JPH04335881A - Enzyme immobilization type bioreactor - Google Patents

Enzyme immobilization type bioreactor

Info

Publication number
JPH04335881A
JPH04335881A JP13820891A JP13820891A JPH04335881A JP H04335881 A JPH04335881 A JP H04335881A JP 13820891 A JP13820891 A JP 13820891A JP 13820891 A JP13820891 A JP 13820891A JP H04335881 A JPH04335881 A JP H04335881A
Authority
JP
Japan
Prior art keywords
substrate
reactor
tank
reaction
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13820891A
Other languages
Japanese (ja)
Other versions
JP2897966B2 (en
Inventor
Mitsuo Kawase
三雄 川瀬
Yasuko Yoshida
安子 吉田
Akio Okada
岡田 明夫
Yasuhiko Yamamoto
康彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP13820891A priority Critical patent/JP2897966B2/en
Publication of JPH04335881A publication Critical patent/JPH04335881A/en
Application granted granted Critical
Publication of JP2897966B2 publication Critical patent/JP2897966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To provide the subject device which comprises circulating lines between a reactor and a substrate storage tank and between the tank and a humidifier, respectively, so as to circulate a reaction solution, and capable of uniformly maintaining moisture in the column of the reactor. CONSTITUTION:In the bioreactor, a circulating line 7 is installed between a reactor 2 filled in with a carrier having an enzyme immobilized thereon and a substrate tank 1 storage, and further a circulating line 10 is installed between the tank 1 and a humidifier 8 for humidifying the substrate. A reaction solution is circulated in the lines so ass to supply moisture for the reaction solution in the tank 1 and further uniformize the moisture in the reactor 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は固定化酵素を利用して油
脂等の有機物の加水分解反応、脱水縮合反応、転移反応
等を行わせるために用いられる酵素固定化型バイオリア
クターに関するものである。
[Field of Industrial Application] The present invention relates to an enzyme-immobilized bioreactor that is used to perform hydrolysis reactions, dehydration condensation reactions, transfer reactions, etc. of organic substances such as fats and oils using immobilized enzymes. .

【0002】0002

【従来の技術】上記のような酵素固定化型バイオリアク
ターは各種の分野で従来から広く利用されている。これ
らのバイオリアクターにおける酵素反応は、反応場にお
ける最適水分量が存在するため水分量のコントロールが
反応の進行上重要な役割を持つものである。しかし従来
は固定化酵素が充填された反応器の内部に基質をワンパ
スで通して反応させる形式のものが普通であったので、
例えば加水分解反応を生じさせる反応器においては新し
い基質と接する反応器の出口側を中心にしてカラム内の
水分が不足し、カラム全体を有効に利用することができ
ないという問題があった。また同様に脱水縮合反応を生
じさせる場合には反応器の出口側を中心にしてカラム内
の水分が過剰となり、やはりカラム全体を有効に利用す
ることができなかった。
BACKGROUND OF THE INVENTION Enzyme-immobilized bioreactors as described above have been widely used in various fields. For enzyme reactions in these bioreactors, there is an optimum amount of water in the reaction field, so controlling the amount of water plays an important role in the progress of the reaction. However, conventionally, the reaction was usually carried out by passing the substrate through a reactor filled with immobilized enzyme in one pass.
For example, in a reactor for causing a hydrolysis reaction, there is a problem in that there is a shortage of water in the column mainly at the outlet side of the reactor that comes into contact with a new substrate, making it impossible to utilize the entire column effectively. Similarly, when a dehydration condensation reaction is caused, water in the column becomes excessive around the outlet side of the reactor, making it impossible to utilize the entire column effectively.

【0003】さらに加水分解反応を行わせる反応器の前
に水分調節カラムを設置し、基質に対してこの水分調節
カラムにより適当な水分を付与したうえで反応器に供給
する方式も提案されている(例えば特開平1−1379
88号公報) 。しかしこの方式においても上記したよ
うな反応器の内部における水分量の勾配が生ずることは
防止することができなかった。
[0003] Furthermore, a method has been proposed in which a moisture adjustment column is installed in front of the reactor in which the hydrolysis reaction is carried out, and the substrate is supplied with appropriate moisture by this moisture adjustment column before being supplied to the reactor. (For example, JP-A-1-1379
Publication No. 88). However, even in this method, it was not possible to prevent the above-described gradient in the amount of water inside the reactor from occurring.

【0004】0004

【発明が解決しようとする課題】本発明は上記したよう
な従来の問題点を解消して、固定化酵素が充填された反
応器において加水分解反応や脱水縮合反応を行わせる場
合にも、反応器内部のカラム全体にわたり水分を均一に
維持しつつ反応を進行させることができる酵素固定化型
バイオリアクターを提供するために完成されたものであ
る。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems, and it is an object of the present invention to solve the above-mentioned conventional problems, and to solve the problems of the present invention. This was completed in order to provide an enzyme-immobilized bioreactor that allows reactions to proceed while maintaining water content uniformly throughout the column inside the vessel.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた第1の発明は、表面に酵素が固定化された
担体が充填された反応器と、基質を貯留するタンクとの
間に循環ラインを形成するとともに、この基質貯留用の
タンクと基質を加湿する加湿装置との間にも循環ライン
を形成し、反応液を循環させて反応器内の水分を均一に
したことを特徴とするものである。また第2の発明は、
表面に酵素が固定化された担体が充填された反応器と、
基質を貯留するタンクとの間に循環ラインを形成すると
ともに、この基質貯留用のタンクと基質を脱水する脱水
装置との間にも循環ラインを形成し、反応液を循環させ
て反応器内の水分を均一にしたことを特徴とするもので
ある。
[Means for Solving the Problems] A first invention made to solve the above problems is to provide a system between a reactor filled with a carrier having an enzyme immobilized on its surface and a tank storing a substrate. A circulation line is formed between the substrate storage tank and the humidifier that humidifies the substrate, and the reaction liquid is circulated to make the moisture inside the reactor uniform. That is. Moreover, the second invention is
a reactor filled with a carrier on which enzymes are immobilized;
A circulation line is formed between the tank that stores the substrate, and a circulation line is also formed between the tank for storing the substrate and the dehydration device that dehydrates the substrate to circulate the reaction liquid and dehydrate the inside of the reactor. It is characterized by uniform moisture content.

【0006】[0006]

【作用】第1の発明の酵素固定化型バイオリアクターに
おいては、基質貯留用のタンク内の基質が循環ラインを
通じて反応器の内部を繰り返して循環しつつ固定化酵素
により徐々に加水分解されるとともに、基質貯留用のタ
ンク内の反応液は加湿装置との間でも循環し、水分を調
節される。このため、後の実施例からも明らかなように
従来のワンパス型の装置に比較して、反応器のカラム内
の水分を全体にわたり均一に維持することができる。
[Operation] In the enzyme-immobilized bioreactor of the first invention, the substrate in the substrate storage tank is gradually hydrolyzed by the immobilized enzyme while repeatedly circulating inside the reactor through the circulation line. The reaction solution in the substrate storage tank is also circulated between the humidifier and the moisture content is adjusted. For this reason, as will be clear from the later examples, compared to the conventional one-pass type device, the water content in the column of the reactor can be maintained uniformly throughout.

【0007】また第2の発明の酵素固定化型バイオリア
クターにおいては、基質貯留用のタンク内の反応液が循
環ラインを通じて反応器の内部を繰り返して循環しつつ
固定化酵素により徐々に脱水縮合されるとともに、基質
貯留用のタンク内の反応液は脱水装置との間でも循環し
、水分を調節される。このため反応器のカラム内の水分
は均一に維持される。なお実施例のように、同一の装置
に加湿装置と脱水装置とを組み込んでおき、反応に応じ
て使い分けることもできる。
Furthermore, in the enzyme-immobilized bioreactor of the second invention, the reaction solution in the substrate storage tank is gradually dehydrated and condensed by the immobilized enzyme while repeatedly circulating inside the reactor through the circulation line. At the same time, the reaction solution in the substrate storage tank is also circulated to and from the dehydrator to adjust its moisture content. Therefore, the water content in the column of the reactor is maintained uniformly. Note that, as in the embodiment, a humidifying device and a dehydrating device can be incorporated into the same device and used properly depending on the reaction.

【0008】次に本発明の実施例を示す。図1において
、1は基質貯留用のタンク、2は固定化酵素が充填され
た反応器である。基質貯留用のタンク1は攪拌機3、水
分濃度計4、温度計5付きのもので、その内部は反応温
度30℃に維持してある。反応器2の内部には表面に酵
素が固定化された担体が縦方向に多段に充填されている
が、このような担体としてはポンプにより基質を高速で
循環させた際に変形や破壊する危険の少ない担体である
ことが必要であり、セラミックス、ガラス、金属等から
なる担体を用いることができる。これらのうち酵素固定
化料が多い担体として、焼成セピオライトを使用するこ
とが望ましい。実施例では、焼成セピオライト1g当り
リパーゼを20mg固定化して調製した固定化リパーゼ
に水分を400mg/g−担体供給したものを、可動式
アジャスター付きの反応カラム(容量3リットル)に充
填し、反応温度を30℃に維持している。またこれらの
基質貯留用のタンク1と反応器2との間には、ポンプ6
を含む循環ライン7が形成されている。
Next, examples of the present invention will be shown. In FIG. 1, 1 is a tank for storing substrates, and 2 is a reactor filled with immobilized enzyme. A tank 1 for storing substrates is equipped with a stirrer 3, a water concentration meter 4, and a thermometer 5, and the reaction temperature inside the tank 1 is maintained at 30°C. Inside reactor 2, carriers with enzymes immobilized on their surfaces are packed vertically in multiple stages, but such carriers are at risk of being deformed or destroyed when the substrate is circulated at high speed by a pump. It is necessary to use a carrier with a small amount of carbon, and carriers made of ceramics, glass, metal, etc. can be used. Among these, it is desirable to use calcined sepiolite as a carrier containing a large amount of enzyme immobilization material. In the example, immobilized lipase prepared by immobilizing 20 mg of lipase per 1 g of calcined sepiolite and supplied with 400 mg/g of water to a carrier was packed into a reaction column (capacity: 3 liters) with a movable adjuster, and the reaction temperature was increased. is maintained at 30°C. A pump 6 is also installed between the substrate storage tank 1 and the reactor 2.
A circulation line 7 is formed.

【0009】8は加湿装置であり、多孔質セラミックに
水分を湿潤させたカラムからなる。この加湿装置8と基
質貯留用のタンク1との間にはポンプ9を含む循環ライ
ン10が形成されており、基質貯留用のタンク1内の反
応液はこの循環ライン10によって加湿装置8を循環し
、水分を補給される。
[0009] Reference numeral 8 denotes a humidifying device, which consists of a column in which porous ceramic is moistened with water. A circulation line 10 including a pump 9 is formed between the humidification device 8 and the substrate storage tank 1, and the reaction liquid in the substrate storage tank 1 is circulated through the humidification device 8 by this circulation line 10. and hydrated.

【0010】12は脱水装置であり、実施例ではフラッ
シュエバポレータが使用されている。この脱水装置12
と基質貯留用のタンク1との間にはポンプ13を含む循
環ライン14が形成されており、基質貯留用のタンク1
内の反応液はこの循環ライン14によって脱水され、水
分を調整される。
Reference numeral 12 denotes a dewatering device, and in the embodiment a flash evaporator is used. This dehydration device 12
A circulation line 14 including a pump 13 is formed between the substrate storage tank 1 and the substrate storage tank 1.
The reaction liquid inside is dehydrated through this circulation line 14 and its moisture content is adjusted.

【0011】〔加水分解反応の実施例・・オレイン酸の
生成〕ヘキサン中にトリオレインを10g/Lになるよ
うに溶解したものを基質とし、ポンプ15によって2.
4 L/HR の流速で容量50リットルの基質貯留用
のタンク1に供給し、10時間後に4L/Min.の流
速でポンプ9を含む循環ライン10によって加湿装置8
への基質の循環を開始した。循環開始後の基質貯留用の
タンク1内の水分濃度の変化は図2に示す通りである。 基質の供給を開始してから20時間後、タンク1内の水
分飽和となった基質をポンプ6により流速4L/Min
.で反応器2に循環しつつ、タンク1内からポンプ16
によって2.4 L/HR の流速で引抜きを開始した
。引抜き液中のオレイン酸及びグリセロール濃度の経時
変化を図3に示した。また連続運転終了後、反応器2内
の固定化リパーゼ充填層の水分含有量をカールフィッシ
ャー法により測定したところ、図4のとおりの結果を得
た。この図4に示されたように、本発明によれば反応器
2内のカラムの水分を均一に維持することができる。
[Example of hydrolysis reaction: production of oleic acid] Triolein dissolved in hexane at a concentration of 10 g/L was used as a substrate, and 2.
It was supplied to tank 1 for substrate storage with a capacity of 50 liters at a flow rate of 4 L/HR, and after 10 hours, the flow rate was 4 L/Min. A humidifier 8 is supplied by a circulation line 10 containing a pump 9 at a flow rate of
The circulation of substrate was started. Changes in the water concentration within the substrate storage tank 1 after the start of circulation are as shown in FIG. 20 hours after starting the substrate supply, the water-saturated substrate in the tank 1 is pumped at a flow rate of 4 L/Min by the pump 6.
.. pump 16 from inside tank 1 while circulating to reactor 2.
Withdrawal was started at a flow rate of 2.4 L/HR. Figure 3 shows the changes over time in the oleic acid and glycerol concentrations in the drawing liquid. Further, after the continuous operation was completed, the water content of the immobilized lipase packed bed in the reactor 2 was measured by the Karl Fischer method, and the results shown in FIG. 4 were obtained. As shown in FIG. 4, according to the present invention, the water content in the column within the reactor 2 can be maintained uniformly.

【0012】〔比較例〕次にポンプ9の運転を停止して
加湿装置8への反応液の循環をなくしたところ、引抜き
液中のオレイン酸及びグリセロール濃度の経時変化は図
5に示すとおりとなった。このように反応開始後に水分
が不足するためにオレイン酸濃度が急激に低下している
。また反応後の固定化リパーゼ充填層の水分分布は図6
に示す通りであり、図4と比較して著しい水分不足が生
じていることが分かる。
[Comparative Example] Next, when the operation of the pump 9 was stopped and the circulation of the reaction liquid to the humidifier 8 was eliminated, the oleic acid and glycerol concentrations in the drawn liquid changed over time as shown in FIG. became. As described above, the oleic acid concentration rapidly decreases due to the lack of water after the start of the reaction. In addition, the water distribution of the immobilized lipase packed bed after the reaction is shown in Figure 6.
As shown in Fig. 4, it can be seen that a significant water shortage has occurred compared to Fig. 4.

【0013】〔従来例〕次にポンプ6の流速を2.4 
L/HR に変更し、反応器2から出た反応液をタンク
1内へ循環させることなくワンパスで直接引き抜いた。 このときの引き抜き液中の生成物の経時変化を図7に示
す。この場合にはオレイン酸濃度が次第に低下する傾向
を示す。 また反応後の固定化リパーゼ充填層の水分分布は図8に
示す通りであり、図4と比較すると水分の不均一がある
ことが分かる。
[Conventional Example] Next, the flow rate of the pump 6 was set to 2.4.
L/HR was changed, and the reaction liquid coming out of the reactor 2 was directly drawn out in one pass without being circulated into the tank 1. FIG. 7 shows the change over time of the product in the drawn liquid at this time. In this case, the oleic acid concentration tends to gradually decrease. Further, the moisture distribution of the immobilized lipase packed bed after the reaction is as shown in FIG. 8, and when compared with FIG. 4, it can be seen that there is non-uniformity of moisture.

【0014】〔脱水縮合反応の実施例・・トリステアリ
ンの生成〕図1に示される装置を使用して、グリセリン
とステアリン酸の脱水縮合反応によるトリステアリンの
生成を行った。ただし反応温度は40℃である。基質は
グリセリンとステアリン酸がそれぞれ100 mMにな
るようにヘキサンに溶解したものであり、これをポンプ
15によって1L/HR の流速で容量50リットルの
基質貯留用のタンク1に供給し、20時間後に2L/M
in.の流速でポンプ13によって脱水装置12への基
質の循環を開始した。循環開始後の基質貯留用のタンク
1内の水分濃度の変化は図9に示す通りである。
[Example of Dehydration Condensation Reaction: Production of Tristearin] Using the apparatus shown in FIG. 1, tristearin was produced by a dehydration condensation reaction of glycerin and stearic acid. However, the reaction temperature is 40°C. The substrate was glycerin and stearic acid dissolved in hexane to a concentration of 100 mM each, and this was supplied to the substrate storage tank 1 with a capacity of 50 liters by a pump 15 at a flow rate of 1 L/HR, and after 20 hours, 2L/M
in. Circulation of the substrate to the dehydrator 12 was started by the pump 13 at a flow rate of . Changes in the water concentration in the substrate storage tank 1 after the start of circulation are as shown in FIG.

【0015】基質の供給を開始してから40時間後、タ
ンク1内の基質をポンプ6により流速2L/Min.で
反応器2に循環しつつ、タンク1内からポンプ16によ
って1L/HRの流速で引抜きを開始した。引抜き液中
のトリステアリン濃度の経時変化を図10に示した。ま
た連続運転終了後、反応器2内の固定化リパーゼ充填層
内の反応液の水分含有量をカールフィッシャー法により
測定したところ、図11のとおりの結果を得た。このよ
うに、本発明によれば反応器2内の水分をカラム全体に
わたり均一に維持することができる。
Forty hours after starting the supply of the substrate, the substrate in the tank 1 is pumped through the pump 6 at a flow rate of 2 L/Min. While circulating to the reactor 2, drawing was started from inside the tank 1 by the pump 16 at a flow rate of 1 L/HR. Figure 10 shows the change over time in the tristearin concentration in the drawn liquid. Further, after the continuous operation was completed, the water content of the reaction solution in the immobilized lipase packed bed in the reactor 2 was measured by the Karl Fischer method, and the results shown in FIG. 11 were obtained. In this manner, according to the present invention, the moisture within the reactor 2 can be maintained uniformly throughout the column.

【0016】〔比較例〕次にポンプ13の運転を停止し
て脱水装置12への反応液の循環をなくしたところ、引
抜き液中のトリステアリン濃度の経時変化は図12に示
すとおりとなった。このように比較例では図10の実施
例に比較してトリステアリン濃度が低下している。また
反応後の固定化リパーゼ充填層内の反応液の水分分布は
図13に示す通りである。
[Comparative Example] Next, when the operation of the pump 13 was stopped and the circulation of the reaction liquid to the dehydrator 12 was eliminated, the concentration of tristearin in the drawn liquid changed over time as shown in FIG. 12. . As described above, the tristearin concentration in the comparative example is lower than that in the example shown in FIG. Further, the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction is as shown in FIG.

【0017】〔従来例〕次にポンプ6の流速を1L/H
R に変更し、反応器2から出た反応液をタンク1内へ
循環させることなくワンパスで直接引き抜いた。このと
きの生成物の経時変化を図14に示す。また反応後の固
定化リパーゼ充填層内の反応液の水分分布は図15に示
す通りであり、図11と比較すると著しい水分の不均一
があることが分かる。
[Conventional Example] Next, the flow rate of the pump 6 is set to 1L/H.
R, and the reaction liquid discharged from the reactor 2 was directly withdrawn in one pass without being circulated into the tank 1. Figure 14 shows the change in the product over time. Further, the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction is as shown in FIG. 15, and when compared with FIG. 11, it can be seen that there is significant non-uniformity of water.

【0018】[0018]

【発明の効果】以上の実施例による説明からも明らかな
ように、本発明の酵素固定化型バイオリアクターは反応
器と基質あるいは反応液を貯留するタンクとの間に循環
ラインを形成するとともに、この基質貯留用のタンクと
基質あるいは反応液を加湿又は脱水する装置との間にも
循環ラインを形成したことにより、反応器のカラム内の
水分を均一に維持することができ、反応器のカラム全体
を有効に利用することができる。よって本発明は従来の
問題点を解消した酵素固定化型バイオリアクターとして
、産業の発展に寄与するところは極めて大きいものであ
る。
Effects of the Invention As is clear from the above description of the embodiments, the enzyme-immobilized bioreactor of the present invention forms a circulation line between the reactor and the tank for storing the substrate or reaction solution, and By forming a circulation line between this substrate storage tank and a device for humidifying or dehydrating the substrate or reaction solution, it is possible to maintain uniform water content in the reactor column. The whole can be used effectively. Therefore, the present invention can greatly contribute to the development of industry as an enzyme-immobilized bioreactor that solves the conventional problems.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す配管系統図である。FIG. 1 is a piping system diagram showing an embodiment of the present invention.

【図2】加水分解反応の実施例における循環開始後の基
質貯留用のタンク内の水分濃度の変化を示すグラフであ
る。
FIG. 2 is a graph showing changes in water concentration in a substrate storage tank after the start of circulation in an example of a hydrolysis reaction.

【図3】加水分解反応の実施例における引抜き液中のオ
レイン酸及びグリセロール濃度の経時変化を示すグラフ
である。
FIG. 3 is a graph showing changes over time in the oleic acid and glycerol concentrations in the drawing liquid in examples of hydrolysis reactions.

【図4】加水分解反応の終了後における反応器内の固定
化リパーゼ充填層の水分含有量を示すグラフである。
FIG. 4 is a graph showing the water content of the immobilized lipase packed bed in the reactor after completion of the hydrolysis reaction.

【図5】加湿装置への基質の循環をなくした比較例にお
ける引抜き液中のオレイン酸及びグリセロール濃度の経
時変化を示すグラフである。
FIG. 5 is a graph showing changes over time in the oleic acid and glycerol concentrations in the drawn liquid in a comparative example in which circulation of the substrate to the humidifier was eliminated.

【図6】比較例の反応後の固定化リパーゼ充填層内の反
応液の水分分布を示すグラフである。
FIG. 6 is a graph showing the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction in Comparative Example.

【図7】従来例における生成物の経時変化を示すグラフ
である。
FIG. 7 is a graph showing the change over time of a product in a conventional example.

【図8】従来例の反応後の固定化リパーゼ充填層内の反
応液の水分分布を示すグラフである。
FIG. 8 is a graph showing the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction in the conventional example.

【図9】脱水縮合反応の実施例における循環開始後の基
質貯留用のタンク内の水分濃度の変化を示すグラフであ
る。
FIG. 9 is a graph showing changes in water concentration in a substrate storage tank after the start of circulation in an example of a dehydration condensation reaction.

【図10】脱水縮合反応の実施例における引抜き液中の
トリステアリン濃度の経時変化を示すグラフである。
FIG. 10 is a graph showing the change over time in the tristearin concentration in the drawn liquid in an example of a dehydration condensation reaction.

【図11】脱水縮合反応の終了後における反応器内の固
定化リパーゼ充填層内の反応液の水分含有量を示すグラ
フである。
FIG. 11 is a graph showing the water content of the reaction solution in the immobilized lipase packed bed in the reactor after the completion of the dehydration condensation reaction.

【図12】比較例における引抜き液中のトリステアリン
濃度の経時変化を示すグラフである。
FIG. 12 is a graph showing the change over time in the tristearin concentration in the drawing liquid in a comparative example.

【図13】比較例の反応後の固定化リパーゼ充填層内の
反応液の水分分布を示すグラフである。
FIG. 13 is a graph showing the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction in Comparative Example.

【図14】従来例における生成物の経時変化を示すグラ
フである。
FIG. 14 is a graph showing the change over time of a product in a conventional example.

【図15】従来例の反応後の固定化リパーゼ充填層内の
反応液の水分分布を示すグラフである。
FIG. 15 is a graph showing the water distribution of the reaction solution in the immobilized lipase packed bed after the reaction in the conventional example.

【符号の説明】[Explanation of symbols]

1  基質を貯留するタンク 2  反応器 7  循環ライン 8  加湿装置 12  脱水装置 14  循環ライン 1 Tank for storing substrate 2 Reactor 7 Circulation line 8 Humidification device 12 Dehydration device 14 Circulation line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  表面に酵素が固定化された担体が充填
された反応器と、基質を貯留するタンクとの間に循環ラ
インを形成するとともに、この基質貯留用のタンクと基
質を加湿する加湿装置との間にも循環ラインを形成し、
反応液を循環させて反応器内の水分を均一にしたことを
特徴とする酵素固定化型バイオリアクター。
Claim 1: A circulation line is formed between a reactor filled with a carrier on which an enzyme is immobilized and a tank for storing a substrate, and a humidifier for humidifying the substrate storage tank and the substrate. A circulation line is also formed between the equipment and the
An enzyme-immobilized bioreactor characterized by circulating the reaction solution to make the moisture content in the reactor uniform.
【請求項2】  表面に酵素が固定化された担体が充填
された反応器と、基質を貯留するタンクとの間に循環ラ
インを形成するとともに、この基質貯留用のタンクと基
質を脱水する脱水装置との間にも循環ラインを形成し、
反応液を循環させて反応器内の水分を均一にしたことを
特徴とする酵素固定化型バイオリアクター。
2. A circulation line is formed between a reactor filled with a carrier having an enzyme immobilized on its surface and a tank for storing the substrate, and a dehydration system for dehydrating the substrate and the tank for storing the substrate. A circulation line is also formed between the equipment and the
An enzyme-immobilized bioreactor characterized by circulating the reaction solution to make the moisture content in the reactor uniform.
JP13820891A 1991-05-14 1991-05-14 Enzyme-immobilized bioreactor Expired - Fee Related JP2897966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13820891A JP2897966B2 (en) 1991-05-14 1991-05-14 Enzyme-immobilized bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13820891A JP2897966B2 (en) 1991-05-14 1991-05-14 Enzyme-immobilized bioreactor

Publications (2)

Publication Number Publication Date
JPH04335881A true JPH04335881A (en) 1992-11-24
JP2897966B2 JP2897966B2 (en) 1999-05-31

Family

ID=15216615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13820891A Expired - Fee Related JP2897966B2 (en) 1991-05-14 1991-05-14 Enzyme-immobilized bioreactor

Country Status (1)

Country Link
JP (1) JP2897966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004662A2 (en) * 1998-11-26 2000-05-31 Kao Corporation A process for hydrolyzing fats and oils
WO2007043552A1 (en) * 2005-10-05 2007-04-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511744B1 (en) * 2014-04-28 2015-04-22 티케이엘 주식회사 Method for production of cetylated fatty acid complex by enzyme cycling reation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1004662A2 (en) * 1998-11-26 2000-05-31 Kao Corporation A process for hydrolyzing fats and oils
US6258575B1 (en) 1998-11-26 2001-07-10 Kao Corporation Hydrolyzing fats and oils using an immobilized enzyme column and substrate-feeding chamber that separates phases
EP1004662A3 (en) * 1998-11-26 2002-02-27 Kao Corporation A process for hydrolyzing fats and oils
WO2007043552A1 (en) * 2005-10-05 2007-04-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme
US8377664B2 (en) 2005-10-05 2013-02-19 Kao Corporation Method for producing a useful substance by use of an immobilized enzyme

Also Published As

Publication number Publication date
JP2897966B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JPS6316198B2 (en)
SU496711A3 (en) The method of biological wastewater treatment
GB2164663A (en) Process for carrying out enzymatic or microbial reactions
US3794582A (en) Process for aerating biological suspensions
JPH04335881A (en) Enzyme immobilization type bioreactor
US2997424A (en) Process for making vinegar
US2707683A (en) Method for the production of vinegar acids by oxidative fermentation of alcohols
Oestergaard et al. Use of sweetzyme in industrial continuous isomerization various process alternatives and corresponding product types
US5204251A (en) Process of enzymatic interesterification maintaining a water content of 30-300 ppm using Rhizopus
JPS6185195A (en) Continuous hydrolysis of lipid
JPH0218915B2 (en)
JPS6178374A (en) Continuous fermentation system using immobilized proliferated microorganism
US2655438A (en) Salt crystallization process
JPH02142485A (en) Production of triglyceride in high concentration and appartus therefor
RU1798332C (en) Method of sewage organic sediments treatment
JPH0263599A (en) Treatment of waste liquid of beer producing stage by methane fermentation
JPH0775549B2 (en) Enzymatic reaction method in fine water system
SU1720492A3 (en) Method of enzymatic isomerization of glucose to fructose
JPH0729116B2 (en) Separation membrane combined methane fermentation device
SU1252332A1 (en) Method of producing fruit-berry vinegar
JPS63279794A (en) Modification of oil and fat
JPH04330289A (en) Production of diglyceride
Hakoda et al. Effect of moisture on enzymatic reaction in supercritical carbon dioxide
JPH0728719B2 (en) Continuous ester synthesizer and its continuous synthesis method
JPS61204087A (en) Crystallizing agent for phosphate ion in waste water and its preparation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990219

LAPS Cancellation because of no payment of annual fees