JPH04336301A - Feedforward controller by reverse system - Google Patents

Feedforward controller by reverse system

Info

Publication number
JPH04336301A
JPH04336301A JP10700991A JP10700991A JPH04336301A JP H04336301 A JPH04336301 A JP H04336301A JP 10700991 A JP10700991 A JP 10700991A JP 10700991 A JP10700991 A JP 10700991A JP H04336301 A JPH04336301 A JP H04336301A
Authority
JP
Japan
Prior art keywords
output
compensator
process control
control
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10700991A
Other languages
Japanese (ja)
Inventor
Toshikatsu Fujiwara
藤原 敏勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10700991A priority Critical patent/JPH04336301A/en
Publication of JPH04336301A publication Critical patent/JPH04336301A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To enable excellent control even when the characteristic of an object part of process control is nonlinear. CONSTITUTION:A compensator 100 is incorporated in a system which feeds the output of the object part of process control back by a proportional plus integral operation controller so as to prevent control disorder due to known disturbance, and the sum of the output u'' of the proportional plus integral operation controller and the output u deg. of the compensator 100 is a manipulated variable (u) to the object part of process control. This compensator 100 has a mathematical expression model 101 for estimating the output of the object part of process control, a primary delay element 104 which is arranged in parallel to the mathematical expression model 101 and stabilizes the model, and proportional plus differential operation controllers 107, 108, 109, and 110 which put in an error delta in proportional plus differential operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プロセス製品の蒸気温
度制御等に適用して有用な逆システムによるフィードフ
ォワード制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feedforward control device using an inverse system that is useful for controlling steam temperature of process products.

【0002】0002

【従来の技術】プロセス制御対象部と制御系の代表例を
図3に示す。同図において、プロセス制御対象部1の出
力である制御量yは、減算器2にて目標値rと比較(減
算演算)され、減算器2からは制御偏差ε(この値はy
とrとの差の値)が出力される。制御偏差εは比例積分
動作調節器(以下「PI調節器」と略す)3に入力され
、PI調節器3の出力u″と補償器10からくる出力u
°とが加算器4にて加算される。加算器4の出力は操作
量uとなりプロセス制御対象部1への出力となる。ここ
ではプロセス制御対象部1の既知外乱としてxとwがあ
る場合を取上げる。
2. Description of the Related Art A typical example of a process control target part and a control system is shown in FIG. In the figure, the control amount y, which is the output of the process control target section 1, is compared (subtraction operation) with the target value r in the subtracter 2, and the control deviation ε (this value is y
and r) is output. The control deviation ε is input to a proportional-integral action regulator (hereinafter abbreviated as "PI regulator") 3, and the output u'' of the PI regulator 3 and the output u coming from the compensator 10 are
° are added by an adder 4. The output of the adder 4 becomes the manipulated variable u and is output to the process control target section 1. Here, we will discuss the case where there are x and w as known disturbances to the process control target section 1.

【0003】従来では、既知外乱x,wによる制御量y
への影響を極力小さくするために、図4に示すような補
償器10により出力u°を求めている。即ち、既知外乱
wを補償回路5にて補償した信号と、既知外乱xを補償
回路6にて補償した信号を、加算器7で加算したものを
出力u°とし、この出力u°を加算器4の一端に加えて
いる。
Conventionally, the control amount y due to known disturbances x and w
In order to minimize the influence on the output, the output u° is determined by a compensator 10 as shown in FIG. That is, the signal obtained by compensating the known disturbance w in the compensation circuit 5 and the signal obtained by compensating the known disturbance It is added to one end of 4.

【0004】補償回路5,6の補償特性は線形特性であ
り、以下の関係から求められる。制御量yは次式で表わ
される。     y=Gwy(s)w+Gxy(s)x+Guy
(s)u                …(1)次
に、既知外乱wとxが入力されたときに、yが零となる
uを(1)式から求めると、次式になる。     u=−Guy(s)−1{Gwy(s)w+G
xy(s)x}            …(2)ここ
で、Gwy(s),Gxy(s)およびGuy(s)は
伝達関数であり、sはラプラス演算子である。すなわち
、(2)式で得られるuを出力u°として使用し、補償
回路5の伝達関数G1 (s)、補償回路6の伝達関数
G2 (s)は次式で表わせる。     G1 (s)=−Guy(s)−1Gwy(s
)                        
…(3)    G2 (s)=−Guy(s)−1G
xy(s)                    
    …(4)
The compensation characteristics of the compensation circuits 5 and 6 are linear characteristics, and are determined from the following relationship. The control amount y is expressed by the following equation. y=Gwy(s)w+Gxy(s)x+Guy
(s)u...(1) Next, when the known disturbances w and x are input, u at which y becomes zero is found from equation (1), resulting in the following equation. u=-Guy(s)-1{Gwy(s)w+G
xy(s)x}...(2) Here, Gwy(s), Gxy(s) and Guy(s) are transfer functions, and s is a Laplace operator. That is, using u obtained by equation (2) as the output u°, the transfer function G1 (s) of the compensation circuit 5 and the transfer function G2 (s) of the compensation circuit 6 can be expressed by the following equations. G1 (s)=-Guy(s)-1Gwy(s
)
...(3) G2 (s) = -Guy(s) - 1G
xy(s)
…(4)

【0005】[0005]

【発明が解決しようとする課題】ところで従来の補償器
10は線形特性であるため、非線形なプロセス制御対象
部に対しては十分な制御特性が得られない欠点がある。 本発明は、プロセス制御対象部の特性が非線形であって
も良好な制御性能の得られる、逆システムによるフィー
ドフォワード制御装置を提供するものである。
However, since the conventional compensator 10 has linear characteristics, it has the disadvantage that sufficient control characteristics cannot be obtained for a nonlinear process control object. The present invention provides a feedforward control device using an inverse system that can obtain good control performance even if the characteristics of a process control target part are nonlinear.

【0006】[0006]

【課題を解決するための手段】上記課題を解説する本発
明は、次のような特徴を有している。 イ)  非線形なプロセス制御対象部の制御性能を改良
する場合、逆関数による補償は有効であるが、ここでは
補償器の構成を非線形とした。 ロ)  本来であれば非線形な伝達特性の逆関数が必要
であるが、ここでは逆関数を使わずに、結果として逆関
数的な値が得られるようにした。 ハ)  逆関数的な値は、関数をフィードバックする方
法で求めるが、その際にフィードバック系の安定化を図
るために関数に並列に単純な特性を付加した。 ニ)  並列に配置された単純な特性は、フィードバッ
ク系に設けた比例微分動作調節器の逆関数に相当する1
次遅れ特性とした。
[Means for Solving the Problems] The present invention, which explains the above problems, has the following features. b) Compensation using an inverse function is effective when improving the control performance of a nonlinear process control target, but here the compensator configuration is nonlinear. (b) Normally, an inverse function of the nonlinear transfer characteristic would be required, but here we did not use an inverse function, but instead obtained an inverse function-like value as a result. c) The inverse functional value is obtained by a method of feeding back the function, and at this time, a simple characteristic is added in parallel to the function in order to stabilize the feedback system. d) The simple characteristic arranged in parallel is 1, which corresponds to the inverse function of the proportional differential action regulator provided in the feedback system.
The second lag characteristic was used.

【0007】[0007]

【作用】本発明では、非線形なプロセス制御対象部を非
線形な数式モデルで表現し、その非線形な数式モデルを
駆使してプロセス制御対象部の制御量の変動を極力少な
くするための操作量を数式モデルの上で求め、プロセス
制御対象部に操作量信号の一部として供給する。具体的
には、まず、非線形な数式モデルで制御量yを推定し、
その制御量の推定値y°をたえず目標値rに近づけられ
るような閉ループ系を構成する。次にそのループ内に比
例微分動作調節器を配置する。そうすることにより、既
知外乱x,wがプロセス制御対象部に加わった場合の制
御量yの変動を抑えることができる操作量uを得る。こ
の際に、非線形な数式モデルと並列に1次遅れ特性が配
置されているので、フィードバック系はより安定な系と
して作用する。
[Operation] In the present invention, a nonlinear process control target part is expressed by a nonlinear mathematical model, and by making full use of the nonlinear mathematical model, the manipulated variable is expressed as a mathematical formula to minimize fluctuations in the controlled variable of the process control target part. It is determined on the model and supplied to the process control target part as part of the manipulated variable signal. Specifically, first, the control amount y is estimated using a nonlinear mathematical model, and
A closed-loop system is constructed in which the estimated value y° of the controlled variable can be constantly brought closer to the target value r. A proportional differential action regulator is then placed within that loop. By doing so, a manipulated variable u is obtained that can suppress fluctuations in the controlled variable y when known disturbances x and w are applied to the process control target section. At this time, since the first-order lag characteristic is placed in parallel with the nonlinear mathematical model, the feedback system acts as a more stable system.

【0008】以下に、上述した作用を数式で説明する。 制御量の推定値y°は次式で表わせるとする。   y°=f°(u,x,w)           
                         
  …(5)ここで、uはプロセス制御対象部の操作量
で、x,wは既知外乱を意味する。操作量uと補償器の
出力u°およびプロセス制御対象部を制御するためのP
I調節器の出力u″の関数は次式とする。   u=u°+u″                
                         
       …(6)また、数式モデルの上でフィー
ドバック系を構成することにより次式を得る。   δ=r−[y°+{1/K(1+TS)}u°] 
                 …(7)  u°
=K(1+TS)δ                
                        …
(8)ここで、δは誤差を意味し、1/K(1+TS)
は1次遅れを意味し、K(1+TS)は比例微分動作を
意味する。なお、Sはラプラス演算子である。次に、(
7)式と(8)式より次の関数式を得る。   2δ=r−y°                
                         
       …(9)したがって、フィードバック系
のパラメータK,Tを調節して誤差δが小さくなるよう
にすれば、制御量yの推定値y°が目標値rに近づく。 すなわち、このようにして得られた出力u°を補償器の
出力として、プロセス制御対象部に加えれば制御性の改
善は図られる。
[0008] The above-mentioned action will be explained below using mathematical formulas. It is assumed that the estimated value y° of the control amount can be expressed by the following equation. y°=f°(u, x, w)

...(5) Here, u is the manipulated variable of the process control target part, and x and w mean known disturbances. The manipulated variable u, the output u° of the compensator, and P for controlling the process control target part
The function of the output u″ of the I regulator is given by the following formula: u=u°+u″

...(6) Also, by constructing a feedback system on the mathematical model, the following equation is obtained. δ=r−[y°+{1/K(1+TS)}u°]
…(7) u°
=K(1+TS)δ

(8) Here, δ means error, 1/K(1+TS)
means a first-order delay, and K(1+TS) means a proportional differential operation. Note that S is a Laplace operator. next,(
From equations 7) and 8, we obtain the following functional equation. 2δ=ry°

(9) Therefore, if the feedback system parameters K and T are adjusted to reduce the error δ, the estimated value y° of the control amount y approaches the target value r. That is, if the output u° thus obtained is applied as the output of the compensator to the process control target, controllability can be improved.

【0009】[0009]

【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。なお、従来技術と同一機能を果す部分には同
一符号を付し重複する説明は省略する。図1は本発明の
実施例に係るフィードフォワード制御装置の全体を示す
ブロック図であり、図2は補償器100を抽出して示す
ブロック図である。図1において、プロセス制御対象部
20はその特性が非線形となっており、補償器100か
ら出力される出力u°の調整により、良好な制御を得ら
れるようにしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below in detail with reference to the drawings. Note that parts that perform the same functions as those in the prior art are given the same reference numerals, and redundant explanations will be omitted. FIG. 1 is a block diagram showing the entire feedforward control device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing an extracted compensator 100. In FIG. 1, the process control target section 20 has nonlinear characteristics, and good control can be obtained by adjusting the output u° output from the compensator 100.

【0010】図2において、数式モデル101は、プロ
セス制御対象部20を模擬したものであり、既知外乱x
,wと操作量uを入力とし、制御量yを推定した推定制
御量y°を出力する。なお、操作量uは、補償器100
の出力u°とPI調節器3の出力u″を、加算器102
で加算して得られる。
In FIG. 2, a mathematical model 101 simulates a process control target section 20, and a known disturbance x
, w and the manipulated variable u as inputs, and outputs an estimated controlled variable y° obtained by estimating the controlled variable y. Note that the manipulated variable u is the compensator 100
The output u° and the output u″ of the PI controller 3 are added to the adder 102.
It can be obtained by adding .

【0011】次に、プロセス制御対象部20を模擬した
数式モデル101と並列に、係数器103と1次遅れ要
素104を直列にした回路を設け、係数器103の入力
として補償器100の出力u°を、そしてその出力を1
次遅れ要素104に入力し、得られた1次遅れ要素10
4の出力と、先ほどの数式モデル101の出力、すなわ
ち制御量の推定値y°を加算器105で加算する。加算
器105の出力は、減算器106で目標値rから減算さ
れて、誤差δとなる。
Next, a circuit in which a coefficient unit 103 and a first-order lag element 104 are connected in series is provided in parallel with the mathematical model 101 simulating the process control target section 20, and the output u of the compensator 100 is used as an input of the coefficient unit 103. °, and its output is 1
Input to the next lag element 104 and obtain the first lag element 10
4 and the output of the mathematical model 101, that is, the estimated value y° of the control amount, are added by an adder 105. The output of the adder 105 is subtracted from the target value r by a subtracter 106, resulting in an error δ.

【0012】誤差δは係数器107を介して加算器10
8の片側に供給され、同時に係数器107の出力は係数
器109を介して微分器110に供給され、その出力は
加算器108のもう一方につながれる。そして、加算器
108の出力は1次遅れ要素111に入力され、その出
力が補償器100の出力u°となる。ここで、1次遅れ
要素111は数値計算する上で計算がしやすいようにす
るために設けたもので、その時定数τは小さな値を指定
する。
The error δ is sent to the adder 10 via the coefficient unit 107.
At the same time, the output of the coefficient unit 107 is supplied to the differentiator 110 via the coefficient unit 109, and its output is connected to the other side of the adder 108. Then, the output of the adder 108 is input to the first-order lag element 111, and its output becomes the output u° of the compensator 100. Here, the first-order lag element 111 is provided to facilitate numerical calculations, and its time constant τ is set to a small value.

【0013】なお、K,Tは調整用パラメータで、試行
錯誤により求まる。つまり、プロセス制御対象部20の
特性が非線形であっても制御性の改善が図られるように
、K,Tを選んでいくのである。
Note that K and T are adjustment parameters, which are determined by trial and error. In other words, K and T are selected so that controllability can be improved even if the characteristics of the process control target section 20 are nonlinear.

【0014】[0014]

【発明の効果】以上実施例とともに具体的に説明したよ
うに本発明によれば、次のような効果を奏する。 (1)  非線形の数式モデルで補償器を作成したので
従来の線形の数式モデルに比べて制御性はよい。 (2)  逆関数を求める必要がないので補償器の出力
を求める場合に簡単に処理できる。 (3)  逆関数の出力に相当する値は、通常の関数(
逆関数ではない)をフィードバックして求めるが、その
際にプロセス制御対処部を模擬した数式モデルと並行に
1次遅れ要素を配置しているので、閉ループ系の安定性
が高められる。
[Effects of the Invention] As specifically explained above in conjunction with the embodiments, the present invention provides the following effects. (1) Since the compensator was created using a nonlinear mathematical model, the controllability is better than the conventional linear mathematical model. (2) Since there is no need to find an inverse function, it is easy to process when finding the output of the compensator. (3) The value corresponding to the output of the inverse function is the normal function (
(not an inverse function) is calculated by feeding back, and at this time, a first-order delay element is placed in parallel with a mathematical model that simulates the process control handling section, so the stability of the closed-loop system is improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の全体を示すブロック図である
FIG. 1 is a block diagram showing the entire embodiment of the present invention.

【図2】実施例の中から補償器を抽出して示すブロック
図である。
FIG. 2 is a block diagram showing a compensator extracted from the embodiment.

【図3】従来の制御装置の全体を示すブロック図である
FIG. 3 is a block diagram showing the entire conventional control device.

【図4】従来の補償器を抽出して示すブロック図である
FIG. 4 is a block diagram showing an extracted conventional compensator.

【符号の説明】[Explanation of symbols]

1,20  プロセス制御対象部 3  比例積分動作調節器 10,100  補償器 101  数式モデル 103,107,109  係数器 104,111  1次遅れ要素 110  微分器 1, 20 Process control target part 3. Proportional-integral action regulator 10,100 Compensator 101 Mathematical model 103, 107, 109 Coefficient unit 104,111 1st order lag element 110 Differentiator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  操作量uが入力されたプロセス制御対
象部から出力される制御量yと、目標値rとの差である
制御偏差εを求め、この制御偏差εを比例積分動作調整
器で比例積分演算した出力u″と、既知外乱による制御
量yへの影響を小くすべく補償器から出力される出力u
°とを加算して前記操作量uとする制御装置において、
前記プロセス制御対象部は、その入出力特性が非線形で
あり、前記補償器は、操作量uと既知外乱から、操作量
uに応じてプロセス制御対象部から出力される制御量y
を推定して推定制御量y°を出力する数式モデルと、補
償器自身の出力である出力u°を1次遅れ処理する1次
遅れ要素と、この1次遅れ要素の出力及び前記数式モデ
ルの出力の和の値と目標値rとの差である誤差δを比例
微分演算して出力u°を求めてこれを補償器の外部出力
とする比例微分動作調整器と、を備えていることを特徴
とする逆システムによるフィードフォワード制御装置。
[Claim 1] A control deviation ε, which is the difference between a controlled variable y outputted from a process control target part to which the manipulated variable u is input, and a target value r, is determined, and this control deviation ε is calculated using a proportional-integral operation regulator. The output u'' obtained by the proportional integral calculation and the output u output from the compensator in order to reduce the influence of known disturbances on the control amount y.
In the control device which adds the operation amount u to the operation amount u,
The process control target part has non-linear input/output characteristics, and the compensator calculates a control amount y output from the process control target part according to the manipulated variable u from the manipulated variable u and a known disturbance.
A mathematical model that estimates and outputs the estimated control amount y°, a first-order lag element that processes the output u°, which is the output of the compensator itself, with a first-order lag, and the output of this first-order lag element and the mathematical model. The compensator is equipped with a proportional differential operation regulator that performs proportional differential calculation on the error δ, which is the difference between the sum of the outputs and the target value r, to obtain the output u°, and uses this as the external output of the compensator. A feedforward control device with a characteristic inverse system.
JP10700991A 1991-05-13 1991-05-13 Feedforward controller by reverse system Withdrawn JPH04336301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10700991A JPH04336301A (en) 1991-05-13 1991-05-13 Feedforward controller by reverse system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10700991A JPH04336301A (en) 1991-05-13 1991-05-13 Feedforward controller by reverse system

Publications (1)

Publication Number Publication Date
JPH04336301A true JPH04336301A (en) 1992-11-24

Family

ID=14448188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10700991A Withdrawn JPH04336301A (en) 1991-05-13 1991-05-13 Feedforward controller by reverse system

Country Status (1)

Country Link
JP (1) JPH04336301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013511A (en) * 2002-06-06 2004-01-15 Toshiba Corp Process control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004013511A (en) * 2002-06-06 2004-01-15 Toshiba Corp Process control device

Similar Documents

Publication Publication Date Title
KR920004079B1 (en) Process controller and method
JPH0738128B2 (en) Control device
US5485367A (en) Process control apparatus
JP2001117603A (en) Control arithmetic unit and control arithmetic method
JPH04336301A (en) Feedforward controller by reverse system
CN109791395B (en) Regulation device with adjustability of regulation performance
JP2999330B2 (en) Control method using sliding mode control system
JP3278566B2 (en) Looper multivariable controller
JPS63144782A (en) Controller for motor
JPH071446B2 (en) Adaptive controller
KR100973210B1 (en) Pid equivalent controller that does not include derivative and method thereof
JPH0511811A (en) Feedforward device by inverse function generator
JP4189716B2 (en) Motor speed control device
JPH10222207A (en) Feedforward controller
JP3277484B2 (en) PID controller
JPS629404A (en) Process controller
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JPH0119163B2 (en)
JPH05313704A (en) Adaptive controller
JP2005182427A (en) Control computing device
SU1173390A1 (en) Self-adjusting system of automatic control of lagging objects
JPH10312201A (en) Process controller for closed loop system including pid adjuster
CN115933368A (en) PID controller parameter setting method based on LQR and under modified extended state observer
JP2508127B2 (en) Electric motor controller
Lai et al. On discrete time output feedback sliding mode like control for non-minimum phase systems

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806