JPH0433527A - Harmonic compensation device - Google Patents

Harmonic compensation device

Info

Publication number
JPH0433527A
JPH0433527A JP2140746A JP14074690A JPH0433527A JP H0433527 A JPH0433527 A JP H0433527A JP 2140746 A JP2140746 A JP 2140746A JP 14074690 A JP14074690 A JP 14074690A JP H0433527 A JPH0433527 A JP H0433527A
Authority
JP
Japan
Prior art keywords
power
order
command signal
current command
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140746A
Other languages
Japanese (ja)
Other versions
JP2859930B2 (en
Inventor
Takeshi Shioda
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2140746A priority Critical patent/JP2859930B2/en
Publication of JPH0433527A publication Critical patent/JPH0433527A/en
Application granted granted Critical
Publication of JP2859930B2 publication Critical patent/JP2859930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To enable harmonics from a low order to a high order to be restricted by utilizing a band pass from an instantaneous real power to an imaginary power of a load current for detecting the low-order harmonic constituents and for obtaining a first current command signal, thus allowing the waveform to be in a gradual sinusoidal form. CONSTITUTION:A power operation circuit 11 receives load current signals iLU, iLV, and iLW which are proportional to load currents ULU, ILV, and ILW and system voltages eU, eV, and eW and then calculates an instantaneous real power p1 and an instantaneous imaginary power q1. Then, these are sent to a bandpass filter 12. The bandpass filter 12 eliminates DC constituents and high-order AC constituents from these and sends out a low-order AC constituent p1L and an instantaneous imaginary power low-order AC constituent q1L to a code inversion circuit 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電源系統および負荷設備間の系統ラインに設け
られた高調波補償装荷の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in harmonic compensation loading provided in a system line between a power supply system and load equipment.

〔従来の技術〕[Conventional technology]

3相PWMコンバータと、前記3相p W Mコンバー
タの交流側に電源に直列に接続される交流リアクトルと
、前記3相PWMコンバータの直流側に端子間に接続さ
れる直流コンデンサとで構成されるアクティブフィルタ
は、アクティブフィルタ自身が発生するリップル電流を
除去するために高次フィルタが併設され、全体として高
調波補償装P3 置が構成されるのが一般的である。
Consisting of a 3-phase PWM converter, an AC reactor connected in series to a power supply on the AC side of the 3-phase PWM converter, and a DC capacitor connected between terminals on the DC side of the 3-phase PWM converter. The active filter is generally provided with a high-order filter in order to remove the ripple current generated by the active filter itself, and the harmonic compensator P3 is configured as a whole.

このような高調波補償装置においては電源系統のインピ
ーダンスと高次フィルタの間で共振が発生し補償特性が
悪化することがある。このような共振をアクティブフィ
ルタによって抑制する制御方式として4源側高調波電流
をフィードバックする方法が、昭和62年電気学会全国
大会講演論文集の566として「アクティブフィルタの
制御方式に関する検討−」に報告されている。
In such a harmonic compensator, resonance may occur between the impedance of the power supply system and the high-order filter, and the compensation characteristics may deteriorate. A method of feeding back harmonic currents on the four-source side as a control method to suppress such resonance using an active filter was reported in ``Study on Control Methods of Active Filters'' as 566 of the Proceedings of the National Conference of the Institute of Electrical Engineers of Japan in 1988. has been done.

以下、このような従来の高調波補償装置について図面を
参照しながら説明する。第3図は従来の高調波補償装置
を具えた3相交流電源系統の主回路構成図であり、第4
図は高調波補償時の系統のブロック図である。
Hereinafter, such a conventional harmonic compensation device will be explained with reference to the drawings. Figure 3 is a main circuit configuration diagram of a three-phase AC power supply system equipped with a conventional harmonic compensation device.
The figure is a block diagram of the system during harmonic compensation.

第3図において、3は系統インピーダンスを示し、3相
交流系統電源1は系統インピーダンス3を経てサイリス
クレオナード装置等の負荷2に負荷側交流リアクトル8
を介して電力を供給している。この系統ラインに3相P
 W Mコンノマータ5゜交流リアクトル4.直流コン
デンサ6から成るアクティブフィルタ及び高次フィルタ
7で構成される高調波補償装置が接続されている。
In Fig. 3, 3 indicates the system impedance, and the three-phase AC system power supply 1 passes through the system impedance 3 and is connected to the load 2, such as a Thyris-Screenard device, to the load-side AC reactor 8.
Power is supplied through the 3-phase P in this system line
WM Connomata 5゜AC reactor 4. A harmonic compensation device consisting of an active filter consisting of a DC capacitor 6 and a high-order filter 7 is connected.

第4図において、33は電源電流の高調渡分ISHのフ
ィードバック制御関数0131はアクティブフィルタの
伝達関数GAF、32は電源側高調波流入インピーダン
スZであり、電源側高調波流入インピーダンス2は系統
の高調波インピーダンスZsおよび高次フィルタ7のイ
ンピーダンスzfより次の式%式% このような伝達関数で構成される系統において、負荷電
流高調渡分ILt(と、電源電流高調渡分ISHにフィ
ードバック制御関数Gを掛けたIOを加え合わせて、そ
れらをアクティブフィルタの伝達関数GAFの入力とす
る。
In Fig. 4, 33 is the feedback control function 01 of the harmonic component ISH of the power supply current, 31 is the transfer function GAF of the active filter, 32 is the harmonic inflow impedance Z on the power supply side, and harmonic inflow impedance 2 on the power supply side is the harmonic inflow impedance 2 of the system. From the wave impedance Zs and the impedance zf of the high-order filter 7, the following formula % Formula % In a system configured with such a transfer function, the load current harmonic portion ILt (and the power supply current harmonic portion ISH are given by the feedback control function G The multiplied IOs are added together and used as input to the active filter's transfer function GAF.

その出力IFと負荷電流高調渡分ILHの差を電源側高
調波流入インピーダンスZの入力とすると、その出力が
電源電流高調渡分ISHとなる1、ここで、フィードバ
ック制御関数Gとして比例微分回路を採用すれば、電源
系統のインビーダンスと高次フィルタ7の間で発生する
共振を抑制し、補償性能を向上させることができる。比
例微分回路を採用した時、フィードバック関数Gは比例
微分回路の伝達関数となり次式で表される。
If the difference between the output IF and the load current harmonic distribution ILH is input to the harmonic inflow impedance Z on the power supply side, the output becomes the power supply current harmonic distribution ISH1.Here, a proportional differential circuit is used as the feedback control function G. If adopted, resonance generated between the impedance of the power supply system and the high-order filter 7 can be suppressed, and compensation performance can be improved. When a proportional differentiation circuit is employed, the feedback function G becomes a transfer function of the proportional differentiation circuit and is expressed by the following equation.

Q= KTS   ・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・(2)1+TS ここに に:比例微分回路のゲイン T;比例微分回路の時定数 を示す。
Q=KTS・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(2) 1+TS Here: Gain T of the proportional differentiation circuit; shows the time constant of the proportional differentiation circuit.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示した負荷2の負荷側交流リアクトル8の値が
小さい時、負荷電流ILU + ■t、v l ILW
の重なり角が小さくなり、有限な値を有する交流リアク
トル4のためにアクティブフィルタは負荷電流ILU 
r ILV r ILVの転流時に補償指令に追従でき
なくなる。その結果、高次高調波の抑制は高次フィルタ
7で行なうとしても、低次高調波が多量に残るという不
具合があった。
When the value of the load side AC reactor 8 of the load 2 shown in Fig. 2 is small, the load current ILU + ■t, v l ILW
Since the overlap angle of the AC reactor 4 is small and has a finite value, the active filter is configured to reduce the load current ILU
r ILV r It becomes impossible to follow the compensation command when ILV commutates. As a result, even if high-order harmonics are suppressed by the high-order filter 7, a large amount of low-order harmonics remain.

この抑制されない低次高調波は第4図においてILH−
I ii’で示される電流の中で低次の電流であす、フ
ィードバック関数Gのゲインを上げても抑制できない電
流である。
This unsuppressed lower harmonic is shown in FIG.
This is a low-order current among the currents indicated by Iii', and is a current that cannot be suppressed even if the gain of the feedback function G is increased.

本発明は前記の不具合を解消して、低次から高次に至る
高調波を抑制する高調波補償装置を提供するものである
・ 〔課題を解決するための手段] 本発明にかかる高調波補償装置は電源系統および負荷設
備間の系統ラインに設けられる高調波補償装置であって
、3相PWMコンバータと、該3相PWMコンバータの
交流側各相に系統ラインに直列に接続された交流リアク
トルと、前記3相PWMコンバータの直流側端子間に接
続された直流コンデンサと、前記交流リアクトルの電源
側に併設された高次フィルタと、前記3相PWMコンバ
ータを制御する制御装置を備えたものにおいて、該制御
装置は負荷設備の瞬時実電力および虚電力を演算する手
段と、該瞬時実電力および虚電力からその低次交流分を
検出する手段と、該瞬時実電力および虚電力の低次交流
分より第1の電流指令信号を生成する手段と、電源電流
からその瞬時実P7 電力および虚電力を演算して第2の電流指令信号を生成
する手段と、該第2の電流指令信号を入力して比例微分
を施し第3の電流指令信号を生成する手段と、該第3の
電流指令信号と前記第1の電流指令信号を加算して電流
指令信号を生成する手段と、該電流指令信号と前記交流
リアクトルに流れる補償電流検出値とを比較して3相P
WMコンバータの各相スイ1.チング信号を生成する手
段とを具えたことを特徴とするものである。
The present invention solves the above-mentioned problems and provides a harmonic compensation device that suppresses harmonics from low order to high order. [Means for Solving the Problems] Harmonic compensation according to the present invention The device is a harmonic compensation device installed in a system line between a power supply system and load equipment, and includes a three-phase PWM converter, an AC reactor connected in series to the system line on each phase of the AC side of the three-phase PWM converter, and , comprising a DC capacitor connected between DC side terminals of the three-phase PWM converter, a high-order filter attached to the power supply side of the AC reactor, and a control device for controlling the three-phase PWM converter, The control device includes means for calculating instantaneous real power and imaginary power of the load equipment, means for detecting a low-order AC component from the instantaneous real power and imaginary power, and low-order AC component of the instantaneous real power and imaginary power. means for generating a first current command signal from a power supply current; means for generating a second current command signal by calculating instantaneous actual P7 power and imaginary power from a power supply current; means for generating a third current command signal by applying proportional differentiation to the current command signal; means for generating a current command signal by adding the third current command signal and the first current command signal; The three-phase P is compared with the detected value of the compensation current flowing through the AC reactor.
Each phase switch of WM converter 1. The present invention is characterized in that it includes means for generating a switching signal.

〔作 用〕[For production]

本発明にかかる高調波補償装置においては、負荷電流の
瞬時実′屯力および虚電力よりバンドパスを利用して、
低次の高調渡分を検出して第1の電流指令信号を得る事
により、第1の電流指令信号の波形が従来は鋸歯状であ
ったものがバンドパスにより正弦波状に緩やかなものと
なるので、有限の値を有する交流リアクトル4により有
限のスイ、チング周波数で十分な低次補償性能を得る事
ができる。
In the harmonic compensator according to the present invention, a bandpass is used from the instantaneous real force and imaginary power of the load current to
By detecting the low-order harmonic component and obtaining the first current command signal, the waveform of the first current command signal, which was previously sawtooth, becomes gentle like a sine wave due to bandpass. Therefore, sufficient low-order compensation performance can be obtained with a finite switching and switching frequency by using the AC reactor 4 having a finite value.

高次の高調渡分は高次フィルタにより抑制することがで
きる。又、低次の高調渡分が残った場合には、電源電流
の瞬時実電力および虚電力より生成した第2の電流指令
信号およびその値を比例微分した第3の電流指令信号に
より電源インピーダンスと高次フィルタとの間で発生す
る共振を抑制することができる。
High-order harmonic components can be suppressed by high-order filters. In addition, if a low-order harmonic component remains, the power supply impedance is determined by a second current command signal generated from the instantaneous real power and imaginary power of the power supply current, and a third current command signal obtained by proportionally differentiating the value. Resonance occurring with the high-order filter can be suppressed.

〔実 施 例〕〔Example〕

以下、一実施例につき図面を参照しつつ説明する。本発
明にかかる高調波補償装置を具えた3相交流電源系統の
主回路構成図は、従来の場合と同様に第3図に示した通
りであり、第1図は本考案にかかる高調波補償装置の一
実施例の制御装置のブロック図を示す。
Hereinafter, one embodiment will be described with reference to the drawings. The main circuit configuration diagram of a three-phase AC power supply system equipped with the harmonic compensation device according to the present invention is shown in FIG. 3 as in the conventional case, and FIG. 1 shows the harmonic compensation system according to the present invention. FIG. 2 shows a block diagram of a control device of an embodiment of the device.

3相交流系統電源1は系統インピーダンス3および負荷
側交流リアクトル8を経てサイリスタレオナード装置等
の負荷2に電力を供給し、負荷2の各相には負荷電流I
LU * ILV + ILVが流れ込んでいる。この
系統ラインに負荷2と並列に高次フィルタ7とアクティ
ブフィルタが接続されている。
A three-phase AC system power supply 1 supplies power to a load 2 such as a thyristor Leonard device through a system impedance 3 and a load-side AC reactor 8, and each phase of the load 2 receives a load current I.
LU * ILV + ILV is flowing. A high-order filter 7 and an active filter are connected to this system line in parallel with the load 2.

アクティブフィルタは3相PWMコンバータ5と、その
交流側各相端子を系統ラインへ接続する交流リアクトル
4と、3相PWMコンバータの直流側端子間に接続され
た直流コンデンサ6とから成っている。
The active filter consists of a three-phase PWM converter 5, an AC reactor 4 that connects each phase terminal on the AC side to the system line, and a DC capacitor 6 connected between the DC side terminals of the three-phase PWM converter.

3相PWMコンバータ5はオン、オフ可能なスイッチン
グ素子81〜S6およびダイオードD1〜D6から構成
され、各スイッチング素子81〜S6はそれぞれダイオ
ード■)1〜D6を並列接続された上、3相ブリッジ回
路として接続され、制御装置から供給されるスイッチン
グ信号V、によりスイッチング素子81〜S6がオン、
オフされて高調波補償を行うものである。
The three-phase PWM converter 5 is composed of switching elements 81 to S6 and diodes D1 to D6, which can be turned on and off, and each switching element 81 to S6 is connected in parallel with diodes 1 to D6, and a three-phase bridge circuit is formed. The switching elements 81 to S6 are turned on by the switching signal V supplied from the control device.
It is turned off to perform harmonic compensation.

なお、3相PWMコンバータ5の交流側に直列に挿入さ
れた交流リアクトル4は、3相PWMコンバータ5の電
流の立ち上がりを制限するためのものであり、直流側に
接続された直流コンデンサ6は、3相PWMコンバータ
5の直流側の電圧を安定化させるためのものであって、
通常は3相交流系統電源1の電圧と等しい3相PWMコ
ンバタ5の交流側電圧の2倍程度の電圧に充電されてい
る。
Note that the AC reactor 4 inserted in series on the AC side of the three-phase PWM converter 5 is for limiting the rise of the current of the three-phase PWM converter 5, and the DC capacitor 6 connected to the DC side is It is for stabilizing the voltage on the DC side of the three-phase PWM converter 5,
Normally, it is charged to a voltage that is approximately twice the AC side voltage of the three-phase PWM converter 5, which is equal to the voltage of the three-phase AC system power supply 1.

今、第3図に示す主回路構成において、負荷2に流入す
る負荷電流を工LU + ILV r ILW、アクテ
ィブフィルタすなわち3相P IN Mコンバータ5に
流入する補償電流をIU + IV r IW%高次フ
ィルタ7に流入するフィルタ電流をIFU r IFV
 + IFWとすると、系統電源1に流れる電源電流■
SU + I8V 1■SWは負荷電流と補償電流とフ
ィルタ電流とをベクトル的に加算したものとなる。従っ
て、補償電流とフィルタ電流のベクトル和IU+IFU
 、 Iv+Ipv +IW+IFWがそれぞれ負荷電
流ILU + 工LV + ILVの高調渡分を打ち消
すものであれ((よい。
Now, in the main circuit configuration shown in Fig. 3, the load current flowing into the load 2 is expressed as LU + ILV r ILW, and the compensation current flowing into the active filter, that is, the three-phase PIN converter 5, as IU + IV r IW%. The filter current flowing into the next filter 7 is IFU r IFV
+ IFW, the power supply current flowing to grid power supply 1■
SU+I8V 1■SW is the vectorial sum of the load current, compensation current, and filter current. Therefore, the vector sum of compensation current and filter current IU + IFU
, Iv+Ipv +IW+IFW cancel the harmonic transition of the load current ILU + engineering LV + ILV, respectively ((good).

前記のような高調波補償を行うため、ここでは以下に説
明するような3相〜2相変換を行い、実電力および虚電
力なる概念を導入している。この概念については昭和5
8年7月発行の眠気学会論文誌103巻B分冊7号掲載
の論文58.−860の「瞬時無効電力の一般化理論と
その応用」などとして発表されているが、以下、その演
算法について説明する。
In order to perform harmonic compensation as described above, three-phase to two-phase conversion as described below is performed here, and the concepts of real power and imaginary power are introduced. This concept was introduced in Showa 5.
Paper 58 published in Journal of the Sleepiness Society, Vol. 103, Part B, No. 7, published in July 2013. -860, ``Generalized Theory of Instantaneous Reactive Power and Its Applications'', etc., and its calculation method will be explained below.

pH この概念は、まず次の(3)〜(5)式を用いて3相の
負荷電流■LTJ + ’LV r ILWおよび系統
電圧eU、Py。
pH This concept is first calculated by using the following equations (3) to (5) to calculate the three-phase load current ■LTJ + 'LV r ILW and the system voltage eU, Py.

憎を2相の電流■い、■1.βおよび電圧f!d、eβ
に変換するものである。、 ここで[0〕は3相〜2相の変換行列である。
A two-phase current ■1. β and voltage f! d, eβ
It is converted into . , where [0] is a three-phase to two-phase transformation matrix.

上記(3)〜(5)式より求めた2相の電圧および電流
を用いると、次の(6)式により実電力pおよび虚電力
qが求められる。
Using the two-phase voltages and currents obtained from the above equations (3) to (5), the real power p and the imaginary power q can be obtained from the following equation (6).

これらの実電力pおよび虚電力qは、次の(7)。These real power p and imaginary power q are as follows (7).

(8)式によりそれぞれ直流分子)+C1と低次交流外
p12.q1.および高次交流分pHl q[(に分解
される。
According to equation (8), the DC molecule)+C1 and the low-order AC external p12. q1. and the higher-order alternating current component pHl q [(decomposed into

p = p + I)L−1−I)H・・・・・・・・
・・・・・・・・・・・・・・・・(7)q”’ q+
’ Qt、”t−Q+□   ・・・・・・・・・・・
・・・・・・・・・・・・・(8)ここで、2相負荷電
流ILα、ILβの低次高調渡分は実電力の低次交流外
pr、および虚電力の低次交流外qLに変換されるので
、バンドパスフィルタを通して分離することができる。
p = p + I) L-1-I) H・・・・・・・・・
・・・・・・・・・・・・・・・・・・(7) q”' q+
' Qt, "t-Q+□ ・・・・・・・・・・・・
(8) Here, the low-order harmonic parts of the two-phase load currents ILα and ILβ are the low-order AC outside pr of the real power and the low-order AC outside of the imaginary power. Since it is converted into qL, it can be separated through a bandpass filter.

次に、以上に述べた原理に基づいて構成された第1図の
制御装置を説明する。
Next, the control device shown in FIG. 1 constructed based on the principle described above will be explained.

電力演算回路11は負荷電流ILU + ILV * 
ILWに比例する負荷電流信号it、u r ’t、v
 + it、wと、系統電圧eu + ev * ew
とを受けて、(3)〜(6)式に従って瞬時実電力pt
および瞬時虚電力q1を演算し、こレラをバンドパスフ
ィルタ12へ送ル・。
The power calculation circuit 11 calculates the load current ILU + ILV *
Load current signal it,ur't,v proportional to ILW
+ it, w, and grid voltage eu + ev * ew
According to equations (3) to (6), the instantaneous actual power pt
and instantaneous imaginary power q1, and sends this to the bandpass filter 12.

バンドパスフィルタ12はこれらから直流分および高次
交流分を除去して、瞬時実電力の低次交流外p1Lおよ
び瞬時虚電力の低次交流外qILを符号反転回路13へ
送出する。符号反転回路13はこれら* の符号を反転し、実電力指令信号p1  および虚電力
指令信号qごとして電流指令値演算回路】4へ出力する
The bandpass filter 12 removes the DC component and the high-order AC component from these, and sends the instantaneous real power low-order AC external p1L and the instantaneous imaginary power low-order AC external qIL to the sign inversion circuit 13. The sign inverting circuit 13 inverts the signs of these signals * and outputs them as the real power command signal p1 and the imaginary power command signal q to the current command value calculation circuit 4.

*−一 〜 p、  −−pl    ・・・・・・・・・・・・・
・・・・・・・・−へ・・・・・・(9)*−〜 ql  −−−−−Q 1    ・・・・・・・・−
・・・・・・・・・・・・・・・・・・・・・(10)
これらは電流指令値演算回路14において生成する電流
指令イ言号の原形となるものである。すなオ)ち、(9
)式により得られる実電力指令信号p1 を基に低次高
調波有効電力が制御され、(10)式により得られる虚
電力指令信号q、*を基に低次高調波無効電力が制御さ
れる3、 電流指令値演算回路14は、実電力指令信号p1+虚電
力指令信号q、および系統電圧eIj、 ey 、 e
wを受けて、前記(3)式および次の(11)〜(13
)式に従って、2相電流指令値号1ct1.+β1を得
、2相〜3相変換を行って電流指令信号IU□IIVI
Iiw+を生成して加算回路15へ出力する。
*-1 ~ p, --pl ・・・・・・・・・・・・・・・
・・・・・・・・・−・・・・・・(9)*−~ ql −−−−−Q 1 ・・・・・・・・・−
・・・・・・・・・・・・・・・・・・・・・(10)
These are the original forms of the current command words generated in the current command value calculation circuit 14. Sunao) Chi, (9
) The low-order harmonic active power is controlled based on the actual power command signal p1 obtained by the equation (10), and the low-order harmonic reactive power is controlled based on the imaginary power command signal q, * obtained from the equation (10). 3. The current command value calculation circuit 14 calculates the real power command signal p1 + imaginary power command signal q, and the system voltages eIj, ey, e
In response to w, the above equation (3) and the following (11) to (13
), the two-phase current command value number 1ct1. +β1 is obtained, the 2-phase to 3-phase conversion is performed, and the current command signal IU□IIIVI is obtained.
Iiw+ is generated and output to the adder circuit 15.

P]、4 なお、〔C〕  は〔C〕の逆変換行列である。P], 4 Note that [C] is an inverse transformation matrix of [C].

次に、電力演算回路21は電源電流■SU + ISV
 *Iswに比例する電源電流イ1i号1sU−isv
 + iswと、系統電圧eU、 ey 、 ewとを
受けて、(3)〜(6)式に従って瞬時実電力p2およ
び瞬時虚電力q2を演算し、これらをバイパスフィルタ
22へ送る。
Next, the power calculation circuit 21 calculates the power supply current ■SU + ISV
*Power supply current I1i 1sU-isv proportional to Isw
+isw and the system voltages eU, ey, and ew, calculate instantaneous real power p2 and instantaneous imaginary power q2 according to equations (3) to (6), and send these to the bypass filter 22.

バイパスフィルタ22はこれらから直流分を除去して、
瞬時実電力の交流外p2および瞬時虚電力の交流外q2
を符号反転回路23へ送出する。イ、f号反転回路23
はこれらの符号を反転し、実電力指令信号*     
                  *p2  およ
び虚電力指令信号q2  として電流指令値演算回路2
4へ出力する。
The bypass filter 22 removes the DC component from these,
Instantaneous real power outside AC p2 and instantaneous imaginary power outside AC q2
is sent to the sign inversion circuit 23. A, f inversion circuit 23
inverts these signs and outputs the actual power command signal*
*p2 and the current command value calculation circuit 2 as the imaginary power command signal q2
Output to 4.

P  15 *−〜  ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(14)p2 −−−p2 1−〜 ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(15)q2  −   Q
2 電流指令値演算回路24は、実電力指令信号p2 r* 虚電力指令信号q2  および系統電圧eU、 ey 
、 ewを受けて、前記(3) 、 (13)式および
次の(16)〜(17)式に従って2相電流指令信号1
.12*、lβ2*を得、2相〜3相変換を行って電流
指令信号i、J2.iv□。
P 15 *-~ ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(14) p2 −−−p2 1−〜 ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・(15)q2 − Q
2 The current command value calculation circuit 24 calculates the real power command signal p2 r*, the imaginary power command signal q2, and the system voltage eU, ey
, ew, the two-phase current command signal 1 is generated according to the above equations (3) and (13) and the following equations (16) and (17).
.. 12*, lβ2* are obtained, and 2-phase to 3-phase conversion is performed to obtain current command signals i, J2. iv□.

iwzを生成して比例微分回路25へ出力する。iwz is generated and output to the proportional differentiation circuit 25.

比例微分回路25は電流指令信号iU2 + ly□。The proportional differentiation circuit 25 receives the current command signal iU2 + ly□.

iwzを得て、(2)式の伝達関数に基づいて第3の電
流指令信号iuz’ 1ivz * iw2’を演算し
加算回路15へ出力する。
iwz is obtained, a third current command signal iuz' 1ivz * iw2' is calculated based on the transfer function of equation (2), and is output to the addition circuit 15.

加算回路15は電流指令信号’Ul l iv+ 、i
w□と電流指令信号iuz + iv2’ + iwz
’とを各相それぞれ、*、ン七、* 加算して電流指令信号’IJ  I tv  + tw
  を生成し、電流制御回路16へ送出する。
The adder circuit 15 receives the current command signal 'Ul iv+ , i
w□ and current command signal iuz + iv2' + iwz
' and for each phase, *, n7, * are added to obtain the current command signal 'IJ I tv + tw
is generated and sent to the current control circuit 16.

電流制御回路16は電流指令信号iU*+ !y*iw
*と補償電流IU + IV + IWに比例する補償
検出電流信号iU + IV + jwとを比較し、例
えば、 * 〜                 、
 *IIJ<0  で且つ 11J≦+IUなるとき、
3相PWMコンバータ5のスイッチング素子S4をオン
し、 ネ 、 IU さ0 で且つ 1U)i・U* なるときスイッチング素子S4をオフし、またIU 〈
0 で且つ IU≦iU* 、 * なるとき、スイッチング素子Slをオフするようなスイ
ッチング信号VGを生成するものであり、このスイッチ
ング信号vGによってスイッチング素子S1〜S6がオ
ン、オフ制御され、高調波補償装置の各相の電流瞬時値
が制御される。
The current control circuit 16 receives a current command signal iU*+! y*iw
* and a compensation detection current signal iU + IV + jw proportional to the compensation current IU + IV + IW, for example, * ~ ,
*When IIJ<0 and 11J≦+IU,
The switching element S4 of the three-phase PWM converter 5 is turned on, and when IU is 0 and 1U)i・U*, the switching element S4 is turned off, and when IU
0 and IU≦iU*, *, a switching signal VG is generated that turns off the switching element Sl, and this switching signal vG turns on and off the switching elements S1 to S6, and performs harmonic compensation. The instantaneous current values of each phase of the device are controlled.

このようにして、電流指令信号”Ul l iVl l
iw+により低次の高調波成分が補償され、高次フィル
タにより高次の高副波成分が補償される。又、i7 電源インピーダンスと高次フィルタによる共振は電流指
令信号it+z’ 、iv□+ iwz’により抑制さ
れる。
In this way, the current command signal "Ul l iVl l
iw+ compensates for low-order harmonic components, and the high-order filter compensates for high-order high subwave components. Further, resonance due to the i7 power supply impedance and the high-order filter is suppressed by the current command signals it+z' and iv□+iwz'.

〔発明の効果〕〔Effect of the invention〕

以上、一実施例により詳細に説明したように、本発明に
かかる高調波補償装置は、負荷に接続される負荷側交流
リアクトルが小さい場合でも、低次の高調波をバンドパ
スを使用して検出する事により良好に補償する事ができ
、高次の高調波は高次フィルタにより補償する事ができ
る。
As described above in detail with one embodiment, the harmonic compensation device according to the present invention detects low-order harmonics using a bandpass even when the load-side AC reactor connected to the load is small. Good compensation can be achieved by using a high-order filter, and high-order harmonics can be compensated by a high-order filter.

又、補償しきれなかった低次の高調波の、電源インピー
ダンスと高次フィルタによる共4辰による増大も電源電
流を検出する事によって抑制できる。
Furthermore, an increase in low-order harmonics that could not be compensated for due to both the power supply impedance and the high-order filter can be suppressed by detecting the power supply current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案にかかる高調波補償装置の一実系統イン
ピーダンス、4・・・・・・交流リアクトル、5・・・
・・・3相PWMコンバータ、6・・・・・・直流コン
デンサ、7・・・・・・高次フィルタ、8・・・・・・
負荷側交流リアクトル、11 、21・・・・・・電力
演算回路、12・・・・・・バンドパスフィルタ、22
・・・・・・バイパスフィルタ、13゜23・・・・・
・符号反転回路、14 、24・・・・・・′電力指令
演算回路、15・・・・・・加算回路、16・・・・・
・電流制御回路。
Figure 1 shows the actual system impedance of the harmonic compensator according to the present invention, 4... AC reactor, 5...
...Three-phase PWM converter, 6...DC capacitor, 7...High-order filter, 8...
Load side AC reactor, 11, 21...Power calculation circuit, 12...Band pass filter, 22
...Bypass filter, 13゜23...
・Sign inversion circuit, 14, 24...'Power command calculation circuit, 15...Addition circuit, 16...
・Current control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 電源系統および負荷設備間の系統ラインに設けられ
る高調波補償装置であって、3相PWMコンバータと、
該3相PWMコンバータの交流側各相に系統ラインに直
列に接続された交流リアクトルと、前記3相PWMコン
バータの直流側端子間に接続された直流コンデンサと、
前記交流リアクトルの電源側に併設された高次フィルタ
と、前記3相PWMコンバータを制御する制御装置を備
えたものにおいて、該制御装置は負荷設備の瞬時実電力
および虚電力を演算する手段と、該瞬時実電力および虚
電力からその低次交流分を検出する手段と、該瞬時実電
力および虚電力の低次交流分より第1の電流指令信号を
生成する手段と、電源電流からその瞬時実電力および虚
電力を演算して第2の電流指令信号を生成する手段と、
該第2の電流指令信号を入力して比例微分を施し第3の
電流指令信号を生成する手段と、該第3の電流指令信号
と前記第1の電流指令信号を加算して電流指令信号を生
成する手段と、該電流指令信号と前記交流リアクトルに
流れる補償電流検出値とを比較して3相PWMコンバー
タの各相スイッチング信号を生成する手段を具えたこと
を特徴とする高調波補償装置。
1 A harmonic compensation device installed in a system line between a power supply system and load equipment, comprising a three-phase PWM converter,
an AC reactor connected in series to a system line for each AC side phase of the three-phase PWM converter; and a DC capacitor connected between DC side terminals of the three-phase PWM converter;
A high-order filter attached to the power supply side of the AC reactor and a control device for controlling the three-phase PWM converter, the control device comprising means for calculating instantaneous real power and imaginary power of the load equipment; means for detecting a low-order AC component from the instantaneous real power and imaginary power; means for generating a first current command signal from the low-order AC component of the instantaneous real power and imaginary power; means for calculating electric power and imaginary power to generate a second current command signal;
means for inputting the second current command signal and performing proportional differentiation to generate a third current command signal; and means for adding the third current command signal and the first current command signal to generate a current command signal. 1. A harmonic compensation device comprising: means for generating, and means for comparing the current command signal with a detected compensation current flowing through the AC reactor to generate switching signals for each phase of a three-phase PWM converter.
JP2140746A 1990-05-30 1990-05-30 Harmonic compensator Expired - Fee Related JP2859930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140746A JP2859930B2 (en) 1990-05-30 1990-05-30 Harmonic compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140746A JP2859930B2 (en) 1990-05-30 1990-05-30 Harmonic compensator

Publications (2)

Publication Number Publication Date
JPH0433527A true JPH0433527A (en) 1992-02-04
JP2859930B2 JP2859930B2 (en) 1999-02-24

Family

ID=15275767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140746A Expired - Fee Related JP2859930B2 (en) 1990-05-30 1990-05-30 Harmonic compensator

Country Status (1)

Country Link
JP (1) JP2859930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029690A1 (en) * 2003-09-19 2005-03-31 Kabushiki Kaisha Yaskawa Denki Pwm cyclo converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196741U (en) * 1987-12-16 1989-06-27
JPH0253234U (en) * 1988-09-30 1990-04-17
JPH02131330A (en) * 1988-11-09 1990-05-21 Toshiba Corp Control system for higher harmonic compensator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196741U (en) * 1987-12-16 1989-06-27
JPH0253234U (en) * 1988-09-30 1990-04-17
JPH02131330A (en) * 1988-11-09 1990-05-21 Toshiba Corp Control system for higher harmonic compensator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029690A1 (en) * 2003-09-19 2005-03-31 Kabushiki Kaisha Yaskawa Denki Pwm cyclo converter
GB2421125A (en) * 2003-09-19 2006-06-14 Yaskawa Denki Seisakusho Kk Pwm cyclo converter
GB2421125B (en) * 2003-09-19 2006-12-20 Yaskawa Denki Seisakusho Kk Pwm cycloconverter
US7495937B2 (en) 2003-09-19 2009-02-24 Kabushiki Kaisha Yaskawa Denki PWM cycloconverter

Also Published As

Publication number Publication date
JP2859930B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
Mesbahi et al. Direct power control of shunt active filter using high selectivity filter (HSF) under distorted or unbalanced conditions
Saad et al. Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power
Lohia et al. A minimally switched control algorithm forthree-phase four-leg VSI topology tocompensate unbalanced and nonlinear load
Mortezaei et al. Grid-connected symmetrical cascaded multilevel converter for power quality improvement
Yang et al. Low complexity finite-control-set MPC based on discrete space vector modulation for T-type three-phase three-level converters
Campos et al. Analysis and design of a series voltage compensator for three-phase unbalanced sources
KR101639192B1 (en) Apparatus for compensating reactive power
Sreenivasarao et al. A T-connected transformer based hybrid D-STATCOM for three-phase, four-wire systems
KR20130078380A (en) Control apparatus for regenerative medium voltage inverter
Kumar et al. Startup procedure for DSP-controlled three-phase six-switch boost PFC rectifier
Jain Control strategies of shunt active power filter
JP5147624B2 (en) Inverter device
Sreenivasarao et al. Performance enhancement of a reduced rating hybrid D-STATCOM for three-phase, four-wire system
Wojciechowski et al. Sensorless predictive control of three-phase parallel active filter
Stanciu et al. Single-phase active power filter with improved sliding mode control
Marius et al. Modeling and simuling power active filter using method of generalized reactive power theory
Bojoi et al. Shunt active power filter implementation for induction heating applications
JPH0433527A (en) Harmonic compensation device
Liu et al. Finite-time ESO-based cascade-free FCS-MPC for NNPC converter
Suresh et al. Three-level active neutral point clamped DSTATCOM with Interval Type-2 fuzzy logic controller
Cheng et al. A modified one cycle control of Vienna rectifier for neutral point voltage balancing control based on cycle-by-cycle correction
Mortezaei et al. A multi task microgrid inverter based instantaneous Power Theory in islanded and grid-connected modes
JP2673191B2 (en) Resonant active filter
RU2442275C1 (en) Method for controlling three-phase static converter with unbalanced load
JPS6223325A (en) Active filter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees