JPH0433578A - Stator for ultrasonic motor - Google Patents

Stator for ultrasonic motor

Info

Publication number
JPH0433578A
JPH0433578A JP2138454A JP13845490A JPH0433578A JP H0433578 A JPH0433578 A JP H0433578A JP 2138454 A JP2138454 A JP 2138454A JP 13845490 A JP13845490 A JP 13845490A JP H0433578 A JPH0433578 A JP H0433578A
Authority
JP
Japan
Prior art keywords
sintered
stator
sintered material
melting point
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2138454A
Other languages
Japanese (ja)
Inventor
Akimori Kawashima
河島 昭守
Kazuo Chishima
千島 和夫
Yukio Tokuyama
徳山 幸夫
Shinji Sagara
信治 相良
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Fukoku Co Ltd
Fukoku KK
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Fukoku Co Ltd, Fukoku KK filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP2138454A priority Critical patent/JPH0433578A/en
Publication of JPH0433578A publication Critical patent/JPH0433578A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To prevent an insufficiency of a predetermined torque value due to a frictional damage, an increase in lubricity, etc., in a contact surface with a rotor by immersing a low melting point material in a cavity generated on the surface of a material sintered after power material is pressure molded. CONSTITUTION:A stator of an ultrasonic motor is formed of a sintered material representatively of an iron material containing stainless steel, copper material including brass, bronze material in such a manner that a low melting point material has a lower melting point than that of the sintered material itself, copper, tin, or lead material is used as the iron sintered material and tin or lead terminal is used as the copper material. Immersing material is immersed into cavities of the sintered material to eliminate residue in the cavities of the stator made of the sintered material, and only the immersed material is melted and immersed to the sintered material without remelting the sintered material. Thus, its thermal conductivity is improved to improve cooling properties, its temperature rise at the time of rotation of the motor is suppressed, and even if it is operated continuously for a long period, a predetermined torque value is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波モータ用ステータに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stator for an ultrasonic motor.

[従来の技術] 現在、進行波を利用した超音波モータが各分野において
広く利用されている。この超音波モータの典型的な構成
を第2図に示す。■は出力軸で円板状のベース2に軸受
3を介して回転自在に支持されており、又、ベース2の
一面上には出力軸と同軸に円盤状のステータ 4が固着
されている。ステータ 4の一面の上には、これとほぼ
同一外形を有している環状円盤状の回転体5が、出力軸
1と同軸に、かつ、その−面(第2図で見て下面)が、
ステータ4の一面(第2図で見て上面)と接触するよう
に載置されている。出力軸1の頂部と回転体5の他面(
第2図で見て上面)との間には、それらを弾性的に連結
するための弾性体として、皿ばね6が弾撥状態に配置さ
れており、その頂部及び底縁部において、それぞれ出力
軸1及び回転体5に係止されている。更にステータ4の
他面(第2図で見て下面)には電歪性を有する環状の圧
電素子7が固着されている。なお、これらのステータ 
4、回転体5、皿ばね6等は円筒状のケース8の内部に
収納されており、ケース8はその開放端縁部においてベ
ース2の外周縁部に固着されており、又、出力軸1の端
部がケース8の底部の中心部に設置された軸受3を介し
て回転自在に支持されている。
[Prior Art] Currently, ultrasonic motors that utilize traveling waves are widely used in various fields. A typical configuration of this ultrasonic motor is shown in FIG. 2 is an output shaft which is rotatably supported by a disk-shaped base 2 via a bearing 3, and a disk-shaped stator 4 is fixed on one surface of the base 2 coaxially with the output shaft. On one surface of the stator 4, there is an annular disc-shaped rotating body 5 having almost the same external shape as the stator 4, which is coaxial with the output shaft 1 and whose negative surface (lower surface as seen in FIG. 2) is coaxial with the output shaft 1. ,
It is placed so as to be in contact with one surface of the stator 4 (the upper surface as seen in FIG. 2). The top of the output shaft 1 and the other surface of the rotating body 5 (
As an elastic body for elastically connecting them, a disc spring 6 is arranged in an elastic state between the top surface and the top surface as seen in FIG. It is locked to the shaft 1 and the rotating body 5. Furthermore, an annular piezoelectric element 7 having electrostrictive properties is fixed to the other surface of the stator 4 (the lower surface as viewed in FIG. 2). In addition, these stators
4. The rotating body 5, the disc spring 6, etc. are housed inside a cylindrical case 8, and the open end of the case 8 is fixed to the outer peripheral edge of the base 2. The end portion of the case 8 is rotatably supported via a bearing 3 installed at the center of the bottom of the case 8.

このような構成を有している超音波モータは、ステータ
 4をその他面(第2図で見て下面)に固着された圧電
素子7により振動させることにより、ステータ4の一面
(第2図で見て上面)に進行波を生じさせ、この進行波
をステータ 4に皿ばね6を介して圧接させている回転
体5に伝達し、更にこの進行波を皿ばね6を介して出力
軸lに伝達し、所定の回転トルクを取出すものである。
The ultrasonic motor having such a configuration vibrates one surface of the stator 4 (as shown in FIG. 2) by vibrating the stator 4 using a piezoelectric element 7 fixed to the other surface (the bottom surface as seen in FIG. 2). This traveling wave is transmitted to the rotating body 5 which is in pressure contact with the stator 4 via the disc spring 6, and is further transmitted to the output shaft l via the disc spring 6. It is used to transmit and extract a predetermined rotational torque.

この超音波モータにおける重要な部品の一つであるステ
ータは合金の溶製材を用いて、総ての形状を切削加工で
成形すると、加工費が高くなる。そこで、切削加工費の
高騰を回避するため、粉末材料を用いてこれを所望形状
に加圧成形して焼結することが行われている。
If the stator, which is one of the important parts of this ultrasonic motor, is made of a melted alloy material and its entire shape is formed by cutting, the processing cost will be high. Therefore, in order to avoid a rise in cutting costs, it is common practice to use a powder material, pressure-form it into a desired shape, and sinter it.

[発明が解決しようとする課題] 上記焼結材は、切削加工等が不要で、簡単な仕上げ加工
のみで所望製品が得られるので、切削加工費は低下させ
ることができるものの焼結材として他の問題点がある。
[Problems to be Solved by the Invention] The above-mentioned sintered material does not require cutting, etc., and the desired product can be obtained with only simple finishing processing, so although the cutting cost can be reduced, it is not suitable for use as a sintered material. There is a problem with this.

すなわち、焼結材はどうしても内部に空孔が存在するが
、仕上げ加工の工程において使用する研磨粒、切削液、
研磨液等がその焼結材の空孔内に浸入し、残存すること
となる。かかる残存物の一部はかなり深い空孔に達する
ものがあり、その全てを除去することは困難である。
In other words, sintered materials inevitably have pores inside, but the abrasive grains, cutting fluid, and
Polishing liquid or the like will enter the pores of the sintered material and remain there. Some of these residues reach deep pores, and it is difficult to remove all of them.

ところがステータの空孔内にこのような残存物があると
、当該ステータを超音波モータに組立てて回転させる場
合に、摩擦熱等により当該ステータの空孔部から残存物
が滲出して、回転体の当接面に接触・付着し、擦傷を発
生したり、滑性を増加したりして、所要のトルク値が得
られない。又、仕上げ加工時に刃物が空孔部を横切ると
きに微小衝撃を絶えず受けて加工刃の寿命が非常に短く
なる。更にモータ回転時に、ステータと回転体との間で
の摩擦熱の発生及び高周波振動によるステータの内部発
熱等により共振点が変化し、所要のトルク値が得られな
い。
However, if such residual materials are present in the holes of the stator, when the stator is assembled into an ultrasonic motor and rotated, the residual materials ooze out from the holes of the stator due to frictional heat, etc., and damage the rotating body. Contact and adhere to the contact surface, causing scratches or increasing slipperiness, making it impossible to obtain the required torque value. Furthermore, when the cutting tool crosses the hole during finishing, it is constantly subjected to micro-impacts, resulting in a very short life span of the processing blade. Furthermore, when the motor rotates, the resonance point changes due to the generation of frictional heat between the stator and the rotating body and internal heat generation of the stator due to high frequency vibration, making it impossible to obtain the required torque value.

そこで本発明では焼結材よりなるステータの空孔内の残
存物をなくして、上記の問題点を解決し、長時間作動さ
せても所要のトルク値が得られることを目的とするもの
である。
Therefore, the present invention aims to solve the above-mentioned problems by eliminating residual materials in the cavities of the stator made of sintered material, and to obtain the required torque value even after long-term operation. .

[課題を解決するための手段] 本発明は、粉末材料を加圧成形後焼結した累月の表面の
不可避的に発生ずる空孔部に低融点材料を溶浸させたこ
とを特徴とする超音波モータ用ステータである。
[Means for Solving the Problems] The present invention is characterized in that a low melting point material is infiltrated into the pores that inevitably occur on the surface of a moon made by press-molding and sintering a powder material. This is a stator for an ultrasonic motor.

本発明の対象となる焼結材としては、ステンレス系を含
む鉄系材、黄銅、青銅系を含む銅系材等が代表的に例示
できるが、他のステータに適用できる焼結材はすべてが
対象となる。
Typical examples of sintered materials to which the present invention applies include iron-based materials including stainless steel, brass, and copper-based materials including bronze. However, all sintered materials that can be applied to other stators are Targeted.

低融点材料は焼結材自体の融点より低い融点の材料で、
例えば鉄系焼結体に対して銅系、錫系、鉛系の材料が、
又、銅系に対しては錫系、鉛系が用いられる。又、非金
属材料である高分子系の材質を用いることができる。
Low melting point materials are materials with a melting point lower than the melting point of the sintered material itself.
For example, compared to iron-based sintered materials, copper-based, tin-based, and lead-based materials
Furthermore, tin-based and lead-based materials are used in place of copper-based materials. Further, a polymeric material which is a non-metallic material can be used.

焼結材に低融点材料を溶浸する方法は同時溶浸でも事後
溶浸でもよい。
The method of infiltrating the sintered material with the low melting point material may be simultaneous infiltration or post-infiltration.

焼結材よりも溶浸材の方を低融点とすることは、同時溶
浸過程にあっては、焼結材が溶融する以前に溶浸材の方
が溶融し、より高温度で焼結材が融合し、成分拡散が終
了した段階で冷却をさぜ、焼結材が焼結安定をした後、
溶浸材が冷却安定するためであり、事後溶浸過程にあっ
ては既に焼結済の焼結材の空孔内に溶浸材が溶融して浸
入させ、焼結材が再融着等の過程を発生させないためで
ある。−口に言えば、焼結材を再溶融させないで、溶浸
材のみを焼結材に溶融、侵入させるためである。
The reason why the infiltration material has a lower melting point than the sintered material is that in the simultaneous infiltration process, the infiltration material melts before the sintered material and is sintered at a higher temperature. After the materials have fused and component diffusion has finished, cooling is performed, and after the sintered material has stabilized,
This is because the infiltrant is stabilized by cooling, and in the post-infiltration process, the infiltrant melts and infiltrates into the pores of the sintered material that has already been sintered, and the sintered material re-fuses. This is to prevent the process of - Simply put, this is to melt and penetrate only the infiltrant into the sintered material without remelting the sintered material.

[実施例コ 材質例えば14c r N i系ステンレス材等の鉄系
合金粉末を用いてステータ形状に加圧成形し焼結した。
[Example 1] Materials such as iron-based alloy powder such as 14c r Ni-based stainless steel were used to pressure-form the stator shape and sinter it.

この焼結材を銅系材料の溶湯に浸漬し、空孔内に銅系材
料の溶湯を溶浸させた。得られたステータを第2図に示
す超音波モータに組込み出力テストを行ったところ、第
1図イに示す結果が得られた。
This sintered material was immersed in a molten copper-based material to infiltrate the molten copper-based material into the pores. When the obtained stator was assembled into the ultrasonic motor shown in FIG. 2 and an output test was performed, the results shown in FIG. 1A were obtained.

上記実施例において銅系材料の溶浸処理をしないものに
ついて同様に出力テストをしたところ、第1図口に示す
結果が得られた。
When the same output test was conducted for the above-mentioned example without the infiltration treatment of the copper-based material, the results shown in Figure 1 were obtained.

第1図はY軸にトルク値、Y軸に回転数を設け、トルク
負荷を掛けた際の回転数の変動を示したもので、トルク
Okgf−cmの時は無負荷時の回転数を示し、トルク
(負荷)を徐々に上げて行き、回転数が0となった所が
最大トルク値であることを示す。
Figure 1 shows the fluctuation of the rotation speed when a torque load is applied, with the torque value on the Y-axis and the rotation speed on the Y-axis.When the torque is Okgf-cm, it shows the rotation speed when there is no load. , the torque (load) is gradually increased, and the point where the rotational speed reaches 0 indicates the maximum torque value.

[発明の効果] 本発明のステータは焼結によって作ったものであるにも
拘らず、空孔内に研磨粒、切削液、研磨液等が残存する
ことがないので、超音波モータに組込んで使用したとき
に回転体との当接面における擦傷発生、滑性増加等によ
る所要トルク値の不足が解消できる。又、仕」二げ加工
時に使用する旋削用刃物の寿命が、空孔が充填されてい
ることによって微小衝撃が発生しにくくなることによっ
て向」二する。更には熱伝導率が向上して冷却性が良く
なり、モータ回転時の摩擦による温度上昇が抑制され、
長時間持続作動させても所要のトルク値が得られる。
[Effects of the Invention] Although the stator of the present invention is made by sintering, no abrasive grains, cutting fluid, polishing fluid, etc. remain in the holes, so it can be incorporated into an ultrasonic motor. It is possible to eliminate the shortage of the required torque value due to scratches on the contact surface with the rotating body, increased slipperiness, etc. when used in In addition, the life of the turning cutter used during finishing and cutting is shortened because the holes are filled and micro-impacts are less likely to occur. Furthermore, the thermal conductivity improves, improving cooling performance and suppressing temperature rise due to friction when the motor rotates.
The required torque value can be obtained even after continuous operation for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例と比較例の回転数とトルクとの
関係を示すグラフ、第2図は超音波モータの一例の断面
図である。 ]・・・出力軸、2・・・ベース、3・・・軸受、4・
・・ステータ、5・・・回転体、6・・・皿ばね、7・
・・圧電素子、8・・・ケース。
FIG. 1 is a graph showing the relationship between rotational speed and torque of an example of the present invention and a comparative example, and FIG. 2 is a sectional view of an example of an ultrasonic motor. ]...Output shaft, 2...Base, 3...Bearing, 4...
... Stator, 5... Rotating body, 6... Belleville spring, 7...
...Piezoelectric element, 8...Case.

Claims (1)

【特許請求の範囲】[Claims]  粉末材料を加圧成形後焼結した素材の表面の不可避的
に発生する空孔部に低融点材料を溶浸させたことを特徴
とする超音波モータ用ステータ。
A stator for an ultrasonic motor, characterized in that a low melting point material is infiltrated into pores that inevitably occur on the surface of a material obtained by pressure forming and sintering a powder material.
JP2138454A 1990-05-30 1990-05-30 Stator for ultrasonic motor Pending JPH0433578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138454A JPH0433578A (en) 1990-05-30 1990-05-30 Stator for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138454A JPH0433578A (en) 1990-05-30 1990-05-30 Stator for ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH0433578A true JPH0433578A (en) 1992-02-04

Family

ID=15222392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138454A Pending JPH0433578A (en) 1990-05-30 1990-05-30 Stator for ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH0433578A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844933A1 (en) * 2002-09-20 2004-03-26 Sagem Improved high power motor having rotor with mechanism carrying active synchronised deformation elements moving petal having high thermal capacity/rotor calorific capacity.
US9417424B2 (en) 2011-06-22 2016-08-16 Nikon Corporation Vibration actuator, lens barrel, and camera

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844933A1 (en) * 2002-09-20 2004-03-26 Sagem Improved high power motor having rotor with mechanism carrying active synchronised deformation elements moving petal having high thermal capacity/rotor calorific capacity.
EP1411625A1 (en) * 2002-09-20 2004-04-21 Sagem S.A. Improvements of high power motors
US9417424B2 (en) 2011-06-22 2016-08-16 Nikon Corporation Vibration actuator, lens barrel, and camera

Similar Documents

Publication Publication Date Title
JP3466945B2 (en) Recording disk drive motor and recording disk drive provided with the same
JP4164262B2 (en) Power tool and insulation method thereof
CN101311568B (en) Dynamic bearing device
JPH05344766A (en) Stator for ultrasonic motor and manufacture thereof
JP2006121851A (en) Brushless motor and manufacturing method therefor
JPH0433578A (en) Stator for ultrasonic motor
CN1267653C (en) Fluid power bearing and its mfg. method, mainshaft motor and recording disc drive
JP2675911B2 (en) Vibration wave drive
KR101238552B1 (en) Bearing for spindle motor and method for manufacturing the same
CN1983771B (en) Dynamic damper and manufacturing method therefor
JP4275576B2 (en) Sintered bearing member manufacturing method, fluid dynamic bearing device, and spindle motor
JP2004132403A (en) Fluid bearing device
US4431317A (en) Device for adjusting the clearance between the end surface of a rotationally mounted component part with respect to a mounting structure
JPH1023696A (en) Spindle motor and manufacturing method
KR100578193B1 (en) A shaft holder for motor
JPH11113215A (en) Motor equipped with dynamic pressure bearing and rotator equipment using the motor as driving source
WO2008056749A1 (en) Motor, method for manufacturing the motor, and blower fan using the motor
JP2004132402A (en) Fluid bearing device and its manufacturing method
KR100555988B1 (en) A shaft holder for motor
JP2016194374A (en) Manufacturing method of sintered bearing
JPH09121504A (en) Flat type vibrating motor
JP2000278973A (en) Frictional material for oscillatory motor, and its manufacture, and oscillatory motor and apparatus using the same
WO2018181706A1 (en) Sintered bearing and method for manufacturing same
JP2002061638A (en) Dynamic pressure type bearing device and manufacturing method thereof
JP3046527B2 (en) Disk drive