JPH04334605A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH04334605A
JPH04334605A JP3133630A JP13363091A JPH04334605A JP H04334605 A JPH04334605 A JP H04334605A JP 3133630 A JP3133630 A JP 3133630A JP 13363091 A JP13363091 A JP 13363091A JP H04334605 A JPH04334605 A JP H04334605A
Authority
JP
Japan
Prior art keywords
intersection
radial distance
main groove
groove
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3133630A
Other languages
Japanese (ja)
Other versions
JP2957309B2 (en
Inventor
Tatsuhiko Kamegawa
龍彦 亀川
Yukio Nakajima
中島 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP3133630A priority Critical patent/JP2957309B2/en
Priority to DE69206473T priority patent/DE69206473T2/en
Priority to EP92304106A priority patent/EP0512825B1/en
Priority to US07/881,218 priority patent/US5322106A/en
Publication of JPH04334605A publication Critical patent/JPH04334605A/en
Priority to US08/369,260 priority patent/US5503208A/en
Application granted granted Critical
Publication of JP2957309B2 publication Critical patent/JP2957309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To unify ground pressure on respective parts of ribs 16 or blocks 26 and improve dry running performance. CONSTITUTION:Ground pressure at respective parts are unified, by setting the distance in the radial direction from the outer surface of ribs 16 and blocks 26 to the groove bottoms 20, 32 of main grooves 13, 24 at crossing parts 18 and angle parts 30 which are easily deformed and pressed by low ground pressure due to small crossing angles of two edges 17, 28, 29, larger than the above- mentioned distance in the radial direction at crossing parts 19 and angle parts 31 which are hardly deformed and pressed by high ground pressure due to large crossing angles of two edges 17, 28, 29.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、卜レッド部外表面に
溝が形成されることにより、複数のリブあるいは多数の
ブロックが画成された空気入りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire having a plurality of ribs or a plurality of blocks defined by grooves formed on the outer surface of a red portion.

【0002】0002

【従来の技術】従来、空気入りタイヤのトレッドパター
ンとしては、例えば、卜レッド部の外表面に周方向に延
びジグザグ状に折れ曲がった複数の主溝が形成されるこ
とにより、これら主溝間および主溝と卜レッド端との間
に複数本のリブが画成されるとともに、これらリブの外
表面と主溝の側壁との境界にエッジが形成された、いわ
ゆるリブタイプのもの、あるいは、卜レッド部の外表面
に周方向に延びる複数の主溝およびほぼ軸方向に延びて
主溝に交差する複数の横溝が形成されることにより、多
角形をした多数のブロックが画成されるとともに、これ
らブロックの外表面と主溝、横溝の側壁との境界にエッ
ジが形成された、いわゆるブロックタイプのものが知ら
れている。
[Prior Art] Conventionally, the tread pattern of a pneumatic tire is such that, for example, a plurality of main grooves extending in the circumferential direction and bent in a zigzag shape are formed on the outer surface of a tread portion. A so-called rib type, in which a plurality of ribs are defined between the main groove and the edge of the main groove, and an edge is formed at the boundary between the outer surface of these ribs and the side wall of the main groove, or By forming a plurality of main grooves extending in the circumferential direction and a plurality of lateral grooves extending approximately in the axial direction and intersecting the main grooves on the outer surface of the section, a large number of polygonal blocks are defined, and these A so-called block type is known in which an edge is formed at the boundary between the outer surface of the block and the side walls of the main groove and the lateral groove.

【0003】0003

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空気入りタイヤにあっては、大舵角域におい
て最大コーナリングフォースが大きく低下し、タイヤの
ドライ走行性能が悪くなるという問題点がある。
[Problem to be Solved by the Invention] However, such conventional pneumatic tires have the problem that the maximum cornering force decreases significantly in a large steering angle region, and the dry running performance of the tire deteriorates. .

【0004】0004

【課題を解決するための手段】そこで、本発明者は、こ
のような大舵角域での最大コーナリングフォースの低下
原因を解明すべく鋭意研究を重ねた結果、以下のような
知見を得た。即ち、一般に、ゴムは非圧縮性(ゴムに圧
力を作用させると、変形はするが、体積に変化はない)
であるため、ゴムからなるリブ、ブロックを接地させる
と、該リブ等は荷重を受けて半径方向に潰れるとともに
接地面に平行に逃げよう(膨出しよう)とするが、この
とき、2つのエッジの交差角が小さな交差部(角部)近
傍ではリブ等の占有割合が低く、ゴムが逃げられる空間
が広いことから、該交差部(角部)近傍におけるリブ等
の接地圧が低くなり、一方、2つのエッジの交差角が大
きな交差部(角部)近傍ではリブ等の占有割合が高く、
ゴムが逃げられる空間が狭いことから、該交差部(角部
)近傍におけるリブ等の接地圧が高くなる。そして、こ
のように接地圧がリブあるいはブロックの各部で不均一
であると、舵角が大きくなるに従いサイドフォースが接
地圧の高い部位に集中し、結果として最大コーナリング
フォースが低下するのである。
[Means for Solving the Problem] Therefore, the inventor of the present invention has conducted intensive research to clarify the cause of the decrease in maximum cornering force in such a large steering angle range, and has obtained the following findings. . In other words, rubber is generally incompressible (when pressure is applied to rubber, it deforms but its volume does not change).
Therefore, when a rib or block made of rubber is placed on the ground, the rib, etc. collapses in the radial direction under the load and tries to escape (bulge) parallel to the ground surface, but at this time, the two edges Near intersections (corners) where the intersection angle is small, the occupation ratio of ribs, etc. is low, and there is a large space for rubber to escape, so the ground pressure of ribs, etc. near the intersections (corners) is low; , the occupation ratio of ribs, etc. is high near the intersection (corner) where two edges intersect at a large angle,
Since the space through which the rubber can escape is narrow, the ground pressure of the ribs and the like near the intersection (corner) increases. If the ground pressure is uneven in each part of the rib or block in this way, as the steering angle increases, side force will be concentrated in areas with high ground pressure, resulting in a decrease in maximum cornering force.

【0005】この発明は前述の知見に基づきなされたも
ので、トレッド部の外表面に周方向に延びジグザグ状に
折れ曲がった複数の主溝が形成されることにより、これ
ら主溝間および主溝と卜レッド端との間に複数本のリブ
が画成されるとともに、これらリブの外表面と主溝の側
壁との境界にエッジが形成された空気入りタイヤにおい
て、前記主溝の折れ曲がりにより2つのエッジ向士が交
差する交差部近傍のリブの外表面から主溝の溝底までの
半径方向距離を、前記エッジ同士の交差角の角度が小さ
くなるほど大としたものであり、また、トレッド部の外
表面に周方向に延びる複数の主溝およびほぼ軸方向に延
びて主溝に交差する複数の横溝が形成されることにより
、多角形をした多数のブロックが画成されるとともに、
これらブロックの外表面と主溝、横溝の側壁との境界に
エッジが形成された空気入りタイヤにおいて、前記主溝
、横溝の交差により2つのエッジ同士が交差する角部近
傍のブロックの外表面から主溝の溝底までの半径方向距
離を、前記交差角の角度が小さくなるほど大としたもの
である。
The present invention has been made based on the above-mentioned knowledge, and by forming a plurality of main grooves extending in the circumferential direction and bending in a zigzag shape on the outer surface of the tread portion, there is a gap between the main grooves and between the main grooves. In a pneumatic tire in which a plurality of ribs are defined between the red end and an edge is formed at the boundary between the outer surface of these ribs and the side wall of the main groove, two The radial distance from the outer surface of the rib near the intersection where the edges intersect with each other to the groove bottom of the main groove is increased as the intersection angle between the edges becomes smaller. By forming a plurality of main grooves extending in the circumferential direction and a plurality of lateral grooves extending substantially in the axial direction and intersecting the main grooves on the outer surface, a large number of polygonal blocks are defined, and
In these pneumatic tires in which edges are formed at the boundaries between the outer surface of the block and the side walls of the main groove and lateral groove, from the outer surface of the block near the corner where the two edges intersect due to the intersection of the main groove and lateral groove. The radial distance of the main groove to the groove bottom is increased as the intersection angle becomes smaller.

【0006】[0006]

【作用】路面を走行しているときのリブ、ブロックの接
地圧は、前述のように交差角が小さな交差部(角部)近
傍では低く、一方、前記交差角が大きな交差部(角部)
近傍では高くなる。このため、この発明では、交差部近
傍のリブ、ブロックの外表面から主溝の溝底までの半径
方向距離を、前記エッジ同士の交差角の角度が小さくな
るほど大とすることにより、交差角が小さな交差部(角
部)近傍でのゴム量を増大させて該交差部近傍における
接地圧を増加させ、一方、交差角が大きな交差部(角部
)近傍でのゴム量を減少させて該交差部近傍における接
地圧を低減させ、これにより、リブ、ブロックの各部に
おける接地圧を均一化させている。この結果、舵角が大
きくなってもサイドフォースの接地圧の高い部位への集
中が緩和され、結果として最大コーナリングフォースの
低下が阻止される。また、リブの幅方向中央部およびブ
ロックの面中央部は共に全周囲がゴムで囲まれているた
め、接地時にゴムの逃げ場がなく、この結果、接地圧は
最大となる。このため、請求項2および4では、これら
の部位の半径方向距離を、交差部(角部)近傍における
半径方向距離の最小値より小とし、リブ、ブロック全域
の接地圧のさらなる均一化を図っている。
[Effect] When running on a road surface, the ground pressure of ribs and blocks is low near intersections (corners) where the intersection angle is small, and on the other hand, at intersections (corners) where the intersection angle is large.
It becomes higher in the vicinity. Therefore, in this invention, the radial distance from the outer surface of the rib or block near the intersection to the groove bottom of the main groove is made larger as the intersection angle between the edges becomes smaller, thereby increasing the intersection angle. The amount of rubber near intersections (corners) with small intersections is increased to increase the ground pressure near the intersections, while the amount of rubber near intersections (corners) with large intersection angles is decreased to increase the ground pressure near the intersections. This reduces the ground pressure near the ribs and blocks, thereby making the ground pressure uniform at each part of the rib and block. As a result, even if the steering angle increases, the concentration of side force on areas with high ground contact pressure is alleviated, and as a result, a decrease in maximum cornering force is prevented. Further, since both the widthwise center portion of the rib and the center portion of the face of the block are entirely surrounded by rubber, there is no place for the rubber to escape upon contact with the ground, and as a result, the ground contact pressure is maximized. Therefore, in claims 2 and 4, the radial distance of these parts is made smaller than the minimum value of the radial distance in the vicinity of the intersection (corner) to further equalize the ground pressure across the ribs and the block. ing.

【0007】[0007]

【実施例】以下、この発明の第1実施例を図面に基づい
て説明する。図1において、11は空気入りタイヤであ
り、このタイヤ11の卜レッド部12の外表面には周方
向に延びる複数本、ここでは4本の主溝13が形成され
ている。これらの主溝13は同一ピッチでかつ同一振幅
でジグザグ状に折れ曲がっているとともに、周方向に同
一位相で配置されている。これら主溝13のうち、隣接
する2つの主溝13間およびトレッド端14と最外側の
主溝13との間には、周方向に延びるとともにジグザグ
状に折れ曲がった複数本、ここでは5本のリブ16がそ
れぞれ画成される。17は各リブ16の外表囲と主溝1
3の側壁15との境界、即ちリブ16の外表面と主溝1
3の側壁15との交差部に形成されたエッジであり、こ
れらエッジ17は主溝13に沿ってジグザグ状に延び、
この結果、周方向に隣接する直線状の2つのエッジ17
同士は 180度未満の交差角aあるいは 180度を
超える交差角bのいずれかで交差する。そして、このよ
うなタイヤ11を荷重下で走行させると、ゴムが非圧縮
性であるため、前記リブ16は半径方向に潰れるととも
に接地面に平行に逃げよう(主溝13内に膨出しよう)
とするが、このとき、前記エッジ17同士の交差角aが
180度未満の小さな交差部(突出端)18近傍では、
リブ16の周囲の空間に対する占有割合が低く、ゴムが
逃げられる空間が広いことから、該交差部18近傍にお
けるリブ16の接地庄が低くなり、一方、前記エッジ1
7同士の交差角bが 180度を超える大きな交差部(
凹み端)19近傍ではリブ16の前記占有割合が高く、
ゴムが逃げられる空間が狭いことから、該交差部19近
傍におけるリブ16の接地圧が高くなる。また、各リブ
16の幅方向中央部は全周囲がゴムで囲まれているため
、接地時にゴムの逃げ場がなく、この結果、該リブ16
の幅方向中央部における接地圧は前記交差部19近傍に
おける接地圧よリ高くなり最大となる。そして、このよ
うに接地圧がリブ16の各部で不均一であると、舵角が
大きくなるに従いサイドフォースが接地圧の高い部位に
集中し、結果として最大コーナリングフォースが低下す
るのである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 11 denotes a pneumatic tire, and a plurality of, in this case four, main grooves 13 are formed on the outer surface of the red portion 12 of the tire 11, extending in the circumferential direction. These main grooves 13 are bent in a zigzag shape at the same pitch and with the same amplitude, and are arranged in the same phase in the circumferential direction. Among these main grooves 13, between two adjacent main grooves 13 and between the tread end 14 and the outermost main groove 13, there are a plurality of grooves, five in this case, extending in the circumferential direction and bent in a zigzag shape. Ribs 16 are each defined. 17 is the outer circumference of each rib 16 and the main groove 1
3 with the side wall 15, that is, the outer surface of the rib 16 and the main groove 1
These edges 17 extend in a zigzag shape along the main groove 13.
As a result, two linear edges 17 adjacent in the circumferential direction
They intersect with each other either at an intersection angle a less than 180 degrees or an intersection angle b greater than 180 degrees. When such a tire 11 is run under a load, since rubber is incompressible, the ribs 16 will collapse in the radial direction and escape parallel to the ground contact surface (bulge into the main groove 13).
However, at this time, in the vicinity of a small intersection (protruding end) 18 where the intersection angle a between the edges 17 is less than 180 degrees,
Since the occupation ratio of the surrounding space of the rib 16 is low and the space in which the rubber can escape is wide, the contact strength of the rib 16 in the vicinity of the intersection 18 is low, and on the other hand, the edge 1
A large intersection where the intersection angle b between 7s exceeds 180 degrees (
In the vicinity of the concave end) 19, the occupation ratio of the rib 16 is high;
Since the space through which the rubber can escape is narrow, the ground pressure of the ribs 16 near the intersection 19 increases. In addition, since the widthwise central portion of each rib 16 is entirely surrounded by rubber, there is no place for the rubber to escape when it touches the ground, and as a result, the rib 16
The ground pressure at the center in the width direction is higher than the ground pressure near the intersection 19 and reaches a maximum. If the ground pressure is uneven in each part of the rib 16 in this way, as the steering angle increases, the side force will concentrate on the area where the ground pressure is high, and as a result, the maximum cornering force will decrease.

【0008】このため、この実施例では、図2、3、4
、5に示すように、文差角aが小さな交差部18近傍で
のリブ16の外表面から主溝13の溝底20までの半径
方向距離Hを、交差角bが大きな交差部19近傍でのリ
ブ16の外表面から主溝13の溝底20までの半径方向
距離Jよリ大とする、ここでは交差部18近傍を仮想線
で示す卜レッド部12の断面輪郭よリ半径方向外側に突
出させ、一方、交差部19近傍をトレッド部12の断面
輪郭より半径方向内側に凹ませるとともに、各リブ16
の幅方向中央部におけるその外表面から主溝13の溝底
20までの半径方向距離Kを、交差部近傍での半径方向
距離の最小値、ここでは前記半径方向距離Jより小とし
ている。そして、リブ16の各部の外表面は滑らかな曲
面によってつながれている。ここで、主溝18の溝底2
0とは、当該リブ16の両側に配置された一対の主溝1
3の溝底を結び、卜レッド部12の断面輪郭に平行な曲
線(仮想線で示す)を意味する。この結果、交差角aが
小さな交差部18近傍でのゴム量を増大して該交差部1
8近傍における接地圧が増加し、一方、交差角bが大き
な交差部19近傍でのゴム量を減少して該交差部19近
傍における接地圧が低減し、さらに、リブ16の幅方向
中央部におけるゴム量が最も減少して該幅方向中央部に
おける接地圧が最も低減する。これにより、リブ16の
各部における接地圧が均一化する。この結果、このタイ
ヤ11での走行時に舵角が大きくなってもサイドフォー
スの接地圧の高い部位への集中が緩和され、結果として
最大コーナリングフォースの低下が阻止されるのである
。ここで、前記半径方向距離Hと半径方向距離Jとの差
(mm)は、交差角aと交差角bとの差(度)の 0.
005倍から0.015倍の範囲であることが好ましい
。その理由は、 0.005倍末満であると、前記接地
圧の均一化が十分でないからであり、一方、 0.01
5倍を超えると、交差部18近傍の接地圧が増大しすぎ
、また、交差部19近傍の接地圧が低減しすぎることに
より、逆に接地圧が不均一となるからである。また、前
記半径方向距離Kと交差部近傍での半径方向距離の最小
値、ここでは前記半径方向距離Jとの差(mm)は、 
0.3から 0.8の範囲が好ましい。
Therefore, in this embodiment, FIGS.
, 5, the radial distance H from the outer surface of the rib 16 to the groove bottom 20 of the main groove 13 near the intersection 18 where the text difference angle a is small is the same as that near the intersection 19 where the intersection angle b is large. The radial distance J from the outer surface of the rib 16 to the groove bottom 20 of the main groove 13 is set to be larger than the radial distance J from the outer surface of the rib 16 to the groove bottom 20 of the main groove 13. On the other hand, the vicinity of the intersection 19 is recessed inward in the radial direction from the cross-sectional contour of the tread portion 12, and each rib 16
The radial distance K from the outer surface of the main groove 13 to the groove bottom 20 of the main groove 13 at the center in the width direction is set to be the minimum value of the radial distance near the intersection, which is smaller than the radial distance J in this case. The outer surfaces of each part of the rib 16 are connected by smooth curved surfaces. Here, the groove bottom 2 of the main groove 18
0 means a pair of main grooves 1 arranged on both sides of the rib 16.
It means a curve (shown by an imaginary line) connecting the groove bottoms of No. 3 and parallel to the cross-sectional contour of the red portion 12. As a result, the amount of rubber near the intersection 18 where the intersection angle a is small is increased, and the intersection 1
On the other hand, the amount of rubber near the intersection 19 where the intersection angle b is large is decreased, and the ground pressure near the intersection 19 is reduced. The amount of rubber decreases the most, and the ground pressure at the center in the width direction decreases the most. This equalizes the ground pressure at each part of the rib 16. As a result, even if the steering angle increases when the vehicle is running on the tires 11, the concentration of side force on areas with high ground contact pressure is alleviated, and as a result, a decrease in maximum cornering force is prevented. Here, the difference (mm) between the radial distance H and the radial distance J is equal to the difference (degrees) between the intersection angle a and the intersection angle b by 0.
The range is preferably from 0.005 times to 0.015 times. The reason is that if it is less than 0.005 times, the ground pressure will not be uniform enough;
If it exceeds five times, the ground pressure near the intersection 18 will increase too much, and the ground pressure near the intersection 19 will decrease too much, resulting in uneven ground pressure. Further, the difference (mm) between the radial distance K and the minimum value of the radial distance near the intersection, here the radial distance J, is:
A range of 0.3 to 0.8 is preferred.

【0009】なお、前述の実施例では、交差部における
交差角が大小2種類であったが、この交差角は3種類以
上であってもよい。この場合には、交差角が小さくなる
ほど、交差部近傍におけるリブの外表面から主溝の溝底
までの半径方向距離を大きくする。
[0009] In the above-mentioned embodiment, there are two types of intersection angles, large and small, at the intersection, but there may be three or more types of intersection angles. In this case, the smaller the intersection angle, the larger the radial distance from the outer surface of the rib to the bottom of the main groove in the vicinity of the intersection.

【0010】図6はこの発明の第2実施例を示す図であ
る。この実施例においては、卜レッド部22の外表面に
直線状に延びる複数本の主溝24およびほぼ軸方向に延
びるとともに前記主溝24と交差する複数本の横溝25
を形成し、これら主溝24および横溝25によりトレッ
ド部22に多角形、ここでは平行四辺形をした多数個の
ブロック26を画成している。これらブロック26にお
いても、各ブロック26の外表面と主溝24の側壁23
および横溝25の側壁27との境界、即ちブロック26
の外表面と主溝24、横溝25の側壁23、27との交
差部にはエッジ28、29が形成される。そして、前記
主溝24と横溝25との交差によって、2つのエッジ2
8、29同士が90度末満の小さな交差角cで交差する
角部30と、2つのエッジ28、29同士が90度を超
える大きな交差角dで交差する角部31とが、各ブロッ
ク26に形成される。ここで、小さな交差角cの角部3
0近傍では前述と同様に接地圧が低く、一方、大きな交
差角dの角部31近傍では接地圧が高いため、接地圧が
不均一となって最大コーナリングフォースが低下する。 このため、この実施例では、図7、8、9に示すように
、小さな交差角cの角部30近傍でのブロック26の外
表面から主溝24の溝底32までの半径方向距離Lを、
大きな交差角dの角部31近傍でのブロック26の外表
面から主溝24の溝底32までの半径方向距離Mより大
とする、ここでは角部30近傍を卜レッド部22の断面
輪郭より半径方向外側に突出させ、一方、角部31近傍
を仮想線で示す卜レッド部22の断面輪郭より半径方向
内側に凹ませている。また、各ブロック26の外表面の
面中央部も周囲がゴムに囲まれて接地圧が一番高くなる
ため、各ブロック26の面中央部におけるその外表面か
ら主溝24の溝底32までの半径方向距離Nを、角部近
傍での半径方向距離の最小値、ここでは前記半径方向距
離Mより小としている。そして、ブロック26の各部の
外表面は滑らかな曲面によってつながれている。この結
果、角部30近傍における接地圧が増加し、一方、角部
31近傍における接地圧が低減し、さらに、各ブロック
26の面中央部における接地圧が最も低減し、ブロック
26の各部における接地圧が均一化する。これにより、
舵角が大きくなってもサイドフォースの接地圧の高い部
位への集中が緩和され、結果として最大コーナリングフ
ォースの低下が阻止される。ここで、前記半径方向距離
Lと半径方向距離Mとの差(mm)は、交差角cと交差
角dとの差(度)の0.01倍から 0.025倍の範
囲であることが好ましい。その理由は、0.01倍未満
であると、前記接地圧の均一化が十分でないからであり
、一方、 0.025倍を超えると、角部30近傍の接
地圧が増大しすぎ、また、角部31近傍の接地圧が低減
しすぎることにより、逆に接地圧が不均一となるからで
ある。また、前記半径方向距離Nと交差部近傍での半径
方向距離の最小値、ここでは前記半径方向距離Mとの差
(mm)は、 0.3から 0.8の範囲が好ましい。
FIG. 6 is a diagram showing a second embodiment of the invention. In this embodiment, the outer surface of the red portion 22 includes a plurality of main grooves 24 extending linearly and a plurality of lateral grooves 25 extending substantially in the axial direction and intersecting the main grooves 24.
The main grooves 24 and the lateral grooves 25 define a large number of blocks 26 in the tread portion 22 in the shape of a polygon, here a parallelogram. In these blocks 26 as well, the outer surface of each block 26 and the side wall 23 of the main groove 24
and the boundary between the horizontal groove 25 and the side wall 27, that is, the block 26
Edges 28 and 29 are formed at intersections between the outer surface of the main groove 24 and the side walls 23 and 27 of the lateral groove 25. The two edges 2 are formed by the intersection of the main groove 24 and the lateral groove 25.
Each block 26 has a corner 30 where the edges 8 and 29 intersect with each other at a small intersection angle c of less than 90 degrees, and a corner 31 where the two edges 28 and 29 intersect with each other at a large intersection angle d exceeding 90 degrees. is formed. Here, corner 3 with a small intersection angle c
The ground contact pressure is low near 0 as described above, whereas the ground pressure is high near the corner 31 with a large intersection angle d, so the ground contact pressure becomes uneven and the maximum cornering force decreases. Therefore, in this embodiment, as shown in FIGS. 7, 8, and 9, the radial distance L from the outer surface of the block 26 to the groove bottom 32 of the main groove 24 near the corner 30 of the small intersection angle c is ,
The distance in the radial direction from the outer surface of the block 26 to the groove bottom 32 of the main groove 24 in the vicinity of the corner 31 with a large intersection angle d is greater than the radial distance M; It protrudes outward in the radial direction, and on the other hand, the vicinity of the corner 31 is recessed inward in the radial direction from the cross-sectional contour of the red part 22 shown by the imaginary line. In addition, since the center part of the outer surface of each block 26 is also surrounded by rubber and has the highest ground pressure, the distance from the outer surface to the groove bottom 32 of the main groove 24 at the center part of each block 26 is The radial distance N is the minimum value of the radial distance near the corner, which is smaller than the radial distance M here. The outer surfaces of each part of the block 26 are connected by smooth curved surfaces. As a result, the ground pressure near the corner 30 increases, while the ground pressure near the corner 31 decreases, furthermore, the ground pressure at the center of the face of each block 26 decreases the most, and the ground pressure at each part of the block 26 decreases. The pressure becomes even. This results in
Even when the steering angle increases, the concentration of side force on areas with high ground contact pressure is alleviated, and as a result, a decrease in maximum cornering force is prevented. Here, the difference (mm) between the radial distance L and the radial distance M may be in the range of 0.01 to 0.025 times the difference (degrees) between the intersection angle c and the intersection angle d. preferable. The reason for this is that if it is less than 0.01 times, the ground pressure will not be uniform enough, whereas if it exceeds 0.025 times, the ground pressure near the corner 30 will increase too much, and This is because if the ground pressure near the corner 31 is reduced too much, the ground pressure becomes uneven. Further, the difference (mm) between the radial distance N and the minimum value of the radial distance near the intersection, here the radial distance M, is preferably in the range of 0.3 to 0.8.

【0011】なお、前述の実施例では、角部における交
差角が大小2種類であったが、この交差角は3種類以上
であってもよい。この場合には、交差角が小さくなるほ
ど、交差部近傍におけるブロックの外表面から主溝の溝
底までの半径方向距離を大きくする。また、前記実施例
ではブロック26の外表面の形状が凸多角形であったが
、このブロックの外表面形状は凹多角形、例えばT字形
であってもよい。
[0011] In the above-described embodiment, there are two types of intersection angles, large and small, at the corners, but there may be three or more types of intersection angles. In this case, the smaller the crossing angle, the larger the radial distance from the outer surface of the block to the bottom of the main groove in the vicinity of the crossing. Further, in the embodiment described above, the outer surface of the block 26 has a convex polygonal shape, but the outer surface of this block may have a concave polygonal shape, for example, a T-shape.

【0012】次に、試験例を説明する。この試験に当た
っては、図1に示すような卜レッドパターンを有し、交
差部18、19近傍およびリブ16の幅方向中央部にお
ける、リブ16の外側面から主溝13の溝底20までの
半径方向距離が全て同一である比較タイヤ1と、図1に
示すような卜レッドパターンを有し、交差部18近傍に
おける半径力向距離Hと交差部19近傍における半径方
向距離Jとの差が 1mmで、リブ16の幅方向中央部
における半径方向距離Kと交差部19近傍における半径
方向距離Jとの差が 0.5mmである供試タイヤ1と
、図6に示すようなトレッドパターンを有し、角部30
、31近傍およびブロック26の面中央部における、ブ
ロック26の外側面から主溝24の溝底32までの半径
方向距離が全て同一である比較タイヤ2と、図6に示す
ような卜レッドパターンを有し、角部30近傍における
半径方向距離Lと角部31近傍における半径方向距離M
との差が 1mmで、また、ブロック26の面中央部に
おける半径方向距離Nと角部31における半径方向距離
Mとの差が 0.5mmである供試タイヤ2とを準備し
た。ここで、比較、供試タイヤ1におけるリブ16の交
差角aは 120度、交差角bは 240度であり、一
方、比較、供試タイヤ2におけるブロック26の交差角
cは60度、交差角dは 120度であった。また、各
タイヤのサイズは205/60R15であった。次に、
このような各タイヤに2kgf/cm2の内圧を充填す
るとともに360kgfの荷重を作用させながらドラム
上を30km/hで走行させ、このときのスリップ角を
種々に変化させて最大コーナリングフォースを測定した
。その結果を以下の表1および図10、11に示す。
Next, a test example will be explained. In this test, a red pattern as shown in FIG. Comparative tire 1 having the same directional distances and a red pattern as shown in FIG. A test tire 1 having a tread pattern as shown in FIG. , corner 30
, 31 and at the center of the surface of the block 26, the comparison tire 2 has the same radial distance from the outer surface of the block 26 to the groove bottom 32 of the main groove 24, and a red pattern as shown in FIG. radial distance L near the corner 30 and radial distance M near the corner 31
A test tire 2 was prepared in which the difference between the radial distance N at the center of the surface of the block 26 and the radial distance M at the corner 31 was 0.5 mm. Here, the intersecting angle a of the ribs 16 in the comparison test tire 1 is 120 degrees and the intersecting angle b is 240 degrees, while the intersecting angle c of the blocks 26 in the comparative test tire 2 is 60 degrees. d was 120 degrees. Moreover, the size of each tire was 205/60R15. next,
Each of these tires was filled with an internal pressure of 2 kgf/cm2 and was run on a drum at 30 km/h while applying a load of 360 kgf, and the maximum cornering force was measured while varying the slip angle. The results are shown in Table 1 and FIGS. 10 and 11 below.

【表1】 図10、11から明らかなように、比較タイヤにあって
は、スリップ角が大きくなる(大舵角域となる)と最大
コーナリングフォースが大きく減少しているが、供試タ
イヤにおいては、最大コーナリングフォースの減少はな
く、逆に僅かであるが増加している。
[Table 1] As is clear from Figures 10 and 11, for the comparison tires, the maximum cornering force decreases significantly as the slip angle increases (in the large steering angle range), but for the test tires There is no decrease in maximum cornering force; on the contrary, there is a slight increase in maximum cornering force.

【0013】また、前述と同一の比較タイヤ1、2およ
び供試タイヤ1、2を国産乗用車に装着した後、ワイン
ディング路を走行し、乗車したドライバーによる走行時
のフィーリングを数値化して、各タイヤのドライ性能を
求めた。その結果は前記表1に示されている。この試験
結果から、供試タイヤが比較タイヤよりドライ性能が良
好であることが理解される。
[0013] Furthermore, after installing the same comparison tires 1 and 2 and test tires 1 and 2 as described above on a domestic passenger car, the car was driven on a winding road, and the driving feeling of the driver on board was quantified. We looked for the dry performance of the tires. The results are shown in Table 1 above. From this test result, it is understood that the test tire has better dry performance than the comparative tire.

【0014】[0014]

【発明の効果】以上説明したように、この発明によれば
、大舵角域における最大コーナリングフォースの低下を
阻止することによリ、タイヤのドライ走行性能を向上さ
せることができる。
As described above, according to the present invention, the dry running performance of the tire can be improved by preventing the maximum cornering force from decreasing in the large steering angle range.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の第1実施例を示す卜レッド部の展開
図である。
FIG. 1 is a developed view of a red portion showing a first embodiment of the present invention.

【図2】図1のIーI矢視断面図である。FIG. 2 is a sectional view taken along the line II in FIG. 1;

【図3】図1のIIーII矢視断面図である。FIG. 3 is a sectional view taken along the line II-II in FIG. 1;

【図4】図1のIIIーIII矢視断面図である。FIG. 4 is a sectional view taken along the line III-III in FIG. 1;

【図5】図lのIVーIV矢視断面図である。FIG. 5 is a sectional view taken along the line IV-IV in FIG. 1;

【図6】この発明の第2実施例を示す卜レッド部の展開
図である。
FIG. 6 is a developed view of a red portion showing a second embodiment of the present invention.

【図7】図2のVーV矢視断面図である。FIG. 7 is a sectional view taken along the line V-V in FIG. 2;

【図8】図2のVIーVI矢視断面図である。FIG. 8 is a sectional view taken along the line VI-VI in FIG. 2;

【図9】図2のVIIーVII矢視断面図である。9 is a sectional view taken along the line VII-VII in FIG. 2. FIG.

【図10】スリップ角に対する最大コーナリングフォー
スの値を示すグラフである。
FIG. 10 is a graph showing the value of maximum cornering force versus slip angle.

【図11】スリップ角に対する最大コーナリングフォー
スの値を示すグラフである。
FIG. 11 is a graph showing the value of maximum cornering force versus slip angle.

【符号の説明】[Explanation of symbols]

11…空気入りタイヤ        12…卜レッド
部13…主溝                  1
4…卜レッド端15…側壁             
     16…リブ17…エッジ         
       18、19…交差部20…溝底    
              H、J、K…半径方向距
離a、b…交差角
11...Pneumatic tire 12...Red part 13...Main groove 1
4...Red end 15...Side wall
16...Rib 17...Edge
18, 19...Intersection 20...Groove bottom
H, J, K...Radial distance a, b...Intersection angle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】トレッド部の外表面に周方向に延びジグザ
グ状に折れ曲がった複数の主溝が形成されることにより
、これら主溝間および主溝と卜レッド端との間に複数本
のリブが画成されるとともに、これらリブの外表面と主
溝の側壁との境界にエッジが形成された空気入りタイヤ
において、前記主溝の折れ曲がりにより2つのエッジ向
士が交差する交差部近傍のリブの外表面から主溝の溝底
までの半径方向距離を、前記エッジ同士の交差角の角度
が小さくなるほど大としたことを特徴とする空気入りタ
イヤ。
[Claim 1] A plurality of main grooves extending in the circumferential direction and bent in a zigzag shape are formed on the outer surface of the tread portion, so that a plurality of ribs are formed between the main grooves and between the main groove and the edge of the tread. In a pneumatic tire in which edges are formed at the boundary between the outer surface of these ribs and the side wall of the main groove, the rib near the intersection where the two edge directions intersect due to the bending of the main groove. A pneumatic tire characterized in that the radial distance from the outer surface of the main groove to the groove bottom of the main groove is increased as the intersection angle between the edges becomes smaller.
【請求項2】前記リブの幅方向中央部における前記半径
方向距離を、交差部近傍における半径方向距離の最小値
より小とした請求項1記載の空気入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the radial distance at the widthwise central portion of the rib is smaller than the minimum value of the radial distance near the intersection.
【請求項3】トレッド部の外表面に周方向に延びる複数
の主溝およびほぼ軸方向に延びて主溝に交差する複数の
横溝が形成されることにより、多角形をした多数のブロ
ックが画成されるとともに、これらブロックの外表面と
主溝、横溝の側壁との境界にエッジが形成された空気入
りタイヤにおいて、前記主溝、横溝の交差により2つの
エッジ同士が交差する角部近傍のブロックの外表面から
主溝の溝底までの半径方向距離を、前記交差角の角度が
小さくなるほど大としたことを特徴とする空気入りタイ
ヤ。
3. A large number of polygonal blocks are formed by forming a plurality of circumferentially extending main grooves and a plurality of lateral grooves substantially axially extending and intersecting the main grooves on the outer surface of the tread portion. In addition, in a pneumatic tire in which edges are formed at the boundaries between the outer surface of these blocks and the side walls of the main groove and the lateral groove, the area near the corner where the two edges intersect due to the intersection of the main groove and the lateral groove. A pneumatic tire characterized in that the radial distance from the outer surface of the block to the bottom of the main groove is increased as the intersection angle becomes smaller.
【請求項4】前記ブロックの面中央部における前記半径
方向距離を、角部近傍における半径方向距離の最小値よ
り小とした請求項3記載の空気入りタイヤ。
4. The pneumatic tire according to claim 3, wherein the radial distance at the center of the face of the block is smaller than the minimum value of the radial distance near the corners.
JP3133630A 1991-05-05 1991-05-09 Pneumatic tire Expired - Lifetime JP2957309B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3133630A JP2957309B2 (en) 1991-05-09 1991-05-09 Pneumatic tire
DE69206473T DE69206473T2 (en) 1991-05-09 1992-05-07 Tire.
EP92304106A EP0512825B1 (en) 1991-05-09 1992-05-07 Pneumatic tires
US07/881,218 US5322106A (en) 1991-05-05 1992-05-11 Pneumatic tires with varying block height
US08/369,260 US5503208A (en) 1991-05-09 1995-01-05 Pneumatic tires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133630A JP2957309B2 (en) 1991-05-09 1991-05-09 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH04334605A true JPH04334605A (en) 1992-11-20
JP2957309B2 JP2957309B2 (en) 1999-10-04

Family

ID=15109314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133630A Expired - Lifetime JP2957309B2 (en) 1991-05-05 1991-05-09 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2957309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178427A (en) * 1997-09-02 1999-03-23 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2003182311A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Pneumatic tire
JP2004517772A (en) * 2000-07-24 2004-06-17 ソシエテ ド テクノロジー ミシュラン Tire tread tread design element surface contour
CN112384377A (en) * 2018-06-29 2021-02-19 米其林企业总公司 Tread with improved snow performance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178427A (en) * 1997-09-02 1999-03-23 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2004517772A (en) * 2000-07-24 2004-06-17 ソシエテ ド テクノロジー ミシュラン Tire tread tread design element surface contour
JP4740522B2 (en) * 2000-07-24 2011-08-03 ソシエテ ド テクノロジー ミシュラン Surface contour of tread design element of tire tread
JP2003182311A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Pneumatic tire
CN112384377A (en) * 2018-06-29 2021-02-19 米其林企业总公司 Tread with improved snow performance

Also Published As

Publication number Publication date
JP2957309B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR101659836B1 (en) Pneumatic tire
KR101101042B1 (en) Pneumatic tire
JP3771351B2 (en) Pneumatic tire
JPH0547405B2 (en)
US4977942A (en) Pneumatic tire having defined lug groove configuration
EP1419905B1 (en) Tire used in winter
JPH06234307A (en) Tire
US5417268A (en) Pneumatic radial tire for heavy loads
US5526860A (en) Pneumatic tire
JPS6334045B2 (en)
EP0733497B1 (en) Pneumatic tyre
US6302174B1 (en) Pneumatic tire
JP4559549B2 (en) Pneumatic radial tire
JP4488593B2 (en) Pneumatic tire
JP4025120B2 (en) Pneumatic tire
US5503208A (en) Pneumatic tires
JP2023064576A (en) tire
JP3771353B2 (en) Pneumatic tire
US5472030A (en) Pneumatic tire
JPH02133203A (en) Pneumatic radial tire for heavy load
JPH04334605A (en) Pneumatic tire
JP2878363B2 (en) Pneumatic radial tire
JP3036764B2 (en) Radial tires for passenger cars
JPH08192607A (en) Pneumatic tire for heavy load
JP2001213120A (en) Pneumatic tire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12