999-06-21 |
Family
ID=15194029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13723991A Expired - Lifetime JP2907240B2 (en) | 1991-05-13 | 1991-05-13 | High strength lead frame material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2907240B2 (en) |
-
1991
- 1991-05-13 JP JP13723991A patent/JP2907240B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2907240B2 (en) | 1999-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2008023734A1 (en) | Fe-based alloy and manufacturing method thereof | |
JPH04336455A (en) | Highly strong lead frame member | |
JPH0625395B2 (en) | High-strength leadframe material and manufacturing method thereof | |
US5246511A (en) | High-strength lead frame material and method of producing same | |
JPH0472037A (en) | High strength and low thermal expansion alloy and its manufacture | |
JPS6021331A (en) | Production of low thermally expanding fe-ni alloy sheet | |
JP2001247938A (en) | Austenitic stainless steel sheet for electronic equipment component | |
US4442067A (en) | Material for semiconductor holder in electron beam writing apparatus | |
JPH04231419A (en) | Production of lead frame material | |
JPH04180542A (en) | High strength material reduced in thermal expansion | |
JP3000154B2 (en) | Lead frame material manufacturing method | |
JPS62120453A (en) | Ni-metal material for nitriding | |
JPS62156258A (en) | Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability | |
JPH04221039A (en) | Alloy material for lead frame and its production | |
JPH04191316A (en) | Manufacture of lead frame material | |
JPS62149851A (en) | Electronic parts material and its production | |
JPH04224630A (en) | Manufacture of lead frame material | |
JP3506289B2 (en) | Fe-Ni-based alloy sheet for electronic parts and method for producing the same | |
JPH03197646A (en) | Lead frame material | |
JP3383549B2 (en) | Method for producing Fe-Ni alloy thin plate | |
JPH04191317A (en) | Manufacture of lead frame material | |
JPH07216509A (en) | High strength lead frame material and its production | |
JPH06271990A (en) | Lead frame material and its production | |
JP2000265250A (en) | LOW THERMAL EXPANSION Fe-Ni ALLOY SHEET AND SHADOW MASK AND COLOR PICTURE TUBE USING THE SAME | |
JPH03197648A (en) | Lead frame material |