JPH04335338A - Silver halide photographic sensitive material - Google Patents

Silver halide photographic sensitive material

Info

Publication number
JPH04335338A
JPH04335338A JP13325191A JP13325191A JPH04335338A JP H04335338 A JPH04335338 A JP H04335338A JP 13325191 A JP13325191 A JP 13325191A JP 13325191 A JP13325191 A JP 13325191A JP H04335338 A JPH04335338 A JP H04335338A
Authority
JP
Japan
Prior art keywords
silver
silver halide
emulsion
mol
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13325191A
Other languages
Japanese (ja)
Other versions
JP2706857B2 (en
Inventor
Akira Kase
晃 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3133251A priority Critical patent/JP2706857B2/en
Priority to DE69206871T priority patent/DE69206871T2/en
Priority to EP92107626A priority patent/EP0512496B1/en
Publication of JPH04335338A publication Critical patent/JPH04335338A/en
Priority to US08/150,287 priority patent/US5415991A/en
Application granted granted Critical
Publication of JP2706857B2 publication Critical patent/JP2706857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

PURPOSE:To enhance rapid processability and sensitivity and to reduce fluctuation of gradation by incorporating silver chlorobromide grains containing silver chloride in an amount of >=80mol% and silver bromide in a localized phase in an amount of >=10mol%, and sensitizing silver halide by a selenium compound. CONSTITUTION:The silver halide emulsion layer contains the silver halide in an average silver halide composition of >=80mol% silver chloride and <=1mol% silver iodide, preferably, substantially no silver iodide, and preferably, silver chlorobromide containing >=95mol% silver chloride. The silver halide grains has a localized phase containing at least >10mol% silver bromide in a layer state or nonlayer state in the inside of each grain or near the surface, preferably, in the inside by <=1/5 the grain diameter apart from the surface.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はハロゲン化銀写真感光材
料に関するものであり、詳しくは迅速処理性に優れ高感
度で、露光時間の変化による感度や階調の変動が少なく
、さらに露光から処理までの間の時間の変化による感度
や階調の変動が少ないハロゲン化銀写真感光材料に関す
るものである。 【0002】 【従来の技術】現在市販されているハロゲン化銀写真感
光材料、およびそれを用いた画像形成方法は多種多様に
わたり、あらゆる分野に利用されている。これらの感光
材料のうち、カラー印画紙用感光材料のように、大量の
プリントを短い納期で仕上げる要請の強い市場で用いら
れる製品においては、実質的に沃化銀を含まない臭化銀
もしくは塩臭化銀が用いられてきた。近年、カラー印画
紙に対する迅速処理性能向上の要請は益々強くなり、多
くの研究がなされている。使用するハロゲン化銀乳剤の
塩化銀含有率を高くすると、現像速度の飛躍的な向上が
もたらされることが知られており、現実に市場において
もカラー印画紙に使用されている乳剤の高塩化銀化が進
んでいる。しかしながら、塩化銀含有率の高いハロゲン
化銀乳剤は、通常の化学増感では高感度で硬調な階調が
得られにくく、更に相反則不軌、つまり露光照度の変化
による感度、階調の変化が大きいということが知られて
おり、これらの問題点を克服するために、様々な技術が
開示されている。 【0003】特開昭58−95736号、同58−10
8533号、同60−222844号、同60−222
845号および同64−26837号には、様々な構造
の臭化銀富有領域を有する高塩化銀乳剤によって、高感
度かつ硬調な性能が得られることが開示されている。し
かしながら、これらの技術に従えば確かに高感度な乳剤
が得られるが、相反則不軌の改良効果は僅かであった。 ハロゲン化銀乳剤の相反則不軌改良には、イリジウムを
ハロゲン化銀粒子にドーピングすることが有効であるこ
とが知られている。例えば特公昭43−4935号には
、ハロゲン化銀乳剤の沈澱または熟成中に微量のIr化
合物を添加したものを用いた感光材料は、広い露光時間
の範囲でほぼ一定の階調をもつ画像が得られることが開
示されている。しかしながら、イリジウムをドープした
塩化銀含有率の高いハロゲン化銀乳剤においては、露光
後15秒から約2時間の間に潜像補力が起こることがツ
ウィッキイ(Zwicky) によって、ジャーナル・
オブ・フォトグラフィック・サイエンス(Journa
l of Photographic Science
)の33巻、201頁に開示されている。 このようなことが起こると、露光から処理までの間の時
間の変化により感度、階調が変動してしまい、実用上好
ましくない。 【0004】特開平1−105940には、イリジウム
を選択的にドープした臭化銀富有領域を有する高塩化銀
乳剤によって、露光後数時間の潜像安定性を損なう事な
く、相反則特性の優れた乳剤が得られることが開示され
ている。しかしながら、本発明者らが検討したところ、
この技術では、臭化銀富有領域を形成するときの反応条
件によっては潜像増感が生じてしまうことがあり、潜像
安定性と相反則特性を十分に両立させるためには更なる
改良が必要であることが見出された。 【0005】 【発明が解決しようとする課題】したがって本発明の目
的は、迅速処理性に優れ高感度で、露光時間の変化によ
る感度や階調の変動が少なく、さらに露光から処理まで
の間の時間の変化による感度や階調の変動が少ない(潜
像安定性が改良された)ハロゲン化銀写真感光材料を提
供することにある。 【0006】 【問題点を解決するための手段】本発明の目的は、支持
体上にハロゲン化銀乳剤を含有する感光性乳剤層を少な
くとも一層有するハロゲン化銀写真感光材料において、
該ハロゲン化銀乳剤層の少なくとも一層に塩化銀含有率
80モル%以上の塩臭化銀粒子からなるハロゲン化銀乳
剤を含有し、かつ該粒子が臭化銀含有率10%以上の局
在相を有し、更に該粒子がセレン増感されていることを
特徴とするハロゲン化銀写真感光材料によって達成され
た。 【0007】以下に本発明を詳細に説明する。本発明に
用いるハロゲン化銀乳剤が「塩化銀含有率80モル%以
上の塩臭化銀粒子からなる」とは、本発明の乳剤に含ま
れるハロゲン化銀粒子の平均ハロゲン組成が80モル%
以上が塩化銀であり、実質的に沃化銀を含まない塩臭化
銀であることを意味する。ここで「実質的に沃化銀を含
まない」とは、沃化銀含有率が1.0モル%以下である
ことが好ましい。またハロゲン化銀粒子の平均ハロゲン
組成としては、95モル%以上が塩化銀である実質的に
沃化銀を含まない塩臭化銀であることが好ましい。更に
は99モル%以上が塩化銀である実質的に沃化銀を含ま
ない塩臭化銀であることが最も好ましい。 【0008】本発明のハロゲン化銀粒子は、臭化銀含有
率において少なくとも10モル%を越える局在相を、層
状もしくは非層状にハロゲン化銀粒子内部および/また
は表面に有する必要がある。このような臭化銀含有率の
高い局在相の配置は本発明の効果を発揮するために、更
には圧力性、処理液組成依存性等の観点から、粒子表面
近傍にあることが好ましい。ここで粒子表面近傍とは、
最表面から測って、用いるハロゲン化銀粒子の粒子サイ
ズの1/5以内の位置のことである。最表面から測って
、用いるハロゲン化銀粒子の粒子サイズの1/10以内
の位置であることがさらに好ましい。臭化銀含有率の高
い局在相の最も好ましい配置は、立方体または14面体
塩化銀粒子のコーナー部に、臭化銀含有率において少な
くとも10モル%を越える局在相がエピタキシャル成長
したものである。 【0009】臭化銀含有率の高い局在相の臭化銀含有率
は10モル%を越える必要があるが、臭化銀含有率が高
過ぎると感光材料に圧力が加えられたときに減感を引き
起こしたり、処理液の組成の変動によって感度、階調が
大きく変化してしまうなどの写真感光材料にとって好ま
しくない特性が付与されてしまう場合がある。臭化銀含
有率の高い局在相の臭化銀含有率は、これらの点を考慮
に入れて、10から60モル%の範囲が好ましく、20
から50モル%の範囲が最も好ましい。臭化銀含有率の
高い局在相の臭化銀含有率は、X線回折法(例えば、「
日本化学会編、新実験化学講座6、構造解析」丸善、に
記載されている)等を用いて分析することができる。 臭化銀含有率の高い局在相は、本発明のハロゲン化銀粒
子を構成する全銀量の0.1から20%の銀から構成さ
れていることが好ましく、0.2から5%の銀から構成
されていることが更に好ましい。このような臭化銀含有
率の高い局在相とその他の相との界面は、明瞭な相境界
を有していてもよいし、ハロゲン組成が徐々に変化する
転移領域を有していてもよい。 【0010】このような臭化銀含有率の高い局在相を形
成するには様々な方法を用いることができる。例えば、
可溶性銀塩と可溶性ハロゲン塩を片側混合法あるいは同
時混合法で反応させて局在相を形成することができる。 更に、既に形成されているハロゲン化銀粒子を、より溶
解度積の低いハロゲン化銀に変換するコンバージョン法
を用いても局在相を形成することができる。あるいは、
立方体または14面体ハロゲン化銀ホスト粒子に前記ハ
ロゲン化銀ホスト粒子よりも平均粒径が小さく、しかも
臭化銀含有率が高いハロゲン化銀微粒子を混合して後、
熟成する事によって臭化銀含有率の高い局在相を形成す
ることも好ましく行われる。 【0011】本発明の乳剤粒子にはイリジウム化合物が
含有されていることが好ましい。本発明に用いられるイ
リジウム化合物として、水溶性イリジウム化合物を用い
ることができる。例えば、ハロゲン化イリジウム(II
I) 化合物、ハロゲン化イリジウム(IV)化合物、
またイリジウム錯塩で配位子としてハロゲン、アミン類
、オキザラト等を持つもの、例えばヘキサクロロイリジ
ウム(III) あるいは(IV)錯塩、ヘキサアンミ
ンイリジウム(III) あるいは(IV)錯塩、トリ
オキザラトイリジウム(III) あるいは(IV)錯
塩などが挙げられる。本発明においては、これらの化合
物の中からIII 価のものとIV価のものを任意に組
合せて用いることができる。これらのイリジウム化合物
は水あるいは適当な溶媒に溶解して用いられるが、イリ
ジウム化合物の溶液を安定化させるために一般によく行
われる方法、即ちハロゲン化水素水溶液(例えば塩酸、
臭酸、フッ酸等)、あるいはハロゲン化アルカリ(例え
ばKCl、NaCl、KBr、NaBr等)を添加する
方法を用いることができる。水溶性イリジウム化合物を
用いる代わりに、本発明に係わるハロゲン化銀粒子調製
時にあらかじめイリジウムをドープしてある別のハロゲ
ン化銀粒子を添加して溶解させることも可能である。 【0012】本発明に係わるハロゲン化銀粒子調製時に
添加するイリジウム化合物の全添加量は、最終的に形成
されるハロゲン化銀1モル当たり5×10−9〜1×1
0−4モルが適当であり、好ましくは1×10−8〜1
×10−5モル、最も好ましくは5×10−8〜5×1
0−6モルである。 【0013】本発明のハロゲン化銀乳剤粒子にイリジウ
ム化合物が含有される場合、本発明の臭化銀含有率の高
い局在相は、前記のハロゲン化銀粒子調製時に添加する
全イリジウムの少なくとも50%とともに沈積されるこ
とが好ましい。局在相が、添加する全イリジウムの少な
くとも80%とともに沈積されることがさらに好ましく
、添加する全イリジウムとともに沈積されることが最も
好ましい。ここで該局在相をイリジウムと共に沈積する
とは、局在相を形成するための銀あるいはハロゲンの供
給と同時、供給の直前、または供給の直後にイリジウム
化合物を供給することをいう。ハロゲン化銀ホスト粒子
よりも平均粒径が小さく、しかも臭化銀含有率が高いハ
ロゲン化銀微粒子を混合して後、熟成する事によって臭
化銀含有率の高い局在相を形成する場合、臭化銀含有率
が高いハロゲン化銀微粒子にあらかじめイリジウム塩を
含有させておくことが好ましい。 【0014】本発明に用いるハロゲン化銀乳剤に含まれ
るハロゲン化銀粒子の平均粒子サイズ(粒子の投影面積
と等価な円の直径を以て粒子サイズとし、その数平均を
とったもの)は、0.1μ〜2μが好ましい。また、そ
れらの粒子サイズ分布は変動係数(粒子サイズ分布の標
準偏差を平均粒子サイズで除したもの)20%以下、望
ましくは15%以下の所謂単分散なものが好ましい。こ
のとき、広いラチチュードを得る目的で上記の単分散乳
剤を同一層にブレンドして使用することや、重層塗布す
ることも好ましく行われる。写真乳剤に含まれるハロゲ
ン化銀粒子の形状は、立方体、十四面体あるいは八面体
のような規則的な(regular)結晶形を有するも
の、球状、板状などのような変則的な(irregul
ar)結晶形を有するもの、あるいはこれらの複合形を
有するものを用いることができる。また、種々の結晶形
を有するものの混合したものからなっていても良い。本
発明においてはこれらの中でも上記規則的な結晶形を有
する粒子を50%以上、好ましくは70%以上、より好
ましくは90%以上含有するのが良い。 【0015】また、これら以外にも平均アスペクト比(
円換算直径/厚み)が5以上、好ましくは8以上の平板
状粒子が投影面積として全粒子の50%を越えるような
乳剤も好ましく用いることができる。本発明に用いる塩
臭化銀乳剤は、P.Glafkides 著 Chim
ie et Physique Photograph
ique(Paul Montel社刊、1967年)
、G.F.Duffin著 Photographic
 Emulsion Chemistry(Focal
 Press社刊、1966年)、V.L.Zelik
man et al著 Makingand Coat
ing Photographic Emulsion
(Focal Press 社刊、1964年)などに
記載された方法を用いて調整することができる。すなわ
ち、酸性法、中性法、アンモニア法等のいずれでもよく
、また可溶性銀塩と可溶性ハロゲン塩を反応させる形式
としては、片側混合法、同時混合法、及びそれらの組合
せなどのいずれの方法を用いても良い。粒子を銀イオン
過剰の雰囲気の下において形成させる方法(いわゆる逆
混合法)を用いることもできる。同時混合法の一つの形
式としてハロゲン化銀の生成する液相中のpAgを一定
に保つ方法、すなわちいわゆるコントロールド・ダブル
ジェット法を用いることもできる。この方法によると、
結晶形が規則的な粒子サイズが均一に近いハロゲン化銀
乳剤を得ることができる。 【0016】本発明に用いるハロゲン化銀乳剤は、その
乳剤粒子形成もしくは物理熟成の過程において前述のイ
リジウム塩以外にも種々の多価金属イオン不純物を導入
することができる。使用する化合物の例としては、カド
ミウム、亜鉛、鉛、銅、タリウムなどの塩、あるいは第
VIII族元素である鉄、ルテニウム、ロジウム、パラ
ジウム、オスミウム、白金などの塩もしくは錯塩を挙げ
ることができる。特に上記第VIII族元素は好ましく
用いることができる。これらの化合物の添加量は目的に
応じて広範囲にわたるが、ハロゲン化銀に対して10−
9〜10−2モルが好ましい。 【0017】次に本発明のハロゲン化銀乳剤に施される
セレン増感について詳しく説明する。本発明で用いられ
るセレン増感剤としては、従来公知の特許に開示されて
いるセレン化合物を用いることができる。セレン増感は
通常、不安定型セレン化合物および/または非不安定型
セレン化合物をハロゲン化銀乳剤に添加して、高温、好
ましくは40℃以上で乳剤を一定時間攪拌することによ
り行われる。不安定型セレン化合物としては特公昭44
−15748号、特公昭43−13489号、特願平1
−130976号、特願平2−229300号などに記
載の化合物を用いることが好ましい。具体的な不安定セ
レン増感剤としては、イソセレノシアネート類(例えば
アリルイソセレノシアネートの如き脂肪族イソセレノシ
アネート類)、セレノ尿素類、セレノケトン類、セレノ
アミド類、セレノカルボン酸類(例えば、2−セレノプ
ロピオン酸、2−セレノ酪酸)、セレノエステル類、ジ
アシルセレニド類(例えば、ビス(3−クロロ−2,6
−ジメトキシベンゾイル)セレニド)、セレノホスフェ
ート類、ホスフィンセレニド類、コロイド状金属セレン
などがあげられる。 【0018】不安定型セレン化合物の好ましい類型を上
に述べたがこれらは限定的なものではない。当業技術者
には写真乳剤の増感剤としての不安定型セレン化合物と
いえば、セレンが不安定である限りに於いて該化合物の
構造はさして重要なものではなく、セレン増感剤分子の
有機部分はセレンを担持し、それを不安定な形で乳剤中
に存在せしめる以外何らの役割をもたないことが一般に
理解されている。本発明においては、かかる広範な概念
の不安定セレン化合物が有利に用いられる。本発明で用
いられる非不安定型セレン化合物としては特公昭46−
4553号、特公昭52−34492号および特公昭5
2−34491号に記載の化合物が用いられる。非不安
定型セレン化合物としては例えば亜セレン酸、セレノシ
アン化カリウム、セレナゾール類、セレナゾール類の四
級塩、ジアリールセレニド、ジアリールジセレニド、ジ
アルキルセレニド、ジアルキルジセレニド、2−セレナ
ゾリジンジオン、2−セレノオキサゾリジンチオンおよ
びこれらの誘導体等があげられる。これらのセレン化合
物のうち、好ましくは以下の一般式(I)および(II
)があげられる。一般式(I) 【0019】 【化1】 【0020】式中、Z1 およびZ2 はそれぞれ同じ
でも異なっていてもよく、アルキル基(例えば、メチル
、エチル、t−ブチル、アダマンチル、t−オクチル)
、アルケニル基(例えば、ビニル、プロペニル)、アラ
ルキル基(例えば、ベンジル、フェネチル)、アリール
基(例えば、フェニル、ペンタフルオロフェニル、4−
クロロフェニル、3−ニトロフェニル、4−オクチルス
ルファモイルフェニル、α−ナフチル)、複素環基(例
えば、ピリジル、チエニル、フリル、イミダゾリル)、
−NR1(R2 )、−OR3 または−SR4 を表
す。R1 、R2 、R3 およびR4 はそれぞれ同
じでも異なっていてもよく、アルキル基、アラルキル基
、アリール基または複素環基を表す。アルキル基、アラ
ルキル基、アリール基または複素環基としてはZ1 と
同様な例があげられる。ただし、R1 およびR2 は
水素原子またはアシル基(例えば、アセチル、プロパノ
イル、ベンゾイル、ヘプタフルオロブタノイル、ジフル
オロアセチル、4−ニトロベンゾイル、α−ナフトイル
、4−トリフルオロメチルベンゾイル)であってもよい
。 【0021】一般式(I)中、好ましくはZ1 はアル
キル基、アリール基または−NR1(R2 )を表し、
Z2 は−NR5(R6)を表す。R1 、R2 、R
5 およびR6 はそれぞれ同じでも異なっていてもよ
く、水素原子、アルキル基、アリール基、またはアシル
基を表す。一般式(I)中、より好ましくはN,N−ジ
アルキルセレノ尿素、N,N,N′−トリアルキル−N
′−アシルセレノ尿素、テトラアルキルセレノ尿素、N
,N−ジアルキル−アリールセレノアミド、N−アルキ
ル−N−アリール−アリールセレノアミドを表す。一般
式(II)【0022】 【化2】 【0023】式中、Z3 、Z4 およびZ5 はそれ
ぞれ同じでも異なっていてもよく、脂肪族基、芳香族基
、複素環基、−OR7 、−NR8(R9)、−SR1
0、−SeR11、−Xまたは水素原子を表す。R7 
、R10およびR11は脂肪族基、芳香族基、複素環基
、水素原子またはカチオンを表し、R8 およびR9 
は脂肪族基、芳香族基、複素環基または水素原子を表し
、Xはハロゲン原子を表す。一般式(II)において、
Z3 、Z4 、Z5 、R7 、R8 、R9 、R
10およびR11で表される脂肪族基は直鎖、分岐また
は環状のアルキル基、アルケニル基、アルキニル基、ア
ラルキル基(例えば、メチル、エチル、n−プロピル、
イソプロピル、t−ブチル、n−ブチル、n−オクチル
、n−デシル、n−ヘキサデシル、シクロペンチル、シ
クロヘキシル、アリル、2−ブテニル、3−ペンテニル
、プロパルギル、3−ペンチニル、ベンジル、フェネチ
ル)を表す。一般式(II)において、Z3 、Z4 
、Z5 、R7 、R8 、R9 、R10およびR1
1で表される芳香族基は単環または縮環のアリール基(
例えば、フェニル、ペンタフルオロフェニル、4−クロ
ロフェニル、3−スルホフェニル、α−ナフチル、4−
メチルフェニル)を表す。 【0024】一般式(II)において、Z3 、Z4 
、Z5 、R7 、R8 、R9 、R10およびR1
1で表される複素環基は窒素原子、酸素原子または硫黄
原子のうち少なくとも一つを含む3〜10員環の飽和も
しくは不飽和の複素環基(例えば、ピリジル、チエニル
、フリル、チアゾリル、イミダゾリル、ベンズイミダゾ
リル)を表す。 一般式(II)において、R7 、R10およびR11
で表されるカチオンはアルカリ金属原子またはアンモニ
ウムを表し、Xで表されるハロゲン原子は、例えばフッ
素原子、塩素原子、臭素原子または沃素原子を表す。一
般式(II)中、好ましくはZ3、Z4 またはZ5 
は脂肪族基、芳香族基または−OR7 を表し、R7 
は脂肪族基または芳香族基を表す。一般式(II)中、
より好ましくはトリアルキルホスフィンセレニド、トリ
アリールホスフィンセレニド、トリアルキルセレノホス
フェートまたはトリアリールセレノホスフェートを表す
。以下に一般式(I)および(II)で表される化合物
の具体例を示すが、本発明はこれに限定されるものでは
ない。 【0025】 【化3】 【0026】 【化4】 【0027】 【化5】 【0028】 【化6】 【0029】 【化7】 【0030】 【化8】 【0031】 【化9】 【0032】 【化10】 【0033】セレン増感剤の使用量は、使用するセレン
化合物、ハロゲン化銀粒子(ハロゲンの種類と含有率、
粒子サイズや晶形など)、化学熟成条件等により変わる
が一般にハロゲン化銀1モル当たり10−8〜10−4
モル、好ましくは10−7〜10−5モル程度を用いる
。本発明における化学増感の条件としては、特に制限は
ないがpAgとしては一般に5〜10、好ましくは5.
5〜8、より好ましくは6〜7.5であり、温度として
は一般に30〜80℃、好ましくは40〜70℃である
。pHとしては一般に4〜10、好ましくは5〜8であ
る。 また温度は一般に30〜80℃、好ましくは40〜70
℃である。 【0034】本発明に用いられるハロゲン化銀乳剤に適
用される化学増感法については、本発明のセレン化合物
によるセレン増感単独以外に不安定硫黄化合物の添加に
代表される硫黄増感、金増感に代表される貴金属増感、
あるいは還元増感などを併用して用いることができる。 化学増感に用いられる化合物については、特開昭62−
215272号公報の第18頁右下欄〜第22頁右上欄
に記載のものが好ましく用いられる。本発明に用いられ
るハロゲン化銀乳剤に適用される分光増感は、本発明の
感光材料における各層の乳剤に対して所望の光波長域に
分光感度を付与する目的で行われる。本発明においては
目的とする分光感度に対応する波長域の光を吸収する色
素−分光増感色素を添加することで行うことが好ましい
。このとき用いられる分光増感色素としては例えば、F
.M.Harmer著 Heterocyclic c
ompounds−Cyaninedyes and 
related compounds(John Wi
ley & Sons New York,Londo
n  社刊  1964年)に記載されているものを挙
げることができる。具体的な化合物の例ならびに分光増
感法は、前出の特開昭62−215272号公報の第2
2頁右上欄〜第38頁に記載のものが好ましく用いられ
る。本発明に用いるハロゲン化銀乳剤には、感光材料の
製造工程、保存中あるいは写真処理中のかぶりを防止す
る、あるいは写真性能を安定化させる目的で種々の化合
物あるいはそれ等の前駆体を添加することができる。こ
れらの化合物の具体例は前出の特開昭62−21527
2号公報明細書の第39頁〜第72頁に記載のものが好
ましく用いられる。本発明に用いる乳剤は、潜像が主と
して粒子表面に形成される所謂表面潜像型乳剤である。 【0035】本発明に係わる感光材料には、画像のシャ
ープネス等を向上させる目的で親水性コロイド層に、欧
州特許EP0,337,490A2号の第27〜76頁
に記載の、処理により脱色可能な染料(なかでもオキソ
ノール系染料)を該感材の680nmに於ける光学反射
濃度が0.70以上になるように添加したり、支持体の
耐水性樹脂層中に2〜4価のアルコール類(例えばトリ
メチロールエタン)等で表面処理された酸化チタンを1
2重量%以上(より好ましくは14重量%以上)含有さ
せるのが好ましい。 【0036】本発明に用いうるシアン、マゼンタ、イエ
ローカプラー等の写真添加剤は高沸点有機溶媒に溶解さ
せて用いるのが好ましく、その高沸点有機溶媒は、融点
が100℃以下、融点が140℃以上の水と非混和性の
化合物で、カプラーの良溶媒であれば使用できる。高沸
点有機溶媒の融点は好ましくは80℃以下である。高沸
点有機溶媒の沸点は、好ましくは160℃以上であり、
より好ましくは170℃以上である。これらの高沸点有
機溶媒の詳細については、特開昭62−215272号
公開明細書の第137頁右下欄〜144頁右上欄に記載
されている。また、シアン、マゼンタまたはイエローカ
プラーは前記の高沸点有機溶媒の存在下でまたは不存在
下でローダブルラテックスポリマー(例えば米国特許第
4,203,716号)に含浸させて、または水不溶性
且つ有機溶媒可溶性のポリマーとともに溶かして親水性
コロイド水溶液に乳化分散させる事ができる。好ましく
は米国特許4,857,449号明細書の第7欄〜15
欄及び国際公開WO88/00723号明細書の第12
頁〜30頁に記載の単独重合体または共重合体が用いら
れ、より好ましくはメタクリレート系あるいはアクリル
アミド系ポリマー、特にアクリルアミド系ポリマーの使
用が色像安定化等の上で好ましい。 【0037】また、本発明に係わる感光材料には、カプ
ラーと共に欧州特許EP0,277,589A2号に記
載のような色像保存性改良化合物を使用するのが好まし
い。特にピラゾロアゾールカプラーとの併用が好ましい
。即ち、発色現像処理後に残存する芳香族アミン系現像
主薬と化学結合して、化学的に不活性でかつ実質的に無
色の化合物を生成する化合物(F)および/または発色
現像処理後に残存する芳香族アミン系発色現像主薬の酸
化体と化学結合して、化学的に不活性でかつ実質的に無
色の化合物を生成する化合物(G)を同時または単独に
用いることが、例えば処理後の保存における膜中残存発
色現像主薬ないしその酸化体とカプラーの反応による発
色色素生成によるステイン発生その他の副作用を防止す
る上で好ましい。 【0038】また、本発明に係わる感光材料には、親水
性コロイド層中に繁殖して画像を劣化させる各種の黴や
細菌を防ぐために、特開昭63−271247号に記載
のような防黴剤を添加するのが好ましい。 【0039】また、本発明に係わる感光材料に用いられ
る支持体としては、ディスプレイ用に白色ポリエステル
系支持体または白色顔料を含む層がハロゲン化銀乳剤層
を有する側の支持体上に設けられた支持体を用いてもよ
い。更に鮮鋭性を改良するために、アンチハレーション
層を支持体のハロゲン化銀乳剤層塗布側または裏面に塗
設するのが好ましい。特に反射光でも透過光でもディス
プレイが観賞できるように、支持体の透過濃度を0.3
5〜0.8の範囲に設定するのが好ましい。 【0040】本発明に係わる感光材料は可視光で露光さ
れても赤外光で露光されてもよい。露光方法としては低
照度露光でも高照度短時間露光でもよく、特に後者の場
合には一画素当りの露光時間が10−4秒より短いレー
ザー走査露光方式が好ましい。 【0041】また、露光に際して、米国特許第4,88
0,726号に記載のバンド・ストップフィルターを用
いるのが好ましい。これによって光混色が取り除かれ、
色再現性が著しく向上する。 【0042】露光済みの感光材料は慣用の白黒またはカ
ラー現像処理が施されうるが、カラー感材の場合には迅
速処理の目的からカラー現像の後、漂白定着処理するの
が好ましい。特に前記高塩化銀乳剤が用いられる場合に
は、漂白定着液のpHは脱銀促進等の目的から約6.5
以下が好ましく、更に約6以下が好ましい。 【0043】本発明に係わる感光材料に適用されるハロ
ゲン化銀乳剤やその他の素材(添加剤など)および写真
構成層(層配置など)、並びにこの感材を処理するため
に適用される処理法や処理用添加剤としては、下記の特
許公報、特に欧州特許EP0,355,660A2号(
特開平2−139544号)に記載されているものが好
ましく用いられる。 【0044】 【表1】 【0045】 【表2】 【0046】 【表3】 【0047】 【表4】 【0048】 【表5】 【0049】また、シアンカプラーとして、特開平2−
33144号に記載のジフェニルイミダゾール系シアン
カプラーの他に、欧州特許EP0,333,185A2
号に記載の3−ヒドロキシピリジン系シアンカプラー(
なかでも具体例として列挙されたカプラー(42)の4
当量カプラーに塩素離脱基をもたせて2当量化したもの
や、カプラー(6)や(9)が特に好ましい)や特開昭
64−32260号に記載された環状活性メチレン系シ
アンカプラー(なかでも具体例として列挙されたカプラ
ー例3、8、34が特に好ましい)の使用も好ましい。 【0050】また、塩化銀含有率が90モル%以上の高
塩化銀乳剤を使用するハロゲン化銀カラー感光材料の処
理方法としては、特開平2−207250号の第27頁
左上欄〜34頁右上欄に記載の方法が好ましく適用され
る。 【0051】 【実施例】 実施例1 石灰処理ゼラチン32gを蒸溜水800ccに添加し、
40℃にて溶解後、塩化ナトリウム5.8gおよびN,
N′−ジメチルイミダゾリジン−2−チオン(1%水溶
液)1.9ccを添加し、温度を72℃に上昇させた。 続いて硝酸銀80gを蒸溜水480ccに溶解した液と
塩化ナトリウム27.6gを蒸溜水480ccに溶解し
た液とを、72℃を保ちながら60分間かけて前記の液
に添加混合した。次に硝酸銀80gを蒸溜水300cc
に溶解した液と塩化ナトリウム24.3gおよびヘキサ
シアノ鉄(II)酸カリウム三水塩4mgを蒸溜水30
0ccに溶解した液とを、72℃を保ちながら20分間
かけて添加混合した。40℃にて脱塩および水洗を施し
た後、石灰処理ゼラチン90gを加え、更に塩化ナトリ
ウムおよび水酸化ナトリウムにてpAgを7.4に、p
Hを6.4に調整した。58℃に昇温した後、トリエチ
ルチオ尿素をハロゲン化銀1モルあたり1×10−5モ
ル添加して最適に硫黄増感を施した。また下記に示され
る青感光性増感色素をハロゲン化銀1モルあたり3×1
0−4モル添加して分光増感を施した。このようにして
得られた塩化銀乳剤を乳剤Aとした。 【0052】乳剤Aとは、トリエチルチオ尿素による硫
黄増感の代わりに、ハロゲン化銀1モルあたり1×10
−5モルのジメチルセレノウレアによるセレン増感を施
したことだげが異なる乳剤Bを調製した。乳剤Aとは、
硫黄増感前に、臭化カリウム水溶液を塩化銀に対して0
.4モル%の臭化銀含有率になる量添加して臭化銀局在
相を形成したことだけが異なる乳剤Cを調製した。乳剤
Aとは、硫黄増感前に、臭化銀超微粒子乳剤(粒子サイ
ズ0.05μm)を塩化銀に対して0.4モル%の臭化
銀含有率になる量添加して臭化銀局在相を形成したこと
だけが異なる乳剤Dを調製した。乳剤Cとは、トリエチ
ルチオ尿素による硫黄増感の代わりに、ハロゲン化銀1
モルあたり1×10−5モルのジメチルセレノウレアに
よるセレン増感を施したことだけが異なる乳剤Eを調製
した。 【0053】乳剤Dとは、トリエチルチオ尿素による硫
黄増感の代わりに、ハロゲン化銀1モルあたり1×10
−5モルのジメチルセレノウレアによるセレン増感を施
したことだけが異なる乳剤Fを調製した。このようにし
て調製したAからFまでの6種類の乳剤について、電子
顕微鏡写真から粒子の形状、粒子サイズ、および粒子サ
イズ分布を求めた。粒子サイズは粒子の投影面積と等価
な円の直径の平均値をもって表し、粒子サイズ分布は粒
子径の標準偏差を平均粒子サイズで割った値を用いた。 AからFまでの6種類の乳剤は、いずれも粒子サイズ0
.8μm、粒子サイズ分布0.08の角の尖った立方体
粒子であった。また乳剤C、D、EおよびFのX線回折
は、臭化銀含有率で10モル%から40モル%相当の部
分に弱い回折を示した。したがって乳剤C、D、Eおよ
びFでは、立方体塩化銀粒子のコーナー部に、臭化銀含
有率が10モル%から40モル%の局在相がエピタキシ
ャル成長しているといえる。 【0054】次に、ポリエチレンで両面ラミネートした
紙支持体表面にコロナ放電処理を施した後、ドデシルベ
ンゼンスルホン酸ナトリウムを含むゼラチン下塗層を設
け、さらに種々の写真構成層を塗布して以下に示す層構
成の多層カラー印画紙(試料1)を作製した。塗布液は
下記のようにして調製した。 第一層塗布液調製 イエローカプラー(ExY)19.1g、色像安定剤(
Cpd−1)4.4gおよび色像安定剤(Cpd−7)
1.4gに、酢酸エチル27.2ccおよび溶媒(So
lv−3)および溶媒(Solv−7)をそれぞれ4.
2gを加え溶解し、この溶液をドデシルベンゼンスルホ
ン酸ナトリウム8ccを含む10%ゼラチン水溶液18
5ccに添加した後、超音波ホモジナイザーにて乳化分
散した。得られた分散液を、前記の塩化銀乳剤Aと混合
溶解して第1層塗布液を調製した。第二層から第七層用
の塗布液も第一層塗布液と同様の方法で調製した。各層
のゼラチン硬化剤としては、1−オキシ−3,5−ジク
ロロ−s−トリアジンナトリウム塩を用いた。また、各
層にCpd−10とCpd−11をそれぞれ全量が25
.0mg/m2と50.0mg/m2となるように添加
した。 【0055】各感光性乳剤層の塩臭化銀乳剤には下記の
分光増感色素をそれぞれ用いた。 【0056】 【化11】 【0057】 【化12】 【0058】 【化13】 【0059】赤感性乳剤層に対しては、下記の化合物を
ハロゲン化銀1モル当たり2.6×10−3モル添加し
た。 【0060】 【化14】 【0061】また、イラジエーション防止のために乳剤
層に下記の染料(カッコ内は塗布量を表す)を添加した
。 【0062】 【化15】 【0063】(層構成)以下に各層の組成を示す。数字
は塗布量(g/m2)を表す。ハロゲン化銀乳剤は、銀
換算塗布量を表す。 支持体 ポリエチレンラミネート紙 〔第一層側のポリエチレンに白色顔料(TiO2 )と
青味染料(群青)を含む〕 第一層(青感性イエロー発色層)   前記塩臭化銀乳剤(A)            
                         
 0.30  ゼラチン              
                         
             1.22  イエローカプ
ラー(ExY)                  
                0.82  色像安
定剤(Cpd−1)                
                    0.19 
 溶媒(Solv−3)              
                         
 0.18  溶媒(Solv−7)        
                         
       0.18  色像安定剤(Cpd−7)
                         
           0.06【0064】 第二層(混色防止層)   ゼラチン                   
                         
        0.64  混色防止剤(Cpd−5
)                        
            0.10  溶媒(Solv
−1)                      
                  0.16  溶
媒(Solv−4)                
                        0
.08第三層(緑感光性マゼンタ発色層) 塩臭化銀乳剤(立方体、平均粒子サイズ0.55μmの
大サイズ乳剤Bと、0.39μmの小サイズ乳剤Bとの
1:3混合物(Agモル比)。粒子サイズ分布の変動係
数はそれぞれ0.10と0.08、各サイズ乳剤ともA
gBr0.8モル%を粒子表面の一部に局在含有させた
)            0.12ゼラチン    
                         
                       1.
28マゼンタカプラー(ExM)          
                        0
.23色像安定剤(Cpd−2)          
                         
 0.03色像安定剤(Cpd−3)        
                         
   0.16色像安定剤(Cpd−4)      
                         
     0.02  色像安定剤(Cpd−9)  
                         
         0.02溶媒(Solv−2)  
                         
             0.40第四層(紫外線吸
収層) ゼラチン                     
                         
      1.41紫外線吸収剤(UV−1)   
                         
        0.47混色防止剤(Cpd−5) 
                         
          0.05溶媒(Solv−5) 
                         
              0.24【0065】 第五層(赤感光性シアン発色層) 塩臭化銀乳剤(立方体、平均粒子サイズ0.58μmの
大サイズ乳剤Cと、0.45μmの小サイズ乳剤Cとの
1:4混合物(Agモル比)。粒子サイズ分布の変動係
数は0.09と0.11、各サイズ乳剤ともAgBr0
.6モル%を粒子表面の一部に局在含有させた)   
                 0.23ゼラチン
                         
                         
  1.04シアンカプラー(ExC)       
                         
    0.32色像安定剤(Cpd−2)     
                         
      0.03色像安定剤(Cpd−4)   
                         
        0.02色像安定剤(Cpd−6) 
                         
          0.18色像安定剤(Cpd−7
)                        
            0.40色像安定剤(Cpd
−8)                      
              0.05溶媒(Solv
−6)                      
                  0.14第六層
(紫外線吸収層) ゼラチン                     
                         
      0.48紫外線吸収剤(UV−1)   
                         
        0.16混色防止剤(Cpd−5) 
                         
          0.02溶媒(Solv−5) 
                         
              0.08第七層(保護層
) ゼラチン                     
                         
      1.10ポリビニルアルコールのアクリル
変性共重合体(変性度17%)  0.17  流動パ
ラフィン                     
                         
0.03【0066】 【化16】 【0067】 【化17】 【0068】 【化18】 【0069】 【化19】 【0070】 【化20】 【0071】 【化21】 【0072】 【化22】 【0073】 【化23】 【0074】 【化24】 【0075】以上のようにして得られた感光材料を基本
として、青感層の乳剤を第1表のように入れ替えた感光
材料を作成し、これらを試料2〜6とした。こうして得
た6種類の感光材料の感度および階調を調べるために、
光学ウェッジと青色フィルターを通して10秒あるいは
10−2秒の露光を与え、約1時間後に以下に示す処理
工程と処理液を用いて発色現像処理を行なった。感光材
料の潜像保存性を調べるために、光学ウェッジと青色フ
ィルターを通して10−2秒の露光を与え、10秒後お
よび10分後に以下に示す処理工程と処理液を用いて発
色現像処理を行なった。こうして作成した処理済み試料
の反射濃度を測定して、特性曲線を得た。感度は、かぶ
り濃度よりも0.5高い濃度を与えるに必要な露光量の
逆数で、試料1の10秒露光における感度を100とし
た相対値で表した。階調は、感度を求めた露光量からl
ogEで0.5増加した露光量に対する濃度と、感度を
求めた濃度との差で表した。潜像保存性の評価として、
露光後10秒と10分後に処理した試料の濃度差を測定
した。濃度差は、露光10秒後に処理した試料でかぶり
濃度よりも0.5高い濃度を与えるのに必要な露光量に
おける、露光後10分に処理した試料の濃度を求め、前
者との濃度差で表した。正の値は潜像増感を、負の値は
潜像退行を表す。これらの結果をまとめて第2表に示し
た。 【0076】 【表6】 【0077】(現像処理)露光の終了した試料は、ペー
パー処理機を用いて、次の処理工程でカラー現像のタン
ク容量の2倍補充するまで、連続処理(ランニング)を
実施したのち使用した。   処理工程        温    度     
 時間    補充液*   タンク容量  カラー現
像        35℃        45秒  
   161ml    17リットル  漂白定着 
       30〜35℃      45秒   
  215ml    17リットル  リンス■  
      30〜35℃      20秒    
  −      10リットル  リンス■    
    30〜35℃      20秒      
−      10リットル  リンス■      
  30〜35℃      20秒     350
ml    10リットル  乾    燥     
   70〜80℃      60秒    *補充
量は感光材料1m2当り。     (リンス■→■への3タンク向流方式とした。 )  各処理液の組成は以下の通りである。 カラー現像液                   
                   タンク液  
  補充液  水                 
                         
     800ml       800ml  エ
チレンジアミン−N,N,N′,N′−    テトラ
メチレンホスホン酸                
       1.5g       2.0g  臭
化カリウム                    
               0.015g    
    −  トリエタノールアミン        
                     8.0g
      12.0g  塩化ナトリウム     
                         
     1.4g        −  炭酸カリウ
ム                        
              25g        
25g  N−エチル−N−(β−メタンスルホンア 
   ミドエチル)−3−メチル−4−アミノ    
アニリン硫酸塩                  
               5.0g      
 7.0g  N,N−ビス(カルボキシメチル)ヒド
ラ    ジン                  
                         
4.0g       5.0g  N,N−ジ(スル
ホエチル)ヒドロキシル    アミン・1Na   
                         
     4.0g       5.0g  蛍光増
白剤(WHITEX  4B、住友化学製)     
      1.0g       2.0g  水を
加えて                      
                1000ml   
   1000ml    pH(25℃)     
                         
    10.05       10.45 【00
78】 漂白定着液(タンク液と補充液は同じ)  水    
                         
                         
    400ml  チオ硫酸アンモニウム(700
g/リットル)                  
100ml  亜硫酸ナトリウム          
                         
           17g  エチレンジアミン四
酢酸鉄(III) アンモニウム          
          55g  エチレンジアミン四酢
酸二ナトリウム                  
            5g  臭化アンモニウム 
                         
                    40g  
水を加えて                    
                         
   1000ml    pH(25℃)     
                         
                6.0リンス液(タ
ンク液と補充液は同じ)   イオン交換水(カルシウム、マグネシウムは各々3
ppm以下)【0079】第2表の結果から本発明の効
果は明らかである。即ち純塩化銀乳剤A、Bを用いた試
料1、2では十分な感度を得ることが出来ず、実用に供
するのに適さない。臭化銀局在相を有し硫黄増感されて
いる乳剤Cを用いた試料3および乳剤Dを用いた試料4
では高い感度は得られるが、高照度短時間露光時の低感
化と軟調化が大きく、また潜像保存性も良くない。臭化
銀局在相を有しセレン増感されている乳剤Eを用いた試
料5および乳剤Fを用いた試料6ではじめて、高感度で
、露光時間の変化による感度階調の変動が少なく、潜像
保存性も良好なハロゲン化銀感光材料を得ることができ
る。 【0080】実施例2 実施例1の乳剤Dとは、臭化銀微粒子形成中にヘキサク
ロロイリジウム(IV)酸カリウムを添加しておくこと
により、臭化銀微粒子添加によって形成される局在相中
にイリジウム塩を含有させ、全ハロゲン化銀1モル当た
り1×10−7モルのイリジウム塩が含有されるように
したことだけが異なる乳剤Gを調製した。実施例1の乳
剤Fとは、臭化銀微粒子形成中にヘキサクロロイリジウ
ム(IV)酸カリウムを添加しておくことにより、臭化
銀微粒子添加によって形成される局在相中にイリジウム
塩を含有させ、全ハロゲン化銀1モル当たり1×10−
7モルのイリジウム塩が含有されるようにしたことだけ
が異なる乳剤Hを調製した。乳剤Gとは、イリジウム塩
の含有量が全ハロゲン化銀1モル当たり2×10−5モ
ルでであることだけが異なる乳剤Iを調製した。乳剤H
とは、イリジウム塩の含有量が全ハロゲン化銀1モル当
たり2×10−5モルであることだけが異なる乳剤Jを
調製した。以上の乳剤G〜Jを用いて、実施例1と同様
に多層カラー印画紙7〜10を作成し(第3表参照)、
実施例1の試料4、6と合わせて実施例1と同様に露光
と現像処理を施し、写真性の評価をした。結果を第4表
に示す。 【0081】 【表7】 【0082】第4表の結果から本発明の効果は明らかで
ある。即ちイリジウムを含有する局在相を有し硫黄増感
された乳剤Gを含有する試料7(イリジウム含有量は全
ハロゲン化銀1モル当たり1×10−7モル)では、イ
リジウムを含有しない試料4に比べて高照度短時間露光
時の低感化と軟調化は低減するが十分ではなく、また潜
像保存性も改良されない。イリジウム塩含有量を増やし
た試料9では、試料7に比べて高照度短時間露光時の低
感化と軟調化はほとんどなくなるが、潜像保存性が悪化
し実用に供することができない。これに対して、セレン
増感を施し、イリジウムを1×10−7モル/モルAg
含有する試料8では露光時間の変化による感度と階調の
変動の少ないことと良好な潜像保存性を両立させること
ができる。またイリジウムの添加量を更に増やした本発
明の試料10でも、硫黄増感した試料9に比べて潜像保
存性がよく、露光時間の変化による感度と階調の変動の
少ないことと良好な潜像保存性を両立させることができ
る。 【0083】 【発明の効果】本発明によって、迅速処理性に優れ高感
度で、しかも露光時間の変化による感度と階調の変動の
少ないことと良好な潜像保存性を両立させたハロゲン化
銀写真感光材料が得られる。
Detailed Description of the Invention [0001] The present invention relates to a silver halide photographic light-sensitive material, and more specifically, it has excellent rapid processability and high sensitivity, and changes in sensitivity and gradation due to changes in exposure time. The present invention relates to a silver halide photographic material that exhibits little variation in tone and also has little variation in sensitivity or gradation due to changes in time between exposure and processing. [0002]Currently commercially available silver halide photographic materials and image forming methods using the same are diverse and are used in all fields. Among these photosensitive materials, for products used in markets where there is a strong demand for large quantities of prints to be completed in short lead times, such as photosensitive materials for color photographic paper, silver bromide or chloride containing virtually no silver iodide is used. Silver bromide has been used. In recent years, there has been an increasing demand for improved rapid processing performance of color photographic paper, and much research has been conducted. It is known that increasing the silver chloride content of the silver halide emulsion used dramatically improves the development speed, and in reality, in the market, the high silver chloride content of the emulsion used in color photographic paper is is progressing. However, with conventional chemical sensitization, silver halide emulsions with a high silver chloride content are difficult to obtain high sensitivity and high gradations, and furthermore, they suffer from reciprocity failure, that is, changes in sensitivity and gradation due to changes in exposure illuminance. Various techniques have been disclosed to overcome these problems. [0003] JP-A-58-95736, JP-A No. 58-10
No. 8533, No. 60-222844, No. 60-222
No. 845 and No. 64-26837 disclose that high sensitivity and high contrast performance can be obtained by high silver chloride emulsions having silver bromide rich regions of various structures. However, although highly sensitive emulsions can certainly be obtained by following these techniques, the effect of improving reciprocity failure is slight. It is known that doping silver halide grains with iridium is effective in improving reciprocity law failure of silver halide emulsions. For example, Japanese Patent Publication No. 43-4935 states that a light-sensitive material using a silver halide emulsion with a trace amount of Ir compound added during precipitation or ripening produces images with almost constant gradation over a wide range of exposure time. It is disclosed that it can be obtained. However, in a silver halide emulsion doped with iridium with a high silver chloride content, latent image intensification occurs between 15 seconds and about 2 hours after exposure, as reported by Zwicky in Journal
of Photographic Science (Journa)
of Photographic Science
), volume 33, page 201. If this happens, the sensitivity and gradation will fluctuate due to changes in the time between exposure and processing, which is not desirable in practice. JP-A-1-105940 discloses that a high silver chloride emulsion having a silver bromide-rich region selectively doped with iridium has excellent reciprocity properties without impairing latent image stability for several hours after exposure. It is disclosed that an emulsion can be obtained. However, as the inventors investigated,
With this technology, latent image sensitization may occur depending on the reaction conditions when forming the silver bromide-rich region, and further improvements are required to fully achieve both latent image stability and reciprocity properties. It was found necessary. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high-sensitivity device with excellent rapid processing performance, little variation in sensitivity and gradation due to changes in exposure time, and furthermore, An object of the present invention is to provide a silver halide photographic material with little variation in sensitivity and gradation due to changes in time (improved latent image stability). [Means for Solving the Problems] The object of the present invention is to provide a silver halide photographic light-sensitive material having at least one light-sensitive emulsion layer containing a silver halide emulsion on a support.
At least one of the silver halide emulsion layers contains a silver halide emulsion consisting of silver chlorobromide grains having a silver chloride content of 80 mol% or more, and the grains have a localized phase having a silver bromide content of 10% or more. This was achieved by a silver halide photographic light-sensitive material having the following characteristics, and further characterized in that the grains are selenium-sensitized. The present invention will be explained in detail below. The silver halide emulsion used in the present invention "consists of silver chlorobromide grains having a silver chloride content of 80 mol% or more" means that the average halogen composition of the silver halide grains contained in the emulsion of the present invention is 80 mol%.
The above is silver chloride, which means silver chlorobromide that does not substantially contain silver iodide. Here, "substantially no silver iodide" means that the silver iodide content is preferably 1.0 mol% or less. Further, the average halogen composition of the silver halide grains is preferably silver chlorobromide containing substantially no silver iodide, in which 95 mol % or more is silver chloride. Furthermore, it is most preferable to use silver chlorobromide, which is 99 mol % or more of silver chloride and is substantially free of silver iodide. The silver halide grains of the present invention must have localized phases with a silver bromide content of at least 10 mol % inside and/or on the surface of the silver halide grains in a layered or non-layered form. It is preferable that such a localized phase having a high silver bromide content be located near the grain surface in order to exhibit the effects of the present invention, as well as from the viewpoints of pressure resistance, treatment liquid composition dependence, and the like. Here, near the particle surface means
This refers to a position within 1/5 of the grain size of the silver halide grains used, measured from the outermost surface. More preferably, the position is within 1/10 of the grain size of the silver halide grains used, as measured from the outermost surface. The most preferred arrangement of the localized phase with a high silver bromide content is one in which the localized phase with a silver bromide content of at least 10 mol % is epitaxially grown at the corners of cubic or tetradecahedral silver chloride grains. The silver bromide content of the localized phase with a high silver bromide content must exceed 10 mol %, but if the silver bromide content is too high, it will decrease when pressure is applied to the photosensitive material. Undesirable characteristics may be imparted to the photographic material, such as the sensitivity and gradation greatly changing due to changes in the composition of the processing solution. Taking these points into consideration, the silver bromide content of the localized phase with a high silver bromide content is preferably in the range of 10 to 60 mol%, and 20 to 60 mol%.
The most preferred range is from 50% by mole. The silver bromide content of the localized phase with a high silver bromide content can be determined using the X-ray diffraction method (for example,
It can be analyzed using methods such as those described in "Structural Analysis", New Experimental Chemistry Course 6, edited by the Chemical Society of Japan, published by Maruzen. The localized phase having a high silver bromide content is preferably composed of 0.1 to 20% of silver, and 0.2 to 5% of the total silver amount constituting the silver halide grains of the present invention. More preferably, it is made of silver. The interface between such a localized phase with a high silver bromide content and other phases may have a clear phase boundary or a transition region where the halogen composition gradually changes. good. Various methods can be used to form such a localized phase with a high silver bromide content. for example,
A localized phase can be formed by reacting a soluble silver salt and a soluble halogen salt by a one-sided mixing method or a simultaneous mixing method. Furthermore, the localized phase can also be formed using a conversion method in which silver halide grains that have already been formed are converted into silver halide having a lower solubility product. or,
After mixing cubic or tetradecahedral silver halide host grains with silver halide fine grains having a smaller average grain size and a higher silver bromide content than the silver halide host grains,
It is also preferable to form a localized phase with a high silver bromide content by ripening. The emulsion grains of the present invention preferably contain an iridium compound. A water-soluble iridium compound can be used as the iridium compound used in the present invention. For example, iridium halide (II
I) compound, iridium (IV) halide compound,
Also, iridium complex salts having halogens, amines, oxalato, etc. as ligands, such as hexachloroiridium (III) or (IV) complex salts, hexaammineiridium (III) or (IV) complex salts, trioxalatoiridium (III) Alternatively, (IV) complex salts may be mentioned. In the present invention, among these compounds, III-valent compounds and IV-valent compounds can be used in any combination. These iridium compounds are used after being dissolved in water or a suitable solvent, but in order to stabilize solutions of iridium compounds, a commonly used method is to dissolve an aqueous hydrogen halide solution (e.g. hydrochloric acid,
A method of adding hydrochloric acid (bromic acid, hydrofluoric acid, etc.) or an alkali halide (eg, KCl, NaCl, KBr, NaBr, etc.) can be used. Instead of using a water-soluble iridium compound, it is also possible to add and dissolve other silver halide grains doped with iridium in advance during the preparation of silver halide grains according to the present invention. The total amount of iridium compound added during the preparation of silver halide grains according to the present invention is 5×10 −9 to 1×1 per mole of silver halide finally formed.
0-4 mol is suitable, preferably 1 x 10-8 to 1
x 10-5 mol, most preferably 5 x 10-8 to 5 x 1
0-6 mol. When the silver halide emulsion grains of the present invention contain an iridium compound, the localized phase having a high silver bromide content of the present invention accounts for at least 50% of the total iridium added during the preparation of the silver halide grains. Preferably, it is deposited with %. More preferably, the localized phase is deposited with at least 80% of the total iridium added, and most preferably with all the iridium added. Here, the expression "depositing the localized phase together with iridium" means that the iridium compound is supplied simultaneously with, immediately before, or immediately after supplying silver or halogen to form the localized phase. When a localized phase with a high silver bromide content is formed by mixing silver halide fine grains with a smaller average grain size and a higher silver bromide content than the silver halide host grains and then ripening the mixture, It is preferable that the silver halide fine particles having a high silver bromide content contain an iridium salt in advance. The average grain size of the silver halide grains contained in the silver halide emulsion used in the present invention (grain size is defined as the diameter of a circle equivalent to the projected area of the grain, and the number average thereof is taken) is 0. 1μ to 2μ is preferable. Further, the particle size distribution thereof is preferably so-called monodisperse, with a coefficient of variation (standard deviation of particle size distribution divided by average particle size) of 20% or less, preferably 15% or less. At this time, in order to obtain a wide latitude, it is preferable to blend the above monodispersed emulsions in the same layer or to apply multilayer coating. The shapes of silver halide grains contained in photographic emulsions include regular crystal shapes such as cubes, tetradecahedrons, and octahedrons, and irregular crystal shapes such as spherical and plate shapes.
ar) A substance having a crystalline form or a compound form thereof can be used. Moreover, it may be made of a mixture of crystals having various crystal forms. In the present invention, it is preferable that particles having the above-mentioned regular crystal form be contained in an amount of 50% or more, preferably 70% or more, and more preferably 90% or more. [0015] In addition to these, the average aspect ratio (
An emulsion in which tabular grains having a diameter (diameter in terms of circle equivalent to thickness) of 5 or more, preferably 8 or more in terms of projected area exceeds 50% of the total grains can also be preferably used. The silver chlorobromide emulsion used in the present invention is P. Chim by Glafkides
ie et Physique Photography
ique (Paul Montel, 1967)
,G. F. Written by Duffin Photographic
Emulsion Chemistry (Focal
Press, 1966), V. L. Zelik
Makingand Coat by man et al.
ing Photographic Emulsion
(Focal Press, 1964). That is, any of the acidic method, neutral method, ammonia method, etc. may be used, and the method for reacting the soluble silver salt with the soluble halogen salt may be any method such as one-sided mixing method, simultaneous mixing method, or a combination thereof. May be used. A method in which particles are formed in an atmosphere containing excess silver ions (so-called back mixing method) can also be used. As one type of simultaneous mixing method, a method in which the pAg in the liquid phase in which silver halide is produced can be kept constant, that is, a so-called controlled double jet method can also be used. According to this method,
A silver halide emulsion with a regular crystal shape and nearly uniform grain size can be obtained. In addition to the above-mentioned iridium salt, various polyvalent metal ion impurities can be introduced into the silver halide emulsion used in the present invention during the emulsion grain formation or physical ripening process. Examples of the compounds used include salts of cadmium, zinc, lead, copper, thallium, etc., or salts or complex salts of Group VIII elements such as iron, ruthenium, rhodium, palladium, osmium, platinum, etc. In particular, the Group VIII elements mentioned above can be preferably used. The amount of these compounds added varies widely depending on the purpose, but 10-
9 to 10-2 mol is preferred. Next, the selenium sensitization applied to the silver halide emulsion of the present invention will be explained in detail. As the selenium sensitizer used in the present invention, selenium compounds disclosed in conventionally known patents can be used. Selenium sensitization is usually carried out by adding an unstable selenium compound and/or a non-unstable selenium compound to a silver halide emulsion and stirring the emulsion at a high temperature, preferably 40° C. or higher, for a certain period of time. As an unstable selenium compound,
-15748, Japanese Patent Publication No. 43-13489, Japanese Patent Application No. 1998
It is preferable to use compounds described in Japanese Patent Application No. 2-130976 and Japanese Patent Application No. 2-229300. Specific unstable selenium sensitizers include isoselenocyanates (for example, aliphatic isoselenocyanates such as allyl isoselenocyanate), selenoureas, selenoketones, selenamides, selenocarboxylic acids (for example, 2- selenopropionic acid, 2-selenobutyric acid), selenoesters, diacylselenides (e.g. bis(3-chloro-2,6
-dimethoxybenzoyl) selenide), selenophosphates, phosphine selenides, and colloidal metal selenium. Although preferred types of unstable selenium compounds have been described above, these are not intended to be limiting. Those skilled in the art understand that when it comes to unstable selenium compounds used as sensitizers in photographic emulsions, the structure of the compound is not particularly important as long as selenium is unstable; It is generally understood that the moiety has no role other than to support the selenium and allow it to exist in an unstable form in the emulsion. In the present invention, unstable selenium compounds having such a broad concept are advantageously used. The non-unstable selenium compound used in the present invention is
No. 4553, Special Publication No. 52-34492 and Special Publication No. 5
The compound described in No. 2-34491 is used. Non-labile selenium compounds include, for example, selenite, potassium selenocyanide, selenazole compounds, quaternary salts of selenazole compounds, diaryl selenide, diaryl diselenide, dialkyl selenide, dialkyl diselenide, 2-selenazolidinedione, Examples include 2-selenoxazolidinethione and derivatives thereof. Among these selenium compounds, the following general formulas (I) and (II) are preferred.
) can be given. General formula (I) ##STR1## In the formula, Z1 and Z2 may each be the same or different and represent an alkyl group (for example, methyl, ethyl, t-butyl, adamantyl, t-octyl)
, alkenyl groups (e.g. vinyl, propenyl), aralkyl groups (e.g. benzyl, phenethyl), aryl groups (e.g. phenyl, pentafluorophenyl, 4-
chlorophenyl, 3-nitrophenyl, 4-octylsulfamoylphenyl, α-naphthyl), heterocyclic groups (e.g. pyridyl, thienyl, furyl, imidazolyl),
-NR1(R2), -OR3 or -SR4. R1, R2, R3 and R4 may each be the same or different and represent an alkyl group, an aralkyl group, an aryl group or a heterocyclic group. Examples of the alkyl group, aralkyl group, aryl group or heterocyclic group include the same examples as Z1. However, R1 and R2 may be a hydrogen atom or an acyl group (eg, acetyl, propanoyl, benzoyl, heptafluorobutanoyl, difluoroacetyl, 4-nitrobenzoyl, α-naphthoyl, 4-trifluoromethylbenzoyl). In the general formula (I), preferably Z1 represents an alkyl group, an aryl group or -NR1 (R2),
Z2 represents -NR5(R6). R1, R2, R
5 and R6 may each be the same or different and represent a hydrogen atom, an alkyl group, an aryl group, or an acyl group. In general formula (I), more preferably N,N-dialkylselenourea, N,N,N'-trialkyl-N
'-acylselenourea, tetraalkylselenourea, N
, N-dialkyl-arylselenoamide, N-alkyl-N-aryl-arylselenoamide. General formula (II) ##STR2## In the formula, Z3, Z4 and Z5 may be the same or different, and represent an aliphatic group, an aromatic group, a heterocyclic group, -OR7, -NR8 (R9), -SR1
0, -SeR11, -X or a hydrogen atom. R7
, R10 and R11 represent an aliphatic group, aromatic group, heterocyclic group, hydrogen atom or cation, R8 and R9
represents an aliphatic group, an aromatic group, a heterocyclic group, or a hydrogen atom, and X represents a halogen atom. In general formula (II),
Z3, Z4, Z5, R7, R8, R9, R
The aliphatic group represented by 10 and R11 is a linear, branched or cyclic alkyl group, alkenyl group, alkynyl group, aralkyl group (for example, methyl, ethyl, n-propyl,
isopropyl, t-butyl, n-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopentyl, cyclohexyl, allyl, 2-butenyl, 3-pentenyl, propargyl, 3-pentynyl, benzyl, phenethyl). In general formula (II), Z3, Z4
, Z5 , R7 , R8 , R9 , R10 and R1
The aromatic group represented by 1 is a monocyclic or condensed aryl group (
For example, phenyl, pentafluorophenyl, 4-chlorophenyl, 3-sulfophenyl, α-naphthyl, 4-
methylphenyl). In the general formula (II), Z3, Z4
, Z5 , R7 , R8 , R9 , R10 and R1
The heterocyclic group represented by 1 is a 3- to 10-membered saturated or unsaturated heterocyclic group containing at least one of a nitrogen atom, an oxygen atom, or a sulfur atom (e.g., pyridyl, thienyl, furyl, thiazolyl, imidazolyl). , benzimidazolyl). In general formula (II), R7, R10 and R11
The cation represented by represents an alkali metal atom or ammonium, and the halogen atom represented by X represents, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. In general formula (II), preferably Z3, Z4 or Z5
represents an aliphatic group, an aromatic group, or -OR7, R7
represents an aliphatic group or an aromatic group. In general formula (II),
More preferably it represents trialkylphosphine selenide, triarylphosphine selenide, trialkylselenophosphate or triarylselenophosphate. Specific examples of compounds represented by general formulas (I) and (II) are shown below, but the present invention is not limited thereto. [Formula 3] [Formula 3] [Formula 4] [Formula 5] [Formula 5] [Formula 6] [Formula 7] [Formula 7] ##STR10## The amount of selenium sensitizer used depends on the selenium compound used, the silver halide grains (the type and content of halogen,
Although it varies depending on grain size, crystal shape, etc.), chemical ripening conditions, etc., it is generally 10-8 to 10-4 per mole of silver halide.
The amount used is preferably about 10-7 to 10-5 moles. The conditions for chemical sensitization in the present invention are not particularly limited, but the pAg is generally 5 to 10, preferably 5.
5 to 8, more preferably 6 to 7.5, and the temperature is generally 30 to 80°C, preferably 40 to 70°C. The pH is generally 4-10, preferably 5-8. The temperature is generally 30 to 80°C, preferably 40 to 70°C.
It is ℃. Regarding the chemical sensitization method applied to the silver halide emulsion used in the present invention, in addition to selenium sensitization alone using the selenium compound of the present invention, sulfur sensitization represented by the addition of an unstable sulfur compound, gold sensitization, etc. Noble metal sensitization represented by sensitization,
Alternatively, reduction sensitization or the like can be used in combination. Compounds used for chemical sensitization are described in JP-A-62-
Those described in the lower right column on page 18 to the upper right column on page 22 of Publication No. 215272 are preferably used. Spectral sensitization applied to the silver halide emulsion used in the present invention is carried out for the purpose of imparting spectral sensitivity in a desired light wavelength range to the emulsion of each layer in the light-sensitive material of the present invention. In the present invention, it is preferable to add a dye-spectral sensitizing dye that absorbs light in a wavelength range corresponding to the desired spectral sensitivity. Spectral sensitizing dyes used at this time include, for example, F
.. M. Heterocyclic c by Harmer
compounds - Cyaninedyes and
related compounds (John Wi
ley & Sons New York, London
Examples include those described in 1964). Specific examples of compounds and spectral sensitization methods are described in the above-mentioned JP-A No. 62-215272, No. 2.
Those described in the upper right column of page 2 to page 38 are preferably used. Various compounds or their precursors are added to the silver halide emulsion used in the present invention for the purpose of preventing fog during the manufacturing process, storage, or photographic processing of light-sensitive materials, or to stabilize photographic performance. be able to. Specific examples of these compounds are given in the aforementioned Japanese Patent Application Laid-Open No. 62-21527.
Those described on pages 39 to 72 of the specification of Publication No. 2 are preferably used. The emulsion used in the present invention is a so-called surface latent image type emulsion in which latent images are mainly formed on the grain surfaces. The photosensitive material according to the present invention has a hydrophilic colloid layer which can be decolorized by the treatment described on pages 27 to 76 of European Patent EP 0,337,490A2 for the purpose of improving image sharpness, etc. Dyes (especially oxonol dyes) are added to the sensitive material so that the optical reflection density at 680 nm is 0.70 or more, and di- to tetrahydric alcohols (among others) are added to the water-resistant resin layer of the support. For example, titanium oxide surface-treated with trimethylolethane)
The content is preferably 2% by weight or more (more preferably 14% by weight or more). Photographic additives such as cyan, magenta, and yellow couplers that can be used in the present invention are preferably used after being dissolved in a high-boiling organic solvent, and the high-boiling organic solvent has a melting point of 100°C or less and a melting point of 140°C. Any of the above water-immiscible compounds can be used as long as they are good solvents for couplers. The melting point of the high-boiling organic solvent is preferably 80°C or lower. The boiling point of the high boiling point organic solvent is preferably 160°C or higher,
More preferably, the temperature is 170°C or higher. Details of these high boiling point organic solvents are described in the lower right column on page 137 to the upper right column on page 144 of the specification of JP-A-62-215272. Cyan, magenta, or yellow couplers may also be impregnated into loadable latex polymers (e.g., U.S. Pat. No. 4,203,716) in the presence or absence of the high-boiling organic solvents mentioned above, or water-insoluble and organic It can be dissolved together with a solvent-soluble polymer and emulsified and dispersed in an aqueous hydrophilic colloid solution. Preferably columns 7 to 15 of U.S. Pat. No. 4,857,449.
Column and No. 12 of International Publication No. WO88/00723 Specification
Homopolymers or copolymers described on pages 30 to 30 are used, and methacrylate or acrylamide polymers, particularly acrylamide polymers, are preferably used from the viewpoint of color image stabilization. Further, in the light-sensitive material according to the present invention, it is preferable to use a color image preservation improving compound as described in European Patent EP 0,277,589A2 together with a coupler. Particularly preferred is the combination with a pyrazoloazole coupler. That is, a compound (F) that chemically bonds with the aromatic amine developing agent remaining after color development processing to produce a chemically inert and substantially colorless compound and/or an aroma remaining after color development processing. For example, in storage after processing, the compound (G) that chemically bonds with the oxidized form of a group amine color developing agent to produce a chemically inert and substantially colorless compound may be used simultaneously or singly. This is preferable in order to prevent the generation of stains and other side effects due to the formation of coloring dyes due to the reaction between the color developing agent or its oxidized product remaining in the film and the coupler. The photosensitive material of the present invention is also coated with anti-mildew agents as described in JP-A No. 63-271247 in order to prevent various types of mold and bacteria that grow in the hydrophilic colloid layer and degrade images. It is preferable to add an agent. The support used in the light-sensitive material according to the present invention may be a white polyester support for display purposes or a support on which a layer containing a white pigment is provided on the side having a silver halide emulsion layer. A support may also be used. In order to further improve sharpness, it is preferable to coat an antihalation layer on the side on which the silver halide emulsion layer is coated or on the back side of the support. In particular, the transmission density of the support was set to 0.3 so that the display can be viewed with both reflected and transmitted light.
It is preferable to set it in the range of 5 to 0.8. The photosensitive material according to the present invention may be exposed to visible light or infrared light. The exposure method may be low-intensity exposure or high-intensity short-time exposure, and particularly in the latter case, a laser scanning exposure method in which the exposure time per pixel is shorter than 10 -4 seconds is preferred. [0041] Also, upon exposure, US Pat. No. 4,88
Preferably, a band stop filter as described in US Pat. No. 0,726 is used. This removes light color mixing,
Color reproducibility is significantly improved. The exposed light-sensitive material may be subjected to conventional black-and-white or color development, but in the case of color light-sensitive materials, for the purpose of rapid processing, it is preferable to carry out bleach-fixing after color development. In particular, when the above-mentioned high silver chloride emulsion is used, the pH of the bleach-fix solution is approximately 6.5 for the purpose of promoting desilvering.
The following is preferable, and about 6 or less is more preferable. Silver halide emulsion and other materials (additives, etc.) and photographic constituent layers (layer arrangement, etc.) applied to the light-sensitive material according to the present invention, and the processing method applied to process this light-sensitive material As processing additives, the following patent publications, especially European Patent EP 0,355,660A2 (
Those described in JP-A-2-139544) are preferably used. [Table 1] [Table 2] [Table 2] [Table 3] [Table 3] [Table 4] [Table 5] [0049] In addition, as a cyan coupler,
In addition to the diphenylimidazole cyan coupler described in No. 33144, European Patent EP 0,333,185A2
3-hydroxypyridine cyan coupler (
Among them, 4 of couplers (42) listed as specific examples
Particularly preferred are equivalent couplers with a chlorine leaving group to make them di-equivalent, couplers (6) and (9), and cyclic active methylene cyan couplers described in JP-A No. 64-32260 (especially preferred). Particular preference is given to the couplers examples 3, 8, 34 listed by way of example). Further, as a method for processing silver halide color light-sensitive materials using a high silver chloride emulsion with a silver chloride content of 90 mol % or more, JP-A-2-207250, page 27, top left column to page 34, top right The method described in the column is preferably applied. [Example] Example 1 32 g of lime-treated gelatin was added to 800 cc of distilled water,
After dissolving at 40°C, 5.8 g of sodium chloride and N,
1.9 cc of N'-dimethylimidazolidine-2-thione (1% aqueous solution) was added and the temperature was raised to 72°C. Subsequently, a solution in which 80 g of silver nitrate was dissolved in 480 cc of distilled water and a solution in which 27.6 g of sodium chloride was dissolved in 480 cc of distilled water were added to and mixed with the above solution over 60 minutes while maintaining the temperature at 72°C. Next, add 80g of silver nitrate to 300cc of distilled water.
24.3 g of sodium chloride and 4 mg of potassium hexacyanoferrate (II) trihydrate were added to 30 g of distilled water.
0 cc of the solution was added and mixed over 20 minutes while maintaining the temperature at 72°C. After desalting and washing with water at 40°C, 90 g of lime-treated gelatin was added, and the pAg was adjusted to 7.4 with sodium chloride and sodium hydroxide.
H was adjusted to 6.4. After raising the temperature to 58 DEG C., triethylthiourea was added in an amount of 1.times.10@-5 mol per mol of silver halide to perform optimal sulfur sensitization. In addition, the blue-sensitive sensitizing dye shown below was added at 3×1 per mole of silver halide.
Spectral sensitization was performed by adding 0-4 mol. The silver chloride emulsion thus obtained was designated as Emulsion A. Emulsion A consists of sulfur sensitization using triethylthiourea, which has a sulfur sensitization of 1×10
Emulsion B was prepared, except that it was selenium sensitized with -5 moles of dimethylselenourea. What is emulsion A?
Before sulfur sensitization, potassium bromide aqueous solution was 0% compared to silver chloride.
.. Emulsion C was prepared, the only difference being that an amount was added to give a silver bromide content of 4 mol % to form a localized silver bromide phase. Emulsion A is made by adding silver bromide ultrafine grain emulsion (grain size 0.05 μm) in an amount to give a silver bromide content of 0.4 mol% relative to silver chloride before sulfur sensitization. Emulsion D was prepared, differing only in the formation of a localized phase. Emulsion C consists of silver halide 1 instead of sulfur sensitization using triethylthiourea.
Emulsion E was prepared, the only difference being that it was selenium sensitized with 1 x 10-5 moles per mole of dimethylselenourea. Emulsion D consists of 1×10 sulfur sensitization per mole of silver halide instead of sulfur sensitization with triethylthiourea.
Emulsion F was prepared, the only difference being that it was selenium sensitized with -5 moles of dimethylselenourea. For the six types of emulsions A to F prepared in this way, the grain shape, grain size, and grain size distribution were determined from electron micrographs. The particle size was expressed as the average value of the diameter of a circle equivalent to the projected area of the particle, and the particle size distribution was calculated by dividing the standard deviation of the particle size by the average particle size. All six types of emulsions from A to F have a grain size of 0.
.. The particles were cubic particles with sharp corners of 8 μm and a particle size distribution of 0.08. In addition, X-ray diffraction of Emulsions C, D, E, and F showed weak diffraction in a portion corresponding to a silver bromide content of 10 mol % to 40 mol %. Therefore, it can be said that in emulsions C, D, E, and F, a localized phase with a silver bromide content of 10 mol % to 40 mol % is epitaxially grown at the corners of the cubic silver chloride grains. Next, the surface of the paper support laminated on both sides with polyethylene was subjected to a corona discharge treatment, and then a gelatin undercoat layer containing sodium dodecylbenzenesulfonate was applied, and various photographic constituent layers were further coated. A multilayer color photographic paper (Sample 1) having the layer structure shown below was prepared. The coating solution was prepared as follows. First layer coating solution preparation Yellow coupler (ExY) 19.1g, color image stabilizer (
Cpd-1) 4.4g and color image stabilizer (Cpd-7)
To 1.4 g, 27.2 cc of ethyl acetate and solvent (So
4. lv-3) and solvent (Solv-7), respectively.
2g of gelatin was added and dissolved, and this solution was mixed with 18% of a 10% gelatin aqueous solution containing 8cc of sodium dodecylbenzenesulfonate.
After adding it to 5 cc, it was emulsified and dispersed using an ultrasonic homogenizer. The obtained dispersion was mixed and dissolved with the silver chloride emulsion A described above to prepare a first layer coating solution. Coating solutions for the second to seventh layers were also prepared in the same manner as the first layer coating solution. As the gelatin hardening agent for each layer, 1-oxy-3,5-dichloro-s-triazine sodium salt was used. In addition, the total amount of Cpd-10 and Cpd-11 was 25% each in each layer.
.. It was added at a concentration of 0 mg/m2 and 50.0 mg/m2. The following spectral sensitizing dyes were used in the silver chlorobromide emulsion of each light-sensitive emulsion layer. ##STR11## ##STR12## For the red-sensitive emulsion layer, the following compound was added at 2.6 x 10-3 per mole of silver halide. Mol added. ##STR14## Further, the following dyes (the amounts in parentheses represent the coating amounts) were added to the emulsion layer to prevent irradiation. ##STR15## (Layer structure) The composition of each layer is shown below. The numbers represent the coating amount (g/m2). The silver halide emulsion represents the coated amount in terms of silver. Support polyethylene laminate paper [The polyethylene on the first layer side contains a white pigment (TiO2) and a bluish dye (ulmarine blue)] First layer (blue-sensitive yellow coloring layer) Said silver chlorobromide emulsion (A)

0.30 Gelatin

1.22 Yellow coupler (ExY)
0.82 Color image stabilizer (Cpd-1)
0.19
Solvent (Solv-3)

0.18 Solvent (Solv-7)

0.18 Color image stabilizer (Cpd-7)

0.06 0064 Second layer (color mixing prevention layer) Gelatin

0.64 Color mixing prevention agent (Cpd-5
)
0.10 Solvent
-1)
0.16 Solvent (Solv-4)
0
.. 08 Third layer (green-sensitive magenta coloring layer) Silver chlorobromide emulsion (cubic, 1:3 mixture of large size emulsion B with an average grain size of 0.55 μm and small size emulsion B with an average grain size of 0.39 μm (Ag mol) The coefficient of variation of the grain size distribution is 0.10 and 0.08, respectively, and each size emulsion is A.
0.12 gelatin (gBr0.8 mol% was locally contained on a part of the particle surface)

1.
28 magenta coupler (ExM)
0
.. 23 color image stabilizer (Cpd-2)

0.03 color image stabilizer (Cpd-3)

0.16 color image stabilizer (Cpd-4)

0.02 Color image stabilizer (Cpd-9)

0.02 solvent (Solv-2)

0.40 Fourth layer (ultraviolet absorption layer) Gelatin

1.41 Ultraviolet absorber (UV-1)

0.47 Color mixing prevention agent (Cpd-5)

0.05 solvent (Solv-5)

0.24 Fifth layer (red-sensitive cyan coloring layer) Silver chlorobromide emulsion (cubic, large size emulsion C with an average grain size of 0.58 μm and small size emulsion C with an average grain size of 0.45 μm): 4 mixture (Ag molar ratio).The coefficient of variation of particle size distribution is 0.09 and 0.11, each size emulsion is AgBr0
.. (6 mol% was locally contained on a part of the particle surface)
0.23 gelatin

1.04 Cyan coupler (ExC)

0.32 color image stabilizer (Cpd-2)

0.03 color image stabilizer (Cpd-4)

0.02 color image stabilizer (Cpd-6)

0.18 color image stabilizer (Cpd-7
)
0.40 color image stabilizer (Cpd
-8)
0.05 Solv.
-6)
0.14 Sixth layer (ultraviolet absorption layer) Gelatin

0.48 Ultraviolet absorber (UV-1)

0.16 color mixing inhibitor (Cpd-5)

0.02 solvent (Solv-5)

0.08 Seventh layer (protective layer) Gelatin

1.10 Acrylic modified copolymer of polyvinyl alcohol (degree of modification 17%) 0.17 Liquid paraffin

0.03 22] [Chemical 23] [Chemical 24] [Chemical 24] Based on the photosensitive material obtained as above, a photosensitive material was prepared in which the emulsion in the blue-sensitive layer was replaced as shown in Table 1. These samples were designated as Samples 2 to 6. In order to investigate the sensitivity and gradation of the six types of photosensitive materials obtained in this way,
Exposure was applied for 10 seconds or 10-2 seconds through an optical wedge and a blue filter, and after about 1 hour, color development was performed using the processing steps and processing solution shown below. In order to examine the latent image storage properties of photosensitive materials, exposure was applied for 10-2 seconds through an optical wedge and a blue filter, and color development was performed after 10 seconds and 10 minutes using the processing steps and processing solution shown below. Ta. The reflection density of the treated sample thus prepared was measured to obtain a characteristic curve. The sensitivity is the reciprocal of the exposure amount required to give a density 0.5 higher than the fog density, and is expressed as a relative value with the sensitivity of Sample 1 at 10 seconds exposure as 100. The gradation is calculated from the exposure amount that determined the sensitivity.
It was expressed as the difference between the density for the exposure amount increased by 0.5 in ogE and the density for which the sensitivity was determined. As an evaluation of latent image preservation,
The density difference between the processed samples was measured 10 seconds and 10 minutes after exposure. The density difference is determined by calculating the density of the sample processed 10 minutes after exposure at the exposure amount required to give a density 0.5 higher than the fog density of the sample processed 10 seconds after exposure, and then calculating the density difference from the former. expressed. Positive values represent latent image sensitization and negative values represent latent image regression. These results are summarized in Table 2. [Table 6] (Development processing) The exposed sample is continuously processed (running) using a paper processing machine until twice the capacity of the color development tank is replenished in the next processing step. It was used after carrying out. Treatment process temperature
Time Replenisher* Tank capacity Color development 35℃ 45 seconds
161ml 17 liter bleach fixing
30~35℃ 45 seconds
215ml 17 liter rinse■
30-35℃ 20 seconds
- 10 liters rinse■
30-35℃ 20 seconds
- 10 liters rinse■
30-35℃ 20 seconds 350
ml 10 liters dry
70-80℃ 60 seconds *Replenishment amount is per 1 m2 of photosensitive material. (A 3-tank countercurrent system was used for rinsing ■ → ■.) The composition of each treatment liquid is as follows. color developer
tank liquid
replenisher water

800ml 800ml Ethylenediamine-N,N,N',N'- Tetramethylenephosphonic acid
1.5g 2.0g Potassium bromide
0.015g
- triethanolamine
8.0g
12.0g Sodium chloride

1.4g - potassium carbonate
25g
25g N-ethyl-N-(β-methanesulfona)
(midoethyl)-3-methyl-4-amino
Aniline sulfate
5.0g
7.0g N,N-bis(carboxymethyl)hydrazine

4.0g 5.0g N,N-di(sulfoethyl)hydroxylamine・1Na

4.0g 5.0g Fluorescent brightener (WHITEX 4B, manufactured by Sumitomo Chemical)
1.0g 2.0g Add water
1000ml
1000ml pH (25℃)

10.05 10.45 00
78] Bleach-fix solution (tank solution and refill solution are the same) Water


400ml ammonium thiosulfate (700ml)
g/liter)
100ml sodium sulfite

17g ethylenediaminetetraacetic acid iron(III) ammonium
55g Disodium ethylenediaminetetraacetate
5g ammonium bromide

40g
add water

1000ml pH (25℃)

6.0 Rinse solution (tank solution and refill solution are the same) Ion exchange water (calcium and magnesium are each 3
ppm or less) From the results in Table 2, the effects of the present invention are clear. That is, Samples 1 and 2 using pure silver chloride emulsions A and B cannot obtain sufficient sensitivity and are not suitable for practical use. Sample 3 using emulsion C and sulfur-sensitized emulsion C having a localized silver bromide phase and sample 4 using emulsion D
Although high sensitivity can be obtained with this method, the sensitivity is significantly lowered and the tone becomes softer during high-intensity, short-time exposure, and the latent image storage stability is also poor. For the first time, sample 5 using emulsion E, which has a localized silver bromide phase and is selenium-sensitized, and sample 6 using emulsion F, have high sensitivity and little variation in sensitivity gradation due to changes in exposure time. A silver halide photosensitive material having good latent image storage stability can also be obtained. Example 2 Emulsion D of Example 1 was prepared by adding potassium hexachloroiridate (IV) during the formation of fine silver bromide particles, so that the localized phase formed by the addition of fine silver bromide particles Emulsion G was prepared with the only difference being that the emulsion contained an iridium salt in an amount of 1.times.10@-7 mole of iridium salt per mole of total silver halide. Emulsion F of Example 1 is an emulsion in which potassium hexachloroiridate (IV) is added during the formation of silver bromide fine grains, so that iridium salt is contained in the localized phase formed by the addition of silver bromide fine grains. , 1 x 10- per mole of total silver halide
Emulsion H was prepared, the only difference being that it contained 7 moles of iridium salt. Emulsion I was prepared which differed from Emulsion G only in that the iridium salt content was 2.times.10@-5 moles per mole of total silver halide. Emulsion H
Emulsion J was prepared which differed only in that the iridium salt content was 2 x 10-5 mol per mol of total silver halide. Using the above emulsions G to J, multilayer color photographic papers 7 to 10 were prepared in the same manner as in Example 1 (see Table 3),
Together with Samples 4 and 6 of Example 1, exposure and development were performed in the same manner as in Example 1, and the photographic properties were evaluated. The results are shown in Table 4. [0081] [0082] From the results in Table 4, the effects of the present invention are clear. That is, in sample 7 containing sulfur-sensitized emulsion G having a localized phase containing iridium (iridium content: 1 x 10 -7 mol per mol of total silver halide), sample 4 containing no iridium Although the lower sensitivity and softer tone during high-intensity, short-time exposure are reduced compared to the above, it is not sufficient, and the latent image storage stability is not improved. Sample 9, which has an increased iridium salt content, hardly exhibits lower sensitivity and softer tone during high-intensity, short-time exposure compared to sample 7, but the latent image storage deteriorates and cannot be put to practical use. This was selenium sensitized and iridium was added to 1 x 10-7 mol/mol Ag.
Sample 8 containing the above-mentioned sample 8 can achieve both small fluctuations in sensitivity and gradation due to changes in exposure time and good latent image storage stability. Sample 10 of the present invention, in which the amount of iridium added was further increased, also had better latent image storage stability than sample 9, which was sensitized with sulfur, and exhibited less fluctuation in sensitivity and gradation due to changes in exposure time, and good latent image. Image preservability can be achieved at the same time. Effects of the Invention The present invention provides a silver halide that is excellent in rapid processing properties, has high sensitivity, and has both small fluctuations in sensitivity and gradation due to changes in exposure time, and good latent image storage stability. A photographic material is obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  支持体上にハロゲン化銀乳剤を含有す
る感光性乳剤層を少なくとも一層有するハロゲン化銀写
真感光材料において、該ハロゲン化銀乳剤層の少なくと
も一層に塩化銀含有率80モル%以上の塩臭化銀粒子か
らなるハロゲン化銀乳剤を含み、かつ該粒子が臭化銀含
有率10%以上の局在相を有し、更に該粒子がセレン増
感されていることを特徴とするハロゲン化銀写真感光材
料。
Claim 1: A silver halide photographic material having at least one photosensitive emulsion layer containing a silver halide emulsion on a support, wherein at least one of the silver halide emulsion layers has a silver chloride content of 80 mol% or more. A silver halide emulsion consisting of silver chlorobromide grains of Silver halide photographic material.
JP3133251A 1991-05-10 1991-05-10 Silver halide photographic material Expired - Lifetime JP2706857B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3133251A JP2706857B2 (en) 1991-05-10 1991-05-10 Silver halide photographic material
DE69206871T DE69206871T2 (en) 1991-05-10 1992-05-06 Silver halide photographic material
EP92107626A EP0512496B1 (en) 1991-05-10 1992-05-06 Silver halide photographic material
US08/150,287 US5415991A (en) 1991-05-10 1993-11-10 Stable, rapidly-developable silver halide photographic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133251A JP2706857B2 (en) 1991-05-10 1991-05-10 Silver halide photographic material

Publications (2)

Publication Number Publication Date
JPH04335338A true JPH04335338A (en) 1992-11-24
JP2706857B2 JP2706857B2 (en) 1998-01-28

Family

ID=15100243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133251A Expired - Lifetime JP2706857B2 (en) 1991-05-10 1991-05-10 Silver halide photographic material

Country Status (1)

Country Link
JP (1) JP2706857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527922B2 (en) 2004-03-11 2009-05-05 Fujifilm Corporation Silver halide color photographic light-sensitive material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106424A (en) * 1975-03-17 1976-09-21 Konishiroku Photo Ind HAROGEN KAGINSHASHINNYUZAI
JPS60150046A (en) * 1984-01-17 1985-08-07 Konishiroku Photo Ind Co Ltd Silver halide photographic emulsion
JPH01183655A (en) * 1988-01-18 1989-07-21 Fuji Photo Film Co Ltd Color photographic sensitive material
JPH01183647A (en) * 1988-01-18 1989-07-21 Fuji Photo Film Co Ltd Silver halide sensitive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106424A (en) * 1975-03-17 1976-09-21 Konishiroku Photo Ind HAROGEN KAGINSHASHINNYUZAI
JPS60150046A (en) * 1984-01-17 1985-08-07 Konishiroku Photo Ind Co Ltd Silver halide photographic emulsion
JPH01183655A (en) * 1988-01-18 1989-07-21 Fuji Photo Film Co Ltd Color photographic sensitive material
JPH01183647A (en) * 1988-01-18 1989-07-21 Fuji Photo Film Co Ltd Silver halide sensitive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527922B2 (en) 2004-03-11 2009-05-05 Fujifilm Corporation Silver halide color photographic light-sensitive material

Also Published As

Publication number Publication date
JP2706857B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JPH08211529A (en) Silver halide photographic emulsion
JP2756520B2 (en) Silver halide photographic material
EP0488737A1 (en) Image forming method
US5415991A (en) Stable, rapidly-developable silver halide photographic material
EP0488601B1 (en) Silver halide photographic light-sensitive material
US5672467A (en) Higher speed color photographic element and a method for high speed imaging
US6706469B2 (en) Silver halide emulsion, silver halide color photographic light-sensitive material and image-forming method
JPH04335338A (en) Silver halide photographic sensitive material
US5547830A (en) Silver halide photographic material comprising iron containing silver halide grains and method for forming images using the same
JPH04335336A (en) Silver halide photographic sensitive material
US6740483B1 (en) Process for doping silver halide emulsion grains with Group 8 transition metal shallow electron trapping dopant, selenium dopant, and gallium dopant, and doped silver halide emulsion
JPH04305644A (en) Silver halide color photographic sensitive material
JP2816610B2 (en) Silver halide photographic material
JP2001100345A (en) Silver halide emulsion and color photographic sensitive material using same and image forming method
US5362619A (en) High-speed halide photographic light-sensitive material
EP0589438B1 (en) Silver halide emulsion and silver halide photographic light-sensitive material
JP2756798B2 (en) Negative silver halide color photographic light-sensitive material
JP2704464B2 (en) Silver halide color photographic materials
JP2929325B2 (en) Novel silver halide emulsion and silver halide photographic light-sensitive material containing the emulsion
JP2683625B2 (en) Silver halide photographic material
US6803182B1 (en) Gallium complex composition, process for doping silver halide emulsion grains with gallium complex composition, and gallium-doped silver halide emulsion
JPH04335348A (en) Silver halide color photographic sensitive material
JPH04335346A (en) Silver halide color photographic sensitive material
JPH05134341A (en) Silver halide photographic sensitive material
JP4125064B2 (en) Silver halide color photographic light-sensitive material and color image forming method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 14