JPH04335892A - Continuous fermentation of ethanol by immobilized yeast - Google Patents

Continuous fermentation of ethanol by immobilized yeast

Info

Publication number
JPH04335892A
JPH04335892A JP3100839A JP10083991A JPH04335892A JP H04335892 A JPH04335892 A JP H04335892A JP 3100839 A JP3100839 A JP 3100839A JP 10083991 A JP10083991 A JP 10083991A JP H04335892 A JPH04335892 A JP H04335892A
Authority
JP
Japan
Prior art keywords
yeast
column
ethanol
hollow fiber
regenerated cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3100839A
Other languages
Japanese (ja)
Inventor
Seiichi Manabe
征一 真鍋
Toshihide Haraguchi
原口 俊秀
Chiaki Hatanaka
畑中 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3100839A priority Critical patent/JPH04335892A/en
Publication of JPH04335892A publication Critical patent/JPH04335892A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To stably obtain ethanol in high conversion efficiency over a long period by immobilizing yeast on the surface of a porous regenerated cellulose hollow fiber using repeated freezing and thawing process with PVA, packing the hollow fiber into a column and passing a glucose-containing culture liquid and air through the column. CONSTITUTION:An aqueous dispersion slurry of baker's yeast is added to a 7.5% aqueous solution of a polyvinyl alcohol and stirred at room temperature. A porous hollow fiber of regenerated cellulose is immersed in the obtained liquid mixture and cooled by spraying liquid nitrogen. The above operation is repeated thrice. The hollow fiber holding the yeast immobilized by the above repeated freezing and thawing process is cut to 5 cm long and packed in a jacket column. A culture liquid containing glucose as a substrate is introduced together with air into the column from the bottom while keeping the column temperature to 37 deg.C to effect the continuous fermentation. Ethanol can be stably produced in high conversion efficiency over a long period by this process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は飲食用エタノールの連続
醗酵方法に係る。さらに詳しくはエタノール醗酵プロセ
スにおいて、連続的にかつ高効率で長時間安定にエタノ
ールを製造する連続醗酵方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous fermentation method for ethanol for consumption. More specifically, the present invention relates to a continuous fermentation method for producing ethanol continuously, highly efficiently, and stably over a long period of time in an ethanol fermentation process.

【0002】0002

【従来の技術】現在、飲食用エタノールの大部分は醗酵
法で製造されている。この製造においては醗酵時間の短
縮および酵母の回収再利用による醗酵プロセスの効率化
が重要な課題となっている。また、品質の安定のために
定常状態下での連続醗酵プロセスの開発が望まれている
。これらの要求に対して現在まで固定化酵母を用いる連
続醗酵プロセスが注目されはじめた。
BACKGROUND OF THE INVENTION At present, most of the ethanol for drinking and drinking is produced by the fermentation method. In this production, shortening the fermentation time and increasing the efficiency of the fermentation process by recovering and reusing yeast are important issues. Furthermore, in order to stabilize quality, it is desired to develop a continuous fermentation process under steady state conditions. In response to these demands, continuous fermentation processes using immobilized yeast have begun to attract attention.

【0003】すなわち、酵母の固定化法としてアルギン
酸ソーダやK−カラギーナン等の高分子ゲル化剤を用い
て酵母をゲル内に包埋する方法が採用されている。固定
化用の担体としてはこの場合特に必要ないが、ゲルの形
状として粒状あるいは繊維状が提案されている。固定化
した酵母を用いたエタノール醗酵のプロセスが実際に工
業的規模で実用化されるには少なくとも(1)  エタ
ノールへの転換効率が90%以上であること、(2) 
 産生するアルコールの濃度が4%以上であること、(
3)  酵母の増殖能が優れていること、(4)  上
記(1)〜(3)の性能が長期に安定に維持されること
(たとえば3ケ月以上)、(5)  上記(1)を満足
する条件下での換算供給速度(以下SVという)(≡基
質を含む培養液の供給速度/カラム体積)が大きいこと
(たとえば0.5hr−1以上)、(6)  ゲル体積
当りエタノール生産速度(以下STYという)(≡エタ
ノール生産速度(kg/hr)/ゲル体積(m3 ゲル
))が大きいこと(たとえば20kg/m2 ・hr以
上)の諸条件が満足されてなくてはならない。
[0003] Specifically, as a method for immobilizing yeast, a method has been adopted in which yeast is embedded in a gel using a polymer gelling agent such as sodium alginate or K-carrageenan. Although a carrier for immobilization is not particularly required in this case, granular or fibrous gel shapes have been proposed. In order for the ethanol fermentation process using immobilized yeast to be put into practical use on an industrial scale, at least (1) the conversion efficiency to ethanol must be at least 90%; (2)
The concentration of alcohol produced is 4% or more (
3) Has excellent yeast growth ability, (4) The performances of (1) to (3) above are stably maintained over a long period of time (for example, for 3 months or more), (5) Satisfies (1) above. The equivalent supply rate (hereinafter referred to as SV) (≡supply rate of culture solution containing substrate/column volume) under the conditions of The following conditions must be satisfied: (hereinafter referred to as STY) (≡ethanol production rate (kg/hr)/gel volume (m3 gel)) is large (for example, 20 kg/m2 ·hr or more).

【0004】現在のアルギン酸を用いた固定化法では前
記(1)〜(6)の条件を同時に満足することは困難で
ある。しかもアルギン酸等の高分子ゲル化剤では2価の
金属イオン例えばカルシウムイオンを常に供給し続けな
ければ高分子ゲルが溶解し、酵母が流出する。カルシウ
ムイオンの混入は、結果的には産生するアルコールへの
混入、あるいは前記(1)〜(6)の条件を満足するの
にさまたげになっている可能性もあり望ましいものでは
ない。
[0004] With the current immobilization method using alginic acid, it is difficult to satisfy the conditions (1) to (6) above at the same time. Moreover, with a polymer gelling agent such as alginic acid, unless divalent metal ions such as calcium ions are constantly supplied, the polymer gel will dissolve and yeast will flow out. Contamination of calcium ions is not desirable, as it may result in contamination with the alcohol produced, or may impede satisfaction of the conditions (1) to (6) above.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記したSV
の値が大きいこと、STYの値が大きいこと、の条件を
同時に満足する飲食用エタノールの連続醗酵方法を提供
することを目的としている。
[Problems to be Solved by the Invention] The present invention relates to the above-mentioned SV
It is an object of the present invention to provide a method for continuous fermentation of ethanol for drinking and drinking that simultaneously satisfies the following conditions: a large value of STY and a large value of STY.

【0006】[0006]

【課題を解決するための手段】酵母の固定化に利用され
る高分子ゲル化剤は固定化終了後には基質を含む培養液
中の諸成分が酵母に拡散する際の障害となり、また産生
物であるエタノールと炭酸ガスの酵母から培養液中への
拡散の障害ともなる。したがって、前記(4)、(5)
、(6)の条件を満足するためにはゲル化剤中に占める
高分子成分の含量を落とすことが必要である。上記高分
子成分の含量の低下は酵母の流出傾向を高める。 したがってゲル化剤中に占める高分子成分の最適濃度が
存在することになる。
[Means for solving the problem] The polymer gelling agent used for yeast immobilization becomes an obstacle to the diffusion of various components in the culture solution, including the substrate, into the yeast after immobilization, and the product It also becomes an obstacle to the diffusion of ethanol and carbon dioxide gas from the yeast into the culture solution. Therefore, (4) and (5) above
In order to satisfy the conditions (6), it is necessary to reduce the content of the polymer component in the gelling agent. A decrease in the content of the above-mentioned polymeric components increases the tendency of yeast to flow out. Therefore, there is an optimum concentration of the polymer component in the gelling agent.

【0007】しかし、本発明者らは特殊な構造をもつ高
分子多孔体表面上に酵母を固定化すればこれらの諸問題
が一挙に解決出来ることを見出し本発明に至った。すな
わち、本発明は、ポリビニールアルコールを用いて反復
凍結融解法によって酵母を固定化する方法において、多
孔性再生セルロース中空糸の表面に該酵母を固定後カラ
ムに充填し、カラムの下部よりグルコースを基質とした
溶媒液と空気とを流入させることを特徴とするエタノー
ル連続醗酵方法、である。
However, the present inventors have discovered that these problems can be solved all at once by immobilizing yeast on the surface of a porous polymer having a special structure, leading to the present invention. That is, the present invention is a method of immobilizing yeast by repeated freeze-thaw method using polyvinyl alcohol. After immobilizing the yeast on the surface of porous regenerated cellulose hollow fibers, a column is filled, and glucose is injected from the bottom of the column. This is a continuous ethanol fermentation method characterized by flowing a solvent solution used as a substrate and air.

【0008】本発明方法の最大の特徴は多孔性再生セル
ロース中空糸の表面に酵母を固定化し、これをカラムに
充填する点にある。固定化方法としてポリビニールアル
コールを用いた反復凍結融解法が好ましい。この方法に
より再生セルロース中空糸の外壁面または内壁面に酵母
を固定化する。おそらくは多孔膜表面に酵母は薄く固定
化され、しかも中空糸膜であるために酵母への物質の拡
散速度が著しく高まっているものと考えられる。
The most important feature of the method of the present invention is that yeast is immobilized on the surface of porous regenerated cellulose hollow fibers and then packed into a column. As a fixation method, a repeated freeze-thaw method using polyvinyl alcohol is preferred. By this method, yeast is immobilized on the outer wall surface or inner wall surface of the regenerated cellulose hollow fiber. It is thought that the yeast is immobilized thinly on the surface of the porous membrane, and because the membrane is a hollow fiber membrane, the rate of diffusion of substances into the yeast is significantly increased.

【0009】すなわち、多孔膜面へ固定化することによ
りSTYの値が著しく増加する。また中空糸化すること
によりSVの値が高くなり同時に長期に安定にこれらの
数値が高いレベルで維持される。本発明に用いる多孔性
中空糸の材料は、親水性高分子、特に再生セルロースが
好ましく、さらに好ましくは銅安法再生セルロースであ
る。その理由は明確ではないがエタノールの転換効率の
長期安定性が特に優れていることから、おそらくは酵母
の産生物の吸着が起りにくいことに関連しているのであ
ろう。産生する炭酸ガスが中空糸化することにより容易
に系外へ除去できる。
[0009] That is, by immobilizing it on the porous membrane surface, the STY value increases significantly. Further, by forming the fiber into a hollow fiber, the SV value increases, and at the same time, these values are stably maintained at a high level for a long period of time. The material for the porous hollow fibers used in the present invention is preferably a hydrophilic polymer, particularly regenerated cellulose, and more preferably ammonium ammonium regenerated cellulose. The reason for this is not clear, but since the long-term stability of ethanol conversion efficiency is particularly excellent, it is probably related to the fact that adsorption of yeast products is less likely to occur. The carbon dioxide produced can be easily removed from the system by forming into hollow fibers.

【0010】すなわち、気体状となった炭酸ガスは中空
糸形状ではその繊維軸方向に連なって系外へ抜け出る。 一方、粒状で固定化された場合は気泡状の炭酸ガスは粒
状物の間に保持され系外へ除去出来ない。そのため長期
的には培養液中の炭酸ガス濃度が高まりアルコールの産
生速度が減少する。
[0010] That is, in the case of hollow fibers, gaseous carbon dioxide gas continues in the axial direction of the fibers and escapes from the system. On the other hand, when the carbon dioxide gas is immobilized in the form of granules, the carbon dioxide gas bubbles are retained between the granules and cannot be removed from the system. Therefore, in the long term, the carbon dioxide concentration in the culture solution increases and the rate of alcohol production decreases.

【0011】中空糸の形状としては200μm以上の内
径をもつことが特に好ましい。内径が極端に小さくなる
と、繊維表面に酵母を固定化した際の結果に近くなり、
中空糸の形状の特徴が醗酵反応で発揮されるには好まし
くは内径が50μm以上、より好ましくは200μm以
上である。培養液中の基質あるいは有効成分が酵母中へ
拡散する速度あるいは産生する炭酸ガスとエタノールと
が系外へ拡散除去される速度は固定化した酵母の接着し
た中空糸壁面とは反対側へのこれらの拡散速度に強く影
響される。
It is particularly preferable that the hollow fibers have an inner diameter of 200 μm or more. If the inner diameter becomes extremely small, the results will be similar to those obtained when yeast is immobilized on the fiber surface,
In order for the characteristics of the hollow fiber shape to be exhibited in the fermentation reaction, the inner diameter is preferably 50 μm or more, more preferably 200 μm or more. The rate at which the substrate or active ingredient in the culture solution diffuses into the yeast, or the rate at which the produced carbon dioxide and ethanol are diffused out of the system, is determined by the rate at which the substrate or active ingredient in the culture solution diffuses out of the system. is strongly influenced by the rate of diffusion.

【0012】したがって、中空糸の平均孔径と空孔率と
がある程度大きい方が好ましい。実験的には中空糸の空
孔率が30%以上でかつ水のろ過速度から算出した中空
糸の平均孔径が0.01μm以上となると多孔性中空糸
としての特徴(前記の条件(4)が満足されること)が
発揮され、好ましい。本発明方法のもう一つの特徴は、
固定化された酵母へ基質とした培養液および空気を供給
する方法として、カラムの下部からポンプ等により強制
的にカラム内に流入させることが好ましい。下部からの
空気の導入により酵母への酸素の供給および産生系から
の炭酸ガスの除去が容易に行なえる。
[0012] Therefore, it is preferable that the average pore diameter and porosity of the hollow fibers be relatively large. Experimentally, when the porosity of the hollow fiber is 30% or more and the average pore diameter of the hollow fiber calculated from the water filtration rate is 0.01 μm or more, it is characterized as a porous hollow fiber (condition (4) above). (to be satisfied) is demonstrated and desirable. Another feature of the method of the present invention is that
As a method for supplying the culture solution and air as a substrate to the immobilized yeast, it is preferable to forcefully flow into the column from the bottom of the column using a pump or the like. By introducing air from the bottom, it is easy to supply oxygen to the yeast and remove carbon dioxide from the production system.

【0013】この際、固定化担体として粒状物等の形状
として比較的異方性のないものを用いると気泡がこれら
の粒状物間に残存し酸素と炭酸ガスとの変換が効率的に
行なえなくなる。そのためエタノールの転換効率および
産生するアルコール濃度が低下する。一方、培養液を下
部から流すことにより気泡の滞留する率が減少し、かつ
回収液中のエタノール濃度が上昇する。カラムに流入す
る培養液のpHは雑菌汚染防止のために4.0付近に制
御しておくことが必要である。
[0013] At this time, if granules or the like having a relatively non-anisotropic shape are used as the immobilization carrier, air bubbles will remain between these granules, making it impossible to efficiently convert oxygen and carbon dioxide gas. . Therefore, the ethanol conversion efficiency and the alcohol concentration produced decrease. On the other hand, by flowing the culture solution from the bottom, the rate of bubble retention is reduced and the ethanol concentration in the collected solution is increased. It is necessary to control the pH of the culture fluid flowing into the column to around 4.0 to prevent bacterial contamination.

【0014】しかし、流入口にウイルス除去性能をもつ
銅安法再生セルロース膜を設置し、ろ液のみを流入させ
るようにすればpHとして酵母の増殖に最適でかつアル
コール産生に好適な条件を設定することが可能になる。 この際流入する空気もあらかじめ該銅安法再生セルロー
ス膜でろ過しておくことが必要である。ここで銅安法再
生セルロース膜として平均孔径20〜100nm、空孔
率30〜60%、内径200〜500μm、壁厚25〜
50μmの中空糸膜が好適である。
However, if a copper ammonium regenerated cellulose membrane with virus removal performance is installed at the inlet and only the filtrate is allowed to flow in, the pH will be optimal for yeast growth and conditions suitable for alcohol production. It becomes possible to do so. At this time, it is necessary that the incoming air be filtered in advance through the copper ammonium regenerated cellulose membrane. Here, the copper ammonium method regenerated cellulose membrane has an average pore diameter of 20-100 nm, a porosity of 30-60%, an inner diameter of 200-500 μm, and a wall thickness of 25-100 nm.
A 50 μm hollow fiber membrane is preferred.

【0015】[0015]

【実施例】以下、実施例により詳しく説明する。[Example] The present invention will be explained in detail below using examples.

【0016】[0016]

【実施例1】ポリビニルアルコール(以下PVAという
、クラレ(株)製、商品名オパール117)の7.5%
水溶液220gにパン酵母の水分散スラリー(パン酵母
濃度は30gパン酵母/50gの水)を加え室温で攪拌
混合する。得られた混合液に平均孔径35nm、内径3
00μm、壁厚35μmの銅安法再生セルロース中空糸
(旭化成工業(株)製、商品名BMM35)を浸漬し、
液体窒素を噴霧させて冷却速度0.255℃/分で−5
0℃まで冷却させた。この操作(凍結融解操作)を3回
繰り返した。
[Example 1] 7.5% of polyvinyl alcohol (hereinafter referred to as PVA, manufactured by Kuraray Co., Ltd., trade name Opal 117)
An aqueous dispersion slurry of baker's yeast (baker's yeast concentration: 30 g of baker's yeast/50 g of water) was added to 220 g of the aqueous solution and mixed with stirring at room temperature. The resulting mixed solution had an average pore size of 35 nm and an inner diameter of 3.
00 μm, wall thickness 35 μm copper ammonium regenerated cellulose hollow fibers (manufactured by Asahi Kasei Corporation, trade name BMM35) were immersed.
-5 at a cooling rate of 0.255℃/min by spraying liquid nitrogen
Cooled to 0°C. This operation (freeze-thaw operation) was repeated three times.

【0017】かくして得られた酵母を固定化した中空糸
を長さ約5cm長の長さに切断しこれを25φ×500
Lのジャケットカラムに充填した。カラム温度を37℃
に設定した。カラムの下部より、グルコースを10%、
イーストの抽出液60ppm、モルトの抽出液60pp
m、ペプトンを100ppm含む溶媒液(pH=4.0
)とエアフィルタとを通過させた空気を下部より1ミリ
リットル/分で流出させた。
[0017] The thus obtained hollow fiber with immobilized yeast was cut into a length of approximately 5 cm, and this was cut into a 25φ×500
The mixture was packed into a L jacketed column. Column temperature 37℃
It was set to 10% glucose from the bottom of the column,
Yeast extract 60ppm, malt extract 60ppm
m, a solvent solution containing 100 ppm of peptone (pH = 4.0
) and an air filter, and the air was allowed to flow out from the bottom at a rate of 1 ml/min.

【0018】生成したアルコールの濃度をガスクロマト
グラフイ(島津製作所製、商品名ガスクロマトグラフG
C−PA、カラム充填剤ポラロパックQS)で測定した
The concentration of the produced alcohol was measured using a gas chromatograph (manufactured by Shimadzu Corporation, trade name: Gas Chromatograph G).
C-PA, column packing material Polaropak QS).

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【比較例1〜4】比較例として、PVAをゲル化剤とし
て使用し木綿糸を固定化担体とした場合、(比較例1)
、担体を用いずにゲル化剤によって生じるゲルを粒状に
した場合(比較例2)、およびゲル化剤としてCa−ア
ルギン酸を採用した場合(比較例3、4)について実施
例1と同様の操作条件でアルコールを産生させた。 表1に産生したエタノール濃度、エタノール転換効率、
SVの値、STYの値および定常状態の継続時間の実測
値を示す。
[Comparative Examples 1 to 4] As a comparative example, when PVA was used as a gelling agent and cotton thread was used as an immobilization carrier, (Comparative Example 1)
The same operation as in Example 1 was carried out for the case where the gel produced by the gelling agent was granulated without using a carrier (Comparative Example 2) and the case where Ca-alginic acid was used as the gelling agent (Comparative Examples 3 and 4). Alcohol was produced under certain conditions. Table 1 shows the produced ethanol concentration, ethanol conversion efficiency,
Actual values of SV value, STY value, and steady state duration time are shown.

【0021】[0021]

【発明の効果】本発明のエタノールの連続醗酵方法によ
ると、SVの値、STYの値が改善される。さらに、産
生するエタノール濃度、エタノール転換効率、および定
常状態の継続時間は、いずれの点においても、従来法に
くらべて優れた結果が得られる。特にSVの値、STY
の値、定常状態の継続時間の改善の効果が非常に大きい
。したがって本発明方法により高能率でエタノールの連
続醗酵が可能となった。
[Effects of the Invention] According to the continuous ethanol fermentation method of the present invention, the SV value and STY value are improved. Furthermore, superior results can be obtained compared to conventional methods in terms of the concentration of ethanol produced, the efficiency of ethanol conversion, and the duration of steady state. Especially the value of SV, STY
The effect of improving the value of , the duration of steady state is very large. Therefore, the method of the present invention enables continuous fermentation of ethanol with high efficiency.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ポリビニールアルコールを用いて反復
凍結融解法によって酵母を固定化する方法において、多
孔性再生セルロース中空糸の表面に該酵母を固定後カラ
ムに充填し、カラムの下部よりグリコースを基質とした
培養液と空気とを流入させることを特徴とするエタノー
ル連続醗酵方法。
Claim 1: In a method of immobilizing yeast using polyvinyl alcohol by a repeated freeze-thaw method, the yeast is immobilized on the surface of a porous regenerated cellulose hollow fiber and then packed into a column, and glycose is added to the substrate from the bottom of the column. A continuous ethanol fermentation method characterized by flowing a culture solution and air.
JP3100839A 1991-05-02 1991-05-02 Continuous fermentation of ethanol by immobilized yeast Withdrawn JPH04335892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3100839A JPH04335892A (en) 1991-05-02 1991-05-02 Continuous fermentation of ethanol by immobilized yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3100839A JPH04335892A (en) 1991-05-02 1991-05-02 Continuous fermentation of ethanol by immobilized yeast

Publications (1)

Publication Number Publication Date
JPH04335892A true JPH04335892A (en) 1992-11-24

Family

ID=14284489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3100839A Withdrawn JPH04335892A (en) 1991-05-02 1991-05-02 Continuous fermentation of ethanol by immobilized yeast

Country Status (1)

Country Link
JP (1) JPH04335892A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005340A1 (en) * 1998-07-21 2000-02-03 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells
JP2007202459A (en) * 2006-02-01 2007-08-16 Nippon Shokubai Co Ltd Method for producing immobilized enzyme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005340A1 (en) * 1998-07-21 2000-02-03 Kansai Chemical Engineering Co., Ltd. Method for enhancing catalytic activity of cells
JP2007202459A (en) * 2006-02-01 2007-08-16 Nippon Shokubai Co Ltd Method for producing immobilized enzyme

Similar Documents

Publication Publication Date Title
US4251631A (en) Cross-linked enzyme membrane
US5175093A (en) Bioactive cells immobilized in alginate beads containing voids formed with polyethylene glycol
US5614105A (en) Cartridge filters with insoluble enzyme particulates contained thereon
JPH0338834B2 (en)
JP4133567B2 (en) Method for producing microorganism-immobilized microcapsules
Engasser et al. Hollow fiber enzyme reactors for maltose and starch hydrolysis
JPH04335892A (en) Continuous fermentation of ethanol by immobilized yeast
Dai et al. Lipase-facilitated separation of organic acids in a hollow fiber contained liquid membrane module
JPS6040B2 (en) Method for producing 7-aminocephalic compound
Yoshida et al. Structural control of core/shell polystyrene microcapsule‐immobilized microbial cells and their application to polymeric microbioreactors
CN1029773C (en) Preparation of hypertonic polysulfone hollow fibred ultrafiltering film
Chang et al. Immobilization of leuconostoe mesenteroides dextransucrase to porous phenoxyacetyl cellulose beads
Hirose et al. Wet poly (vinyl chloride) membrane as a support: Sorption and transport of low-molecular-weight organic compounds and proteins
PL98632B1 (en) METHOD OF MANUFACTURING 6-AMINOPENICYLIC ACID
WO2004090147A1 (en) Method of purifying aqueous amide compound solution and process for producing amide compound
CA2393016A1 (en) Triphasic bioreactor and process for gas effluent treatment
JPS60118190A (en) Method for enzymic reaction
Dabhade et al. Continuous phenol removal using Nocardia hydrocarbonoxydans in spouted bed contactor: Shock load study
JP2513942B2 (en) Reactor using immobilized biocatalyst
Joshi et al. Cellulose acetate entrapment of Escherichia coli on cotton cloth for aspartate production
JPH02231068A (en) Production of acetic acid fermented liquid
CA1210719A (en) Method of immobilizing enzymes
JPH01128787A (en) Carrier for immobilizing microbial cell and production thereof
JPS58101694A (en) Reaction process
JP2001078749A (en) Purification of reaction mixture using biocatalyst

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806